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Abstract 20 

Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The 21 

mechanisms that drive AIV evolution are complex at sites where various duck and gull 22 

species from multiple flyways breed, winter or stage. The Republic of Georgia is 23 

located at the intersection of three migratory flyways: Central Asian Flyway, East 24 

Asian/East African Flyway and Black Sea/Mediterranean Flyway. For six consecutive 25 

years (2010-2016), we collected AIV samples from various duck and gull species that 26 

breed, migrate and overwinter in Georgia. We found substantial subtype diversity of 27 

viruses that varied in prevalence from year to year. Low pathogenic (LP)AIV subtypes 28 

included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, 29 

H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, H16N3, plus two H5N5 and H5N8 30 

highly pathogenic (HP)AIVs belonging to clade 2.3.4.4. Whole genome phylogenetic 31 

trees showed significant host species lineage restriction for nearly all gene segments 32 

and significant differences for LPAIVs among different host species in observed 33 

reassortment rates, as defined by quantification of phylogenetic incongruence, and in 34 

nucleotide diversity. Hemagglutinin clade 2.3.4.4 H5N8 viruses, circulated in Eurasia 35 

during 2014-2015 did not reassort, but analysis after its subsequent dissemination 36 

during 2016-2017 revealed reassortment in all gene segments except NP and NS. 37 

Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other 38 

regions with maintenance of local AIV viruses in Georgia, whereas other lineages 39 

showed considerable genetic inter-relationship with viruses circulating in other parts 40 

of Eurasia and Africa, despite relative under-sampling in the area.  41 

 42 

 43 
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Importance 44 

Waterbirds (e.g., gulls/ducks) are natural reservoirs of avian influenza viruses (AIVs) 45 

and have been shown to mediate dispersal of AIV at inter-continental scales during 46 

seasonal migration. The segmented genome of influenza viruses enables viral RNA 47 

from different lineages to mix or re-assort when two viruses infect the same host. Such 48 

reassortant viruses have been identified in most major human influenza pandemics 49 

and several poultry outbreaks. Despite their importance, we have only recently begun 50 

to understand AIV evolution and reassortment in their natural host reservoirs. This 51 

comprehensive study illustrates of AIV evolutionary dynamics within a multi-host 52 

ecosystem at a stop-over site where three major migratory flyways intersect. Our 53 

analysis of this ecosystem over a six-year period provides a snapshot of how these 54 

viruses are linked to global AIV populations. Understanding the evolution of AIVs in 55 

the natural host is imperative to both mitigating the risk of incursion into domestic 56 

poultry and potential risk to mammalian hosts including humans.  57 
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Introduction 58 

Avian influenza viruses (AIVs) have been identified in a wide diversity of wild and 59 

domestic bird species but wild waterbirds of the Orders Anseriformes and 60 

Charadriformes, such as ducks, geese, swans and shorebirds (1, 2) form their natural 61 

reservoir. These birds maintain diverse group of low pathogenic avian influenza A 62 

viruses (LPAIVs), which cause limited morbidity in these host species in experimental 63 

settings (3). The effect of AIV infection in wild birds in non-experimental settings is 64 

more contradictory. Body mass was significantly lower in infected mallards (Anas 65 

playrhynchos) and the amount of virus shed by infected juveniles was negatively 66 

correlated with body mass. However, there was no general effect of infection on 67 

staging time (duration of stopover for migratory birds), except for juveniles in 68 

September and LPAIV infection did not affect speed or distance of subsequent 69 

migration (4). Conversely, a recent mallard study demonstrated no obvious detriment 70 

to the bird as movement patterns did not differ between LPAIV infected and uninfected 71 

birds. Hence, LPAIV infection probably does not affect mallard movements during 72 

stopover, consequently resulting in the potential for virus spread along the migration 73 

route (5). The precise role of migrants and resident birds in amplifying and dispersing 74 

AIVs however, remains unclear. In another study the migrant arrivals played a role in 75 

virus amplification rather than seeding a novel variant into a resident population (6). It 76 

has also been suggested that switching transmission dynamics might be a critical 77 

strategy for pathogens such as influenza A viruses associated with mobile hosts such 78 

as wild waterbirds, and that both intra and inter-species transmission are important to 79 

maintaining gene flow across seasons (7).  80 

 81 

AIVs continue to cause both morbidity and mortality in poultry worldwide.  Increased 82 

mortality is strongly related to infection with highly pathogenic influenza A viruses 83 

 on July 31, 2018 by 67683460
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 

 

(HPAIVs), characterised by mortality in gallinaceous poultry (8). Periodically, human 84 

infections associated with HPAIV of both the H5 and H7 subtypes have been detected. 85 

In particular, parts of Asia and Africa have been significantly affected by the Eurasian 86 

(goose/Guangdong/1996) lineage H5 HPAIV epizootic for two decades, becoming 87 

enzootic in some areas and multiple waves of influenza with evolving viruses in others 88 

(9). More recently, H5Nx reassortants of the Eurasian lineage HPAIVs from clade 89 

2.3.4.4 have been introduced into wild birds from poultry and spread to new 90 

geographic regions (10).   91 

The Caucasus, at the border of Europe and Asia, is important for migration and over-92 

wintering of wild waterbirds. Three flyways, the Central Asian, East Africa-West Asia, 93 

and Mediterranean/Black Sea flyways, converge in this region (11, 12). Understanding 94 

the ecology and evolution of AIVs in wild birds is complex, particularly at sites where 95 

multiple species co-habit and in those ecosystems which support different annual life-96 

cycle stages and where multiple migratory flyways intersect.  97 

At a population level, Eurasian dabbling ducks were found to be more frequently 98 

infected than other ducks and Anseriformes  (13) with most AIV subtypes detected in 99 

ducks, except H13 and H16 subtypes which were detected primarily in gulls (13, 14). 100 

