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Abstract

Introduction: Hypertrophic cardiomyopathy (HCM) has a variable prognosis; left atrial size, 

presence of clinical signs and left ventricular (LV) systolic function have been shown to 

predict outcome. Mitral annular plane systolic excursion (MAPSE) and tricuspid annular 

plane systolic excursion (TAPSE) assess longitudinal ventricular systolic function and are 

decreased in cats with HCM. The aim of the study was to ascertain whether MAPSE and 

TAPSE have prognostic value in HCM and if cats with   pleural effusion have lower 

MAPSE and TAPSE than cats with pulmonary oedema. 

Animals: 184 client owned cats diagnosed with HCM. 

Methods: Retrospective study. Echocardiography was used to diagnose HCM (end-

diastolic LV wall thickness ≥ 6mm) and to measure MAPSE and TAPSE. Survival 

information was obtained.

Results: No multivariable model including MAPSE or TAPSE could be generated in this 

population. Cats with pleural effusion ± pulmonary oedema had lower MAPSE IVS and 

TAPSE, compared to cats with pulmonary oedema only. MAPSE IVS was the only factor 

predicting pleural effusion on multivariable regression model.

Conclusions: Lower MAPSE and TAPSE were not independently associated with outcome 

on multivariable analysis. Cats with pleural effusion± pulmonary oedema had lower 

TAPSE and MAPSE IVS than cats with pulmonary oedema and MAPSE IVS was the only 

predictive factor associated with the development of pleural effusion in this population.
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1 Abbreviation Table

ATE arterial thromboembolism

CHF congestive heart failure

HCM hypertrophic cardiomyopathy

LVFS left ventricular fractional shortening

MAPSE mitral annular plane systolic excursion

MAPSE FW MAPSE measured at the free wall

MAPSE IVS
MAPSE measured at the interventricular 

septum

TAPSE tricuspid annular plane systolic excursion

2

3

4 Introduction

5 Hypertrophic cardiomyopathy (HCM) is defined as a symmetrical or asymmetrical 

6 increase in left ventricular wall thickness in the absence of other cardiovascular or 

7 systemic causes that would result in similar changes. [1] Hypertrophic 

8 cardiomyopathy  is the most common cardiac disease in cats [2,3], it has a variable 

9 clinical progression and several echocardiographic parameters have been shown to 

10 be of prognostic value. [4-8] Furthermore, recent investigations have identified 

11 involvement of the right ventricle in HCM with 29-50% of cats in different studies 

12 having an increased thickness of the right ventricular wall [9, 10]. Mitral annular plane 

13 systolic excursion (MAPSE) and the right-sided counterpart tricuspid annular plane 

14 systolic excursion (TAPSE) are indices of systolic longitudinal displacement of the 
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2

15 atrioventricular annular plane [11, 12]. Mitral and tricuspid annular plane systolic 

16 excursion can be obtained by M-mode from echocardiography [11-14], by magnetic 

17 resonance imaging (MRI) [15] and TAPSE has also been measured from 2-D 

18 cineloops [10]. Mitral and tricuspid annular plane systolic excursion  were decreased 

19 in cats with HCM compared to healthy control cats [13], and cats with congestive 

20 heart failure (CHF) showed the lowest values. One study showed that MAPSE and 

21 TAPSE may be of prognostic importance at the univariable level, but the end-point 

22 included all-cause mortality due to low number of events and sample size; no 

23 multivariable analysis was performed for similar reasons [13]. To the authors’ 

24 knowledge, the potential prognostic utility of MAPSE and TAPSE in cats with HCM 

25 has not been fully evaluated. 

26 Cats in CHF due to HCM can present with either pulmonary oedema and/or pleural 

27 effusion [16]. The underlying mechanism(s) responsible for the development of 

28 pleural effusion in cats with left-sided congestive heart failure is not fully understood. 

29 One study showed that cats with pleural effusion secondary to cardiac disease had 

30 poorer left atrial active emptying and increased right ventricular diameters measured 

31 by M-mode echocardiography [17], compared to cats that presented with pulmonary 

32 oedema. A more recent paper has also identified lower TAPSE values in a 

33 subpopulation of cats with pleural effusion compared to cats with pulmonary oedema 

34 [10]. Whether the presence of pleural effusion in cats with HCM is associated with a 

35 lower value of both MAPSE and TAPSE indicating worse left and/or right heart 

36 function has not yet been fully determined.  