Temporal and spatial variation in influenza virus prevalence in wild birds was 101 

observed, with AIV prevalence varying by sampling location. In this study site in the 102 

Republic of Georgia, we observed peak prevalence in large gulls during the autumn 103 

migration (5.3-9.8%), but peak prevalence in Black-headed Gulls (Chroicocephalus 104 

ridibundus) in spring (4.2-13%)(15). In ducks, we observed increased AIV prevalence 105 

during the autumn post-moult aggregations and migration stop-over period (6.3%) but 106 

at lower levels to those observed in other more northerly post-moult areas in Eurasia.  107 
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 108 

In North America, studies have primarily focused on Anseriformes species with 109 

sampling during late summer and autumn southern migration (16-18), rather than 110 

longitudinally throughout the annual lifecycle of the host or within an ecosystem. The 111 

southwestern Lake Erie Basin is an important stopover site for waterfowl during 112 

migration periods, and over the past 28 years, 8.72% of waterfowl sampled in this 113 

geographic location have been positive for AIV recovery during summer and autumn 114 

(June – December) (19). More recent studies which targeted overwintering and 115 

returning migratory birds during February – April showed the presence of diverse AIV 116 

subtypes in waterbirds at northern latitudes in the United States (19). 117 

 118 

Previous genetic studies of the viruses isolated from wild birds have focused on gene 119 

flow at an intra- or intercontinental level involving multiple hosts, rather than on virus 120 

gene flow among species within an ecosystem (18, 20-22). Indeed, the conclusions of 121 

such studies have been somewhat limited at times by statistical power owing to 122 

insufficient sequence data from enough hosts relevant to virus dynamics across the 123 

geographic study area. (23). In Eurasia, frequent reassortment and co-circulating 124 

lineages were observed for all eight genomic RNA segments over time. Although, 125 

there was no apparent species-specific effect on the diversity of the AIVs, there was 126 

a spatial and temporal relationship between the Eurasian sequences and significant 127 

viral migration of AIVs from West Eurasia towards Central Eurasia (24). 128 

 129 

This study presents novel findings concerning the ecology and evolution of both 130 

LPAIVs and HPAIVs circulating in wild birds in a key active surveillance site in Eurasia. 131 
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We investigated the diffusion of AIV gene segments within different wild bird hosts 132 

occupying the same ecosystem. There was substantial diversity in surface 133 

glycoprotein HA (heamagglutinin) and NA (neuraminidase) subtypes, which varied 134 

year to year and with the host species. M, NS, NP, PB1, PB2 and PA (henceforth 135 

referred to as “internal” gene segments) also showed host restriction to various 136 

degrees.  There were differences in genetic diversity, reassortment rates, and inter-137 

species transmission rates in the internal gene segments associated with different 138 

host species and HA subtypes. We also examined how closely related the Georgian 139 

AIV gene segments were to AIV globally. We found evidence for genetic inter-140 

relationship of Georgian AIV with AIV in mainly Africa and Eurasia but several lineages 141 

appear to be maintained locally.  142 

 143 

  144 

 on July 31, 2018 by 67683460
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 

 

Methods 145 

Surveillance 146 

Active surveillance for influenza A viruses was carried out from 2010-2016 in the 147 

Republic of Georgia as described previously (15). The study area and sample 148 

collection methods remain predominantly the same. In this analysis, the study area is 149 

divided into three groups based on bird annual lifecycle and geography: the wetlands 150 

in Ajara, Guria and Samegrelo constitute the Black Sea coast region; Samtskhe-151 

Javakheti form the Georgian uplands sampling area; and finally, Tbilisi and Kakheti 152 

are grouped as Eastern Georgia. Sampling was targeted towards Anatidae (ducks) 153 

and Charadriiformes (gulls) and other birds commonly found in the wetland 154 

ecosystems. Details of the host species considered can be found in (15). We used 155 

several methods to catch birds depending on the species and location, including mist 156 

nets, spring traps and manual capture using hand-held nets, lamping and sampling 157 

hunted birds. We took paired oropharyngeal and cloacal swabs, serum and in some 158 

cases, feather samples from all live-caught birds.  159 

To sample live-caught or hunted birds, a sterile plain cotton swab was inserted into 160 

the trachea or oropharynx (in smaller bird species), or approximately 5 mm into the 161 

cloaca of the bird and then gently turned to moisten the swab. All swabs were then 162 

inserted into viral transport storage media (Hanks balanced salt solution containing 163 

10% glycerol, 200 U/ml penicillin, 200 mg/ml streptomycin, 100 U/ml polymixin B 164 

sulfate and 250 mg/ml gentamycin) and the shaft of the swab broken just above the 165 

cotton tip. abs were stored at −70°C no more than 6 hours after collection and were 166 

chilled at 1–4°C on ice or in a portable refrigerator in the interim.  Surveillance was 167 

carried out throughout the year, but there was seasonal fluctuation in bird density. In 168 
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addition to previously described methods, we built a duck trap in the Javakheti uplands 169 

close to the gull colony sampling site in 2015. 170 

Dataset and genomic sequencing 171 

Over a period of six years, 30,911 samples from 105 different bird species were 172 

analysed for the presence of AIVs. Positive isolates were obtained by standard 173 

approaches (25), and where possible, subtyped and sequence generated from 174 

extracted RNA as described below.  175 

For virus samples from 2010-2012, codon complete genomes of IAV were 176 

sequenced as part of the Influenza Genome Project 177 

(http://gcid.jcvi.org/projects/gsc/influenza/index.php), an initiative by the National 178 

Institute of Allergies and Infectious Diseases (NIAID). IAV viral RNA (vRNA) was 179 

isolated from the samples/specimens, and the entire genome was amplified from 3 ul 180 

of RNA template using a multi-segment RT-PCR strategy (M-RTPCR) (26, 27). The 181 

amplicons were sequenced using the Ion Torrent PGM (Thermo Fisher Scientific, 182 

Waltham, Massachusetts, USA) and/or the Illumina MiSeq v2 (Illumina, Inc., San 183 

Diego, California, USA) instruments. When sequencing data from both platforms was 184 

available, the data were merged and assembled together; the resulting consensus 185 

sequences were supported by reads from both technologies. Sequence data for 186 

Georgia was downloaded from the NIAID Influenza Research Database (IRD) (28) 187 

through the web site at http://www.fludb.org on 11/5/2016. To this dataset, we added 188 

sequence data for isolates from 2013 and 2016 which were sequenced at either 189 

Erasmus MC, Animal and Plant Health Agency (APHA) or the Icahn School of 190 

Medicine at Mount Sinai (ISMMS). At Erasmus MC sequencing was performed as 191 

described previously by V. J. Munster et al. (29), with modifications. Primer sequences 192 

are available upon request. 193 
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At APHA, viral RNA was extracted using the QIAquick Viral RNA extraction kit 194 

(Qiagen, UK) without the addition of carrier. Double stranded cDNA (cDNA synthesis 195 

system, Roche, UK) was generated from RNA according to the manufacturer's 196 

instructions. This was quantified using the fluorescent PicoGreen reagent and 1ng was 197 

used as a template for the preparation of the sequencing library (NexteraXT, Illumina, 198 

Cambridge, UK). Sequencing libraries were run on a MiSeq instrument (Illumina, 199 

Cambridge, UK) with 2x75 base paired end reads. Data handling of raw sequence 200 

reads and extraction of consensus sequences were performed at APHA. 201 

For the Icahn School of medicine at Mount Sinai, RNA was extracted using the 202 

QIAamp Viral RNA Mini Kit (52904, Qiagen, UK). MS-RTPCR amplification was 203 

performed with the Superscript III high-fidelity RT-PCR kit (12574-023, Invitrogen) 204 

according to manufacturer’s instructions using the Opti1 primer set: Opti1-F1 5’ 205 

GTTACGCGCCAGCAAAAGCAGG, Opti1-F2 5’GTTACGCGCCAGCGAAAGCAGG 206 

and Opti1-R1 5’GTTACGCGCCAGTAGAAACAAGG. DNA amplicons were purified 207 

using Agencourt AMPure XP 5ml Kit (A63880, Beckman Coulter).  At the Icahn School 208 

of Medicine, sequencing libraries were prepared and sequencing was performed on a 209 

MiSeq instrument (Illumina, Cambridge, UK) with 2x150 base paired end reads. Data 210 

handling of raw sequence reads and extraction of consensus sequences were 211 

performed at ISMMS, as described previously (30). 212 

Genetic analyses  213 

Sequence alignment preparation 214 

Whole genome sequences from 81 Georgian strains isolated between 2010 215 

and 2016 are used in this analysis. We aligned sequences from each gene segment 216 

separately using MAFFT v7.305b (31) and trimmed to starting ATG and STOP codon 217 

in Aliview v1.18. Hemagglutinin (HA) sequences were further trimmed to exclude the 218 
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initial signal sequence (32, 33). Sequences were then aligned using “muscle-codon” 219 

option with default settings in MEGA7 (34).  220 

The NS gene has two alleles A and B, with significant difference in sequence 221 

composition, which could skew analyses of sequence diversity. The NS gene 222 

sequences were therefore considered both as a complete dataset (NS) and 223 

subdivided into NS-A and NS-B datasets where required. As only six out of 81 224 

sequenced strains had the NS-A allele, only NS and NS-B datasets were used in the 225 

analyses.  226 

We then subdivided the complete datasets of each gene according to viral 227 

traits, namely: 228 

• host group (gull and duck) 229 

• host type  230 

o BMG: Black-headed Gulls (Chroicocephalus ridibundus) and 231 

Mediterranean Gulls (Ichthyaetus melanocephalus). 232 

o YAG: Yellow-legged Gulls (Larus michahellis) and Armenian Gulls 233 

(Larus armenicus). 234 

o MD: Mallards (Anas platyrhynchos). 235 

o OD: Other ducks. This includes the common teal (Anas crecca), 236 

domestic duck (Anas platyrhynchos domesticus), garganey (Anas 237 

querquedula), northern shoveler (Anas clypeata), common coot (Fulica 238 

atra), and tufted duck (Aythya fuligula). 239 

• HA subtype. Dataset was reduced to include subtypes H1, 2, 3,4, 5, 6, 7, 9,10, 240 

11, 13 where greater than three sequences were available for statistical 241 

analyses.  242 
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Visualisation of phylogenetic incongruence 243 

We inferred Maximum Likelihood (ML) phylogenetic trees for each gene 244 

segment using IQ-TREE, 1.5.5 (35) and ModelFinder (36) and obtained branch 245 

supports with SH-like approximate Likelihood Ratio Test (aLRT) and standard non-246 

parametric bootstrap. All trees were rooted using the “best-fitting-root” function in 247 