37 The aim of the study was to evaluate the prognostic value of MAPSE and TAPSE in 

38 a larger population of cats with HCM, for which a longer follow up is available 
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3

39 compared to our previously published study [13] and to determine whether cats 

40 presenting with pleural effusion have a lower value of MAPSE and TAPSE compared 

41 to cats with pulmonary oedema. Our first hypothesis was that MAPSE and TAPSE 

42 would have prognostic value in a population of cats with HCM. Our second 

43 hypothesis was that in a subset of cats with HCM and CHF, those presenting with 

44 pleural effusion would have lower MAPSE and TAPSE compared to those that 

45 presented with only pulmonary oedema.

46 Animals, materials and methods:

47 Retrospective study. The study population comprised cats previously included in 

48 studies investigating survival in cats with HCM. [7, 8] Inclusion criteria were cats 

49 diagnosed with HCM by a board-certified cardiologist or a cardiology resident 

50 supervised by a board-certified cardiologist at the Royal Veterinary College, Queen 

51 Mother Hospital for Animals based on two-dimensional (2D) echocardiography [18] 

52 between June 2004 and August 2009. In addition, cats were required to have a left 

53 apical four-chamber cineloop of sufficient quality to enable accurate measurement of 

54 MAPSE and TAPSE. Cats were excluded from the study if they had a concurrent 

55 diagnosis of hyperthyroidism or hypertension or if no cineloop deemed to be of good 

56 quality was available for MAPSE and TAPSE measurement.

57 Cats were diagnosed with HCM when end-diastolic left ventricular wall thickness 

58 measured in B-mode was equal or greater than 6 mm. In addition, left atrial size was 

59 assessed on right parasternal short axis view by measuring left atrium to aorta ratio  

60 at the onset of QRS [7,19, 20], whilst left atrial diameter in long axis [7,19] was 

61 measured from a right parasternal long-axis view, by drawing a line parallel with the 

62 mitral annulus bisecting the left atrium in the last frame before mitral valve opening. 
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63 Left atrial function was evaluated by measuring left atrial fractional shortening [7] and 

64 left atrial ejection fraction [7].  Left ventricular systolic function was assessed using 

65 left ventricular fractional shortening (LVFS) on M-mode. [7] Where available, the S’ 

66 wave of the interventricular septum and left ventricular free wall were measured from 

67 mitral annular septal and free wall Tissue Doppler Imaging respectively [19, 21].

68 Off-line measurement of MAPSE and TAPSE were performed by anatomical M-mode 

69 from the left apical four-chamber view as described [13]. Briefly, the anatomical M-

70 mode cursor was aligned parallel to the interventricular septum (IVS) in order to 

71 obtain an M-mode tracing for the measurement of MAPSE IVS. Subsequently, the 

72 anatomical M-mode cursor was aligned parallel to the free wall (FW) in order to 

73 obtain an M-mode tracing for MAPSE FW and finally the cursor was aligned parallel 

74 to the right ventricular free wall in order to obtain an M-mode tracing for TAPSE. 

75 MAPSE and TAPSE were measured in mm between the most basilar position of the 

76 annulus in end-diastole and its most apical displacement at end-systole using the 

77 leading edge method. Three consecutive measurements were performed by a single 

78 observer (IS) and the results were averaged. MAPSE and TAPSE measurements 

79 were performed by a single observer blinded to the clinical status of the patient. All 

80 other 2D and Doppler values formed part of the previous study and were measured 

81 by a board-certified cardiologist or cardiology resident as described in the original 

82 studies [7, 8].  Clinical status classification was no clinical signs, CHF, arterial 

83 thromboembolism (ATE), syncope and open mouth breathing during activity based 

84 on that described in the previous studies [7,8]. Cats with HCM were classified as not 

85 showing clinical signs if they were not receiving diuretic therapy and had no signs or 

86 history of increased respiratory rate, dyspnoea, syncope or ATE. To be included in 
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87 the CHF group cats had to have documented increased respiratory rate responsive 