Tempest v1.5 (37) and visualised in FigTree v1.4.2, with increasing node-order. To 248 

visualise incongruence, we traced the phylogenetic position of each sequence, 249 

coloured according to host, across unrooted ML trees for all internal gene segments. 250 

Figures were generated by modifying scripts from a similar analysis (38).   251 

Quantification of nucleotide diversity 252 

Complete alignments of each internal gene, as well as alignment subsets by host 253 

group, host type and HA subtype were used in “PopGenome” package in R v3.2 (39) 254 

to estimate nucleotide diversity. Per-site diversity was calculated by dividing the 255 

nucleotide diversity output by number of sites present in each alignment. As each 256 

subset contained different numbers of sequences, this value was normalised by 257 

dividing by the number of sequences in each respective dataset.  Heat maps from this 258 

data were plotted in R v3.2. 259 

Correlating traits with phylogeny (BaTS) 260 

Null hypothesis of no association between phylogenetic ancestry and traits (host 261 

group, host type and HA subtype) was tested using Bayesian Tip-association 262 

Significance Testing (BaTS) beta build 2  (40) for all internal gene segments. Bayesian 263 

posterior sets of trees were inferred using MrBayes v3.2.6 (41) using the same 264 

segment-wise alignments generated for ML tree estimation. Ratio of clustering by 265 

each trait on the gene segment trees that is expected by chance alone (Null mean), 266 

with the association that is observed in the data (Observed mean) was calculated. 267 
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These expected/observed ratios were summarized in a heat-map with the y-axis 268 

ordered by the amount of reassortment observed. Data manipulation and figure 269 

preparation was done in R v3.2. 270 

Quantification of diversity and between host transmission 271 

Alignments generated for ML trees were also used in Bayesian phylodynamic 272 

analyses using BEAST v1.8.4 (42). We employed a strict molecular clock, a 273 

coalescent constant tree prior and the SRD06 site model with two partitions for codon 274 

positions (1st+2nd positions, 3rd position), with base frequencies unlinked across all 275 

codon positions. The MCMC chain was run twice for 100 million iterations, with sub-276 

sampling every 10,000 iterations. All parameters reached convergence, as assessed 277 

visually using Tracer (v.1.6.0). Log combiner (v1.8.4) was used to remove initial 10% 278 

of the chain as burn-in, and merge log and trees files output from the two MCMC runs. 279 

Maximum clade credibility (MCC) trees were summarized using TreeAnnotator 280 

(v.1.8.4). After removal of burn-in, the trees were analysed using PACT (Posterior 281 

analysis of coalescent trees) (https://github.com/trvrb/PACT.git) to determine 282 

measures of diversity, and migration rates between hosts over time.  283 

Geographical context for ‘Georgian origin’ internal protein coding gene 284 

segments  285 

Internal gene sequences from, avian hosts, sampled across the world between 2005 286 

and 2017 were obtained from gisaid.org (downloaded November 2017). Sequences 287 

(each segment separately) were divided into regions namely Asia (including Oceania), 288 

Europe, Africa, North America and South America. The program cd-hit-est (43, 44) 289 

was used to down-sample each regional dataset to 0.9 similarity cut-off level. These 290 

down-sampled sequences were then merged with the Georgian dataset. Discrete trait 291 

ancestral reconstruction with symmetric and asymmetric models were implemented in 292 
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BEAST v1.8.4 (42) together with marginal likelihood estimation using path-293 

sampling/stepping-stone analysis. The symmetric model was chosen over the 294 

asymmetric (log Bayes factor =14). The MCMC chain was run twice for 100 million 295 

iterations, with sub-sampling every 10,000 iterations. All parameters reached 296 

convergence, as assessed visually using Tracer (v.1.6.0). Log combiner (v1.8.4) was 297 

used to remove initial 10% of the chain as burn-in, and merge log and trees files output 298 

from the two MCMC runs. Maximum clade credibility (MCC) trees were summarized 299 

using TreeAnnotator (v.1.8.4). PACT was used to extract overall migration rates 300 

between trait locations.  301 

Results 302 

Prevalence, subtype diversity and host-specificity of AIVs 303 

Over the six-year period between 2010 and 2016, 30,911 samples from 105 different 304 

bird species were analysed for the presence of AIVs. Approximately 3000-5000 305 

samples were collected every year. The total number of samples collected, and the 306 

total number of positives, for each host group each year are shown in the Figure 1. 307 

The prevalence of AIV varied year to year, and between the two major host groups 308 

(gulls and ducks). Between 2010-12, the prevalence of AIV between gull and ducks 309 

was comparable (Figure 2A). The fall in prevalence in gulls from 2013 onwards could 310 

be partially explained by reproductive failure in consecutive years two of the gull 311 

species (Yellow-legged and Armenian gulls). The data also show strong seasonality 312 

with most positives sampled during the autumn migration season (Figure 2B). When 313 

we consider the three different regions of sampling sites (Figure 2D), we see that most 314 

of the gull and duck positives from 2010-12 were sampled from the Black Sea coast 315 

region. After the installation of a duck trap in 2015 in the Javakheti uplands, there is 316 
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an increase in prevalence in ducks (and “other” birds) from 2015 onward in the 317 

uplands, during the migratory season.  318 

24 HA/NA subtypes of influenza A virus, including 12 different HA subtypes (H1, 2, 3, 319 

4, 5, 6, 7, 9, 10, 11, 13, and 16) were isolated (Figure 2C). The diversity of subtypes 320 

varied from year to year, and associated with the level of prevalence in duck versus 321 

gull hosts. Moreover, only a proportion of those samples that tested positive yielded 322 

virus isolates which could be typed and sequenced. Within our sampling in Georgia, 323 

H9 and H13 subtypes are found exclusively in gulls, while H1, H5, and H7 were 324 

detected exclusively in mallards. H3, H4, H6, and H10 were found in mallards and 325 

various other ducks. Positive evidence for multiple-species infection (ducks and gulls) 326 

was found only for H2 and H11 viruses in this dataset even though globally, many 327 

other subtypes are found in multiple hosts.  328 

Between 2010-12, up to seven different HA subtypes were found every year, 329 

consistent with the relatively high prevalence in both host groups in these years. 330 

Subtypes included H1, 2, 3, 4, 6, 10, 11, 13, and 16. H13, which was found in the 331 

greatest proportion of sequenced samples in 2011 and 2012 and was the sole HA 332 

subtype sequenced in 2013. In 2014, again only a single subtype was found (H10). 333 

The absence of more subtypes in these years could be explained by the comparatively 334 

low prevalence of AIV in these years, in both gulls and ducks in 2014 and especially 335 

ducks in 2013 (Figure 2A). In 2015, the prevalence was nearly zero in gulls, but in 336 

ducks, we saw HPAI H5 type viruses detected along with an H6. H4, which was 337 

previously isolated only in 2011, was the predominant type in 2016, followed by H5 338 

and H7. 339 

Genetic structure of AIV detected in Georgia in 2010-16  340 
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For all gene segments except PA, there were two major subdivisions in tree topology 341 

– one clade containing sequences predominantly from ducks and one clade entirely 342 

derived from gull sequences (Figure 3,4). The internal protein coding gene segments 343 

from certain subtypes formed sub-clades that were defined by year of circulation 344 

suggesting single-variant epidemic-like transmission within the population. This was 345 

seen in H13N8 in gulls and H4N6 and H5N8 in ducks. There were several examples 346 

of gull-derived viruses, which had several internal gene segments (other than NP) 347 

located in the ‘duck’ clade, mostly derived from Black-headed and Mediterranean 348 

Gulls (BMG). Only the PA gene phylogeny had an occurrence of a small sub-clade of 349 

Yellow-legged and Armenian Gull-derived (YAG) viruses clustered within the duck-350 

derived viruses. For M gene segment, there were two major clades entirely defined by 351 

host species (except for 2 BMG viruses), and an outlier sub-clade consisting of H2 352 

and H9 gull lineage viruses from BMGs. In PB1, PB2 and PA, these outlier- sub-clade 353 

viruses were found in various configurations in the tree. For NS, the tree topology 354 

divided into two alleles as reported previously (45). However, there were only six 355 

viruses from Allele A isolated from four mallards (MD), a garganey (OD) and a 356 

common teal (OD). Allele B splits into two sub-clades again defined by whether the 357 

viruses were isolated from gulls or ducks. The ‘duck’ sub-clade includes the outlier 358 

BMG viruses identified above for M. The long branch length to the gull sub-clade from 359 

the duck sub-clade in Allele B would suggest that there might be host-specificity in NS 360 

evolution, perhaps in response to differences between avian host innate immune 361 

responses.  362 

Variation in nucleotide diversity 363 

We used the PopGenome package in R to calculate the per-site nucleotide 364 

diversity for all internal gene segments (Figure 5A-C). Nucleotide diversity of the 365 
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internal gene segments in one surveillance site may be an indication of the breadth of 366 

sources where the viruses have been derived from. We found greater diversity in both 367 

gulls and ducks in gene segment NS (possibly because of the presence of both A and 368 

B alleles of this gene in the dataset) and PB2 (Figure 5A). When further sub-divided 369 

into “host types” as described in the methods, we found that the group of Black-headed 370 

and Mediterranean Gulls (BMG) had the highest per-site diversity. In comparison, the 371 

mallards (MD), the Yellow-legged and Armenian Gulls (YAG) and other ducks (OD) 372 

had relatively lower values across all internal gene segments, despite the OD 373 

comprising of a variety of ducks. Only the PA gene had greater diversity in Yellow-374 

legged and Armenian Gulls than in Black-headed and Mediterranean Gulls (Figure 375 

3B). When subset by HA subtype (Figure 5C), the internal gene segments associated 376 

with H4 and H13, the most abundant types found in our dataset, had the lowest 377 

diversity – possibly because several of the isolates were detected at the same time. 378 

Those less commonly isolated, such as H11 was detected in different years (2011, 379 

2014) which may explain the high diversity of its NS, M, NP, PA, PB1, and PB2 gene 380 

segments. However, H3, which also has relatively high diversity were both detected 381 

at the same time (September 2011). Both NS and NS-B datasets were used in the 382 

analysis and as expected, the exclusion of sequences of NS-A (found exclusively in 383 

viruses from duck hosts), lowers the overall diversity within the ducks even when the 384 

values are normalised for the number of sequences found in each subset.  385 

We tested the root-to-tip regression for ML trees for each of the six internal protein 386 

coding gene segments using Tempest v1.5 (37) to look for temporal signatures. All 387 

except NS gene showed positive correlation of distance with time, despite the short 388 

window of six years (Figure 6). NS root to tip regression shows a negative slope, and 389 

it is likely confounded by the presence of two alleles A and B. Therefore, only NS-B 390 
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allele, which forms a dominant portion of the NS gene segments in the data-set (75 391 

out of 81), and shows clock-likeness (Figure 6) were used for further analysis using 392 