88 to furosemide and evidence of pulmonary oedema or pleural effusion by imaging 

89 (either thoracic ultrasound or thoracic radiography) at the time of presentation or 

90 immediately prior to referral. Cats were classified in the pulmonary oedema group if 

91 the thoracic radiographs showed an alveolar or interstitial infiltrate and no pleural 

92 effusion, whereas cats with pleural effusion had to have at least thoracic ultrasound 

93 performed, which confirmed the presence of pleural effusion. Due to the retrospective 

94 nature of the study, it was not possible to exclude concurrent pulmonary oedema in 

95 cats with pleural effusion and therefore it is possible that a proportion of cats with  

96 pleural effusion had concurrent pulmonary oedema. The two groups were therefore 

97 classified as pulmonary oedema and pleural effusion ± pulmonary oedema. Aortic 

98 thromboembolism was defined based on the location of the thrombus. A limb ATE 

99 was defined as a sudden onset painful lower motor neuron deficits in one or more 

100 limbs with concurrent pallor and pulselessness.  A cerebral ATE was defined based 

101 on MRI findings of a well-demarcated lesion that was hyperintense on T2-weighted 

102 images. Syncope was defined as a transient episode of loss of consciousness 

103 characterised by absence of pre- or postictal signs and rapid recovery. Open mouth 

104 breathing during activity was defined as the presence of open mouth breathing 

105 noticed by the owners at home only during physical activity (playing or running). [7] 

106 Survival information was obtained by reviewing the electronic clinical archive of the 

107 institution and by contacting referring veterinarians or owners. For cats that died, 

108 date of death and cause of death (non cardiac, cardiac) were recorded. Cardiac 

109 death was defined as euthanasia or natural death following CHF refractory to medical 

110 treatment, euthanasia or natural death following ATE or sudden death. 
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111 Statistical analysis:

112 Statistical analysis was performed by a commercially available statistical software a. 

113 The Shapiro Wilk test was used to verify normal distribution of variables. Normally 

114 distributed data are reported as mean (standard deviation, SD) and non-normally 

115 distributed data are reported as median (interquartile range, IQR1-3, 25th percentile 

116 to 75th percentile).

117 ANOVA with Tukey post-hoc comparisons, Kruskal Wallis with Dunn post-hoc 

118 comparisons or chi-squared tests as appropriate were performed to assess 

119 differences based on clinical status at presentation. For analysis of clinical status, 

120 cats with open mouth breathing during activity were grouped with cats with syncope 

121 due to small group sizes.  

122 Cardiac mortality was the end-point in the survival analysis. Cardiac survival was 

123 calculated as the days between diagnosis and death or last visit/contact. Cats still 

124 alive at the last point of follow up were right-censored as were cats that died of non-

125 cardiac disease. The Kaplan Meier method was used to estimate survival function 

126 and plot time to event curves in the different groups. Continuous variables were 

127 explored by division into groups based on quartiles. A log-rank test was used to 

128 determine whether a significant difference existed between groups at univariable 

129 level. If one or more groups had a disproportionately different hazard (i.e., the 

130 quartile curve diverging markedly from the others), a threshold effect was identified 

131 and the variable was included in the Cox model as a categorical variable using the 

132 cut-off established by the exceptional quartile. Multivariable survival analysis was 

133 explored by Cox’s proportional hazard analysis.
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134 Student’s t test, Mann-Whitney U test or Fisher’s exact were performed as 

135 appropriate to assess differences within CHF groups (pulmonary oedema and pleural 

136 effusion). Multivariable binary logistic regression models were generated to explore 

137 factors independently associated with the development of pleural effusion in cats with 

138 CHF.  Variables significant at p <0.2 were taken forward in a manual forwards 

139 stepwise construction.  Odds ratios (OR) and 95% confidence intervals (CIs) were 

140 calculated and overall model assessment was performed looking at the Hosmer-

141 Lemeshow goodness-of-fit test statistic and the percentage of cases the model

142 correctly classified.

143 Statistical significance was set at p <0.05. The statistical significance for post-hoc 

144 tests with multiple comparisons was set using a Bonferroni correction for 6 

145 comparisons (p <0.0083).