BEAST v1.8.4. PACT analysis showed that the overall and yearly host-related 393 

diversity measures (Figure 7A and B) show similar trends as seen in Figure 5.  394 

Correlation of traits with phylogeny 395 

We tested the null hypothesis that there is no association between phylogenetic 396 

ancestry and traits (host group, host type and HA subtype) using Bayesian Tip-397 

association Significance Testing (BaTS). Ratio of clustering by each trait on the gene 398 

segment trees that is expected by chance alone (Null mean), with the association that 399 

is observed in the data (Observed mean) are presented in Figure 8A-C. The higher 400 

the value of null/observed, the lower is the support for phylogenetic clustering of the 401 

given trait. Therefore, a higher value indicates a different ancestry. Hence, when we 402 

consider the HA subtype trait as “lineage”, it provides a measure of reassortment as 403 

described (46). Again, NS-B dataset was considered along with the complete NS 404 

dataset but no significant differences in trends were found. Panel A shows that gull 405 

viruses are more likely to cluster together in a phylogenetic tree than duck viruses in 406 

general. When viruses of gulls and ducks were further subdivided, panel B shows that 407 

OD viruses are less likely to cluster together in the tree, which is expected given that 408 

we have grouped together several duck species under this category. Among the rest, 409 

again it is the duck species (MD) that exhibit dynamic phylogenetic placing compared 410 

to both the gull types. The only exception is with the PB2 gene segment, for which the 411 

BMG show a lower level of phylogenetic clustering by species indicating putative 412 

reassortment events. When we consider the HA subtype (lineage) of the viruses, we 413 

find that H4 and H13, which showed the lowest nucleotide diversity, also show very 414 

low levels of reassortment, as does H5.  There was not enough statistical power to 415 
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interpret events in H1, 3, 6, 7, 9 or 11 viruses. Where statistically significant values 416 

were found, lower levels of clustering were observed.  417 

Directionality of viral gene segment transfer   418 

Figure 9 shows ancestral reconstruction of the host state along time-scaled 419 

phylogenies for five of six internal gene segments. The results are summarised in 420 

Figure 10A showing the mean number of host jump events from duck to gull and vice-421 

versa. For all gene segments, most of the host spillover events are in the direction 422 

from ducks to gulls. In figure 10B we see that at a finer level, most of the host jump 423 

events happen within the duck (mallards (MD) to other ducks (OD)) and gull (Black-424 

headed and Mediterranean Gulls (BMG) to Yellow-legged and Armenian Gulls (YAG) 425 

and vice versa) species. In transmissions from ducks to gulls it is largely noticeable 426 

only from MD to BMG. This likely explains the higher levels of nucleotide diversity and 427 

reassortment rates in the BMG viruses relative to YAG seen above.  428 

Geographical context for GE NS, M, NP, PA, PB1, PB2 segments  429 

To determine the origin and destination of the internal protein coding gene segments 430 

found in viruses isolated in Georgia, we analysed our sequence dataset together with 431 

avian influenza sequences from a broader timeframe (2005-2016) and regional 432 

sampling. Figure 11 shows the genealogy for the NP gene for whose tips we know the 433 

location of sampling and whose internal nodes are estimated using discrete-state 434 

ancestral reconstruction in BEAST. Clades in which Georgian sequences occur are 435 

highlighted. Figure 12 summarises the genealogy in a circularised graph in which the 436 

arrowheads indicate the direction of transfer and the width of the arrow indicate the 437 

rate of transfer to different locations. The analyses reveal viruses from the Atlantic and 438 

Afro-Eurasian locations form largely separate clades, which is consistent with previous 439 

studies (47, 48). However, we do find instances of transmission across this divide, 440 
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most notably to and from Asia and Europe. Many NP genes from Georgia cluster with 441 

other Georgian NP genes, in some cases forming the terminal branches spanning 442 

years indicating restriction to local spread. However, our dataset contains the latest 443 

Georgian sequences, and sequences from this timeframe were not available from the 444 

rest of Eurasia. Hence, we can expect to have missed identifying onward transmission. 445 

From the transmission we do identify, it appears that there is considerable migration 446 

into Africa and Europe and to a lesser extent to Southern/Eastern Asia. Most of the 447 

sequences transmitted into Georgia come from Asia and Europe, along with a single 448 

identified instance of direct transfer from North America.  449 

Discussion 450 

Wild birds have been shown to harbor substantial genetic diversity of avian 451 

influenza viruses. This study showed the diversity not only varied by year but was 452 

associated with the level of overall prevalence in different wild bird host species, perhaps 453 

influencing the observed rates and diversity if prevalence were low. We observed 454 

ecological fluctuations during the study period which might have influenced the results. In 455 

2015, there was nearly complete reproductive failure on the breeding colony of Armenian gulls 456 

which might have resulted in few susceptible juveniles and therefore altered influenza 457 

prevalence. In 2013, the nest sites on the Chorokhi River Delta were flooded consecutively 458 

again perhaps influencing disease dynamics. While the installation of the duck trap in the 459 

Javakheti uplands improved the longitudinal window of duck sampling to include both 460 

over-wintering and migratory populations, this initiative might have introduced 461 

prevalence and subtype biases in the data by sampling a previously un-sampled 462 

subpopulation. However, even allowing for these biases, the results from this study 463 

show that there is little evidence that one species group maintains all influenza A virus 464 

diversity, there appears to be relative host-restriction in many subtypes (except for H2 465 
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and H11 viruses) and there are differences in prevalence dynamics depending on 466 

host. Therefore, one host is not representative of influenza A virus prevalence, 467 

dynamics and diversity across the wild bird reservoir.  Within both ducks and gulls 468 

however, peak prevalence was consistently observed in hatch-year birds and with a 469 

more restricted subtype diversity, suggesting that there is an initial influenza A virus 470 

epidemic wave as naïve birds aggregate in their first year. Subsequently in the over-471 

wintering period, a wider subtype diversity was observed in both host groups and 472 

adults were more frequently infected. This suggests that disease dynamics are 473 

complex and influenced by multiple host factors including age and annual life cycle 474 

stage.  475 

It has previously been observed that some subtypes are routinely and nearly 476 

exclusively isolated from certain host families/genus, the most notable example being 477 

H13 and H16 viruses from gulls. However, mixed infections are relatively common but 478 

might be masked if subtype characterization requires virus isolation, therefore putting 479 

the clinical specimen through a culture bottleneck. Advances in sequencing direct from 480 

clinical material would more accurately (remove possible culture selection bias) 481 

establish the prevalence, subtype diversity and genetic diversity within wild birds. 482 

In general, for all gene segments except PA, we identify strong patterns of clade 483 

topology defined by host. This suggests that there is segregated gene flow through 484 

these host populations with little inter-host reassortment. Additionally, within our study 485 

period there were large scale perturbations in ecology which might also influence our 486 

prevalence and subtype diversity estimates. For example, in 2014 and 2015 there was 487 

widespread reproductive failure in two gull host species due to nest flooding (Yellow-488 

legged Gulls) and few returning adults to the colony (Armenian Gulls), and therefore 489 
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few juveniles from which to detect the annual epidemic wave. The occurrence and 490 

significance of such ecological fluctuations on disease dynamics are unclear. We also 491 

increased the ability to sample migrant ducks in late summer and early autumn from 492 

August 2015 by constructing a duck trap in the newly created National Park. Again, 493 

this addition to sampling strategy likely increased the detection of influenza in these 494 

anseriform hosts as they were previously under-sampled. 495 

We tested whether certain hosts maintained higher levels of nucleotide diversity in 496 

the non-immune related internal genes. PB2 and NS were the most genetically diverse 497 

in both gulls and ducks. Within host-group, Black-headed and Mediterranean Gull-498 

derived viruses showed highest per-site diversity, Yellow-legged and Armenian Gulls 499 

lower diversity, likely because some of the viruses of the former were associated with 500 

reassortants probably derived from ducks (or another unsampled host group). While 501 

despite high rates of reassortment and spillover between duck subgroups mallards 502 

(MD) and other ducks (OD), the absence of any gull derived viruses in these ducks 503 

keeps their diversity levels lower compared to gulls/BMG.  504 

Where gene flow does occur between host groups, for all gene segments, host-505 

spillover events were in the direction of ducks to gulls and from other ducks to Black-506 

headed and Mediterranean Gulls, likely explaining the higher levels of nucleotide 507 

diversity in these gulls observed above. Where HA and NA gene segments were 508 

acquired by gulls from ducks, there was a pre-requisite for a gull-clade internal gene 509 

cassette suggesting a host-restrictive effect for onward maintenance within the gull 510 

population (13, 49). Interestingly, Black-headed and Mediterranean Gulls only occur 511 

on the study site in the over-wintering period where there are also high densities of 512 

over-wintering ducks from other geographic areas. Although there is a duck-gull 513 
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interface on the breeding grounds in summer, the duck densities are very much lower, 514 

perhaps suggesting that there is a threshold level of bird density that allows gene flow 515 

among hosts.  516 

If we look at diversity by HA subtype, H4 and H13 were the least diverse and 517 

showed the lowest rates of reassortment and were also associated with hatch-year 518 

bird infections, suggesting a clonal expansion and epidemic gene flow through these 519 

birds. The 2014-2015 HPAI H5 epizootic also showed no reassortment unlike the 520 

2016-2017 HPAI H5 viruses, perhaps indicating that the first wave of 2.3.4.4 viruses 521 

diffused through the wild bird population similarly to a ‘naïve’ infection, and subsequent 522 

epizootics have resulted in altered pathogen evolution strategies to maintain gene 523 

flow, similar to those previously observed in North America when considering the effect 524 

of latitude on gene flow (7). 525 

When we examine the internal gene segments of the Georgian AIV in a broader 526 

geographical context, we find significant gene flow to and from Georgia with Europe 527 

and the rest of Asia, although data for Africa is very limited. Crossover into the Atlantic 528 

flyway appears to be mediated largely by gulls with some exceptions, notably the 529 

H5N1-NP gene that was transmitted between ducks.  530 

From this study, the diffusion of avian influenza viruses within a multi-host 531 

ecosystem is heterogeneous. One host group cannot therefore be used as a surrogate 532 

for others. It is likely that virus evolution in these natural eco-systems is a complex mix 533 

of host-pathogen interface and ecological factors. Understanding such drivers is key 534 

to investigating these emerging pathogens, interpreting the data from different sites 535 

around the world and ultimately informing risk of incursion of emerging variants from 536 

one geographic region to another.  537 
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Main text figure legends: 707 