146 Results:

147 The study population comprised 184 cats.  Median age at presentation was 6.5 years 

148 (IQ 1-3 2.8-10.0 years), with a mean body weight of 4.7 kg (SD 1.1kg). Male cats 

149 were overrepresented (n=140) compared to female cats (n=44). The majority of cats 

150 were Domestic Shorthairs (n=137), followed by British Shorthairs (n=13), Persians 

151 (n=10), Domestic Longhair (n=9), Ragdoll (n=5), Sphynx (n=2), and one each of 

152 Bengal, Devon Rex, European Shorthair, Exotic Shorthair, Maine Coon, Manx, 

153 Oriental Shorthair and Selkirk Rex. One hundred sixty nine cats presented at least 

154 one auscultatory abnormality (heart murmur, gallop rhythm or arrhythmia) and the 

155 remaining 15 cats had no auscultatory abnormalities. Overall, a heart murmur was 

156 auscultated in the majority of cats (n=139), and only a minority presented with a 
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157 gallop sound (n=44) or an arrhythmia (n=33). A heart murmur was the only 

158 auscultatory abnormality in 102 cats, a gallop was the only auscultatory abnormality 

159 in 13 cats and an arrhythmia was the only abnormality in 13 cats. ECGs were 

160 performed in 174 cats and an arrhythmia was documented in 54 of them, 26 of which 

161 had not been reported on auscultation. A total of 76 cats had clinical signs, including 

162 52 cats with CHF alone, 12 with ATE (including 3 with concurrent CHF), 9 with 

163 syncopal episodes and 3 with open mouth breathing during activity at home. Of the 9 

164 cats with syncopal events, 5 were suspected to be secondary to dynamic left 

165 ventricular outflow tract obstruction and 4 were suspected to be related to arrhythmic 

166 events (two intermittent supraventricular tachycardia, one intermittent ventricular 

167 tachycardia and one intermittent third degree AV Block). The three cats that had 

168 open mouth breathing during activity at home all had dynamic outflow tract 

169 obstruction. The remaining 108 cats did not show clinical signs.  

170 One hundred twenty eight cats (69%) received at least 1 medication. Furosemide 

171 (n=61), angiotensin converting enzyme inhibitor (n=65), beta blockers (n=53) and 

172 antithrombotic treatments (aspirin n= 33, heparin n= 3, clopidogrel n= 2) were the 

173 most common medications. Other medications included  spironolactone (n= 14), 

174 pimobendan (n=14), positive inotropes during the hospitalisation (one each on 

175 dopamine, dobutamine), diltiazem (n=1). Potassium was supplemented in 5 cats, 

176 rutin was administered in 2 cats and taurine was administered in 1 cat. All cats with 

177 congestive heart failure were receiving furosemide. In addition, cats with pleural 

178 effusion± pulmonary oedema were receiving angiotensin converting enzyme 

179 inhibitors (n=22), pimobendan (n=12), spironolactone (n= 6), antithrombotic agents 

180 (aspirin n=9, heparin n=1, clopidogrel n=1) and potassium supplementation (n=4). 
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181 Positive inotropes were administered during hospitalisation (dobutamine n=1, 

182 dopamine n=1) and taurine was supplemented in one cat.  Cats with pulmonary 

183 oedema were receiving angiotensin converting enzyme inhibitors (n=18), 

184 pimobendan (n=1), spironolactone (n= 2), antithrombotic agents (aspirin n=9, 

185 clopidogrel n=1), beta blockers (n=1) and potassium supplementation (n=1). 

186 Compared to cats not showing clinical signs, cats with congestive heart failure were 

187 more likely to have a gallop sound (p<0.001), arrhythmia on auscultation (p=0.002) or 

188 on ECG (p<0.001) and were less likely to have a heart murmur (p< 0.001) (Table 1). 

189 Cats with congestive heart failure also had more severe maximal left ventricular wall 

190 thickness (p<0.001), enlarged left atrium on both short- (p<0.001) and long-axis 

191 (p<0.001), lower left ventricular fractional shortening (p<0.001), poorer left atrial 

192 function as assessed by left atrial fractional shortening (p<0.001) and