 708 
Figure 1.  Bar chart showing total number of positive samples (top) and total number of 709 

samples (bottom) collected each year. X-axis shows the year and Y-axis shows the number 710 
of samples. Bars coloured according to host from which samples were isolated: Duck – red, 711 
Gull – blue and Other birds – green. 712 

Figure 2. Yearly prevalence of viruses in Georgia during 2010-16: (A) Overall (B) 713 

Seasonal (C) HA subtype-wise and (D) region-wise. In panel A, the Y-axis marks the 714 

prevalence of virus +/- standard deviation and bars are colored according to host from 715 

which virus was isolated (duck in pink and gull in green), and the X axis marks the 716 

time of isolation. In panels B and D, the Y-axis marks the prevalence of virus and the 717 

upper and lower bounds of 95% confidence intervals, and the X axis marks the time 718 

of isolation. In heat map in panel C, the Y-axis shows the HA subtypes of viruses 719 

isolated and squares are colored according to the number of isolates of each type 720 

identified. 721 

 722 

Figure 3. Maximum-likelihood trees for all internal genes – PB2, PB1, MP, NS, NP 723 

and PA, from equivalent strains connected across the trees. Tips and connecting lines 724 

are coloured according to host type: BMG – Black-headed and Mediterranean gulls 725 

(light blue), YAG – Yellow-legged and Armenian gulls (blue), MD – Mallard (red), and 726 

OD – Other ducks (orange).  727 

 728 
Figure 4. Maximum-Likelihood trees for each gene segment of AIV isolated in Georgia 729 

2010-16. Branch supports are indicated by the approximate Likelihood Ratio Test (aLRT) 730 
values. Tip labels are coloured according to the type of bird the strain was isolated from: BMG 731 
– Black-headed and Mediterranean gulls (red), YAG – Yellow-legged and Armenian gulls 732 
(purple), MD – Mallard (blue), and OD – Other ducks (green). 733 

 734 

Figure 5. Overall per-site nucleotide diversity defined as average number of 735 

nucleotide differences per site between two sequences in all possible pairs in the 736 

sample population, normalised to the number of sequences in each population. 737 

Comparison between (A) gulls and ducks. (B) host-types: BMG – Black-headed and 738 

Mediterranean gulls, YAG – Yellow-legged and Armenian gulls, MD – Mallard, and OD 739 

– Other ducks, and (C) HA type are shown.  740 

 741 
Figure 6. Root to tip regression for ML trees generated from each internal gene of viruses 742 

(MP, NP, NS-A and B, PA, PB1, PB2 as well as the NS-B allele only), isolated from Georgia 743 
2010-16 using Tempest v1.5 and plotted in R v3.2. 744 

 745 

Figure 7. Overall/summary (A) and over-time/skyline (B) mean diversity for each 746 

segment from gulls (green) and ducks (pink) as determined by posterior analysis of 747 

coalescent trees (PACT). Here, diversity is defined as the average time to coalescence 748 

for pairs of lineages belonging to each host. Panel (C) shows overall/summary mean 749 

diversity values for ducks divided in to MD – Mallard, OD – Other ducks (light and dark 750 

blue), and gulls divided into BMG – Black-headed and Mediterranean gulls and YAG 751 

– Yellow-legged and Armenian gulls (light and dark green).  752 

 753 
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Figure 8. Summaries of expected/observed ratios from Bayesian Tip-association 754 

Significance testing (BaTS) for all internal genes. Higher values indicate less 755 

phylogenetic clustering by trait and hence higher rates of mixed ancestry. Comparison 756 

between (A) gulls and ducks. (B) host-types (BMG – Black-headed and Mediterranean 757 

gulls, YAG – Yellow-legged and Armenian gulls, MD – Mallard, and OD – Other ducks) 758 

and (C) HA type are shown. Asterisks indicate p-values (*** < 0.001, ** < 0.01, * < 0.05 759 

and no asterisk > 0.05).  760 

 761 
Figure 9. Maximum clade credibility (MCC) trees for five of six internal gene segments of 762 

AIV isolated in Georgia 2010-16. Node icons are colored according to “host type” state inferred 763 
by BEAST v1.8.4. BMG – Black-headed and Mediterranean gulls (red), YAG – Yellow-legged 764 
and Armenian gulls (purple), MD – Mallard (blue), and OD – Other ducks (green). 765 

Figure 10. Summary of mean migration events between hosts in the direction from 766 

(A) duck to gull and gull to duck, and (B) between different host types (BMG – Black-767 

headed and Mediterranean gulls, YAG – Yellow-legged and Armenian gulls, MD – 768 

Mallard, and OD – Other ducks) derived from the genealogy.  769 

 770 

Figure 11. BEAST MCC (median-clade credibility) trees from viral sequences NP 771 

gene sequences isolated world-wide from avian hosts between 2005 and 2016. 772 

Branches are coloured according to location observed at the tips and estimated at 773 

internal nodes by ancestral reconstruction of discrete trait. African strains in dark 774 

green, Asian in orange, European in purple, Georgian in pink, North American in light 775 

green, and South American in yellow. Nodes with posterior probability > 0.85 are 776 

annotated with a diamond icon in the same colour as the branch.  777 

 778 

Figure 12. Circularised graph shows overall rates of migration, defined as the rate at 779 

which labels (locations) change over the course of the genealogy, between Georgia 780 

and other locations. Arrow heads indicate direction of migration; rates are measured 781 

as migration events per lineage per year (indicated by the width of the arrow). Asia in 782 

blood orange, Africa in orange, Georgia in yellow, Europe in green, South America in 783 

teal and North America in blue.  784 
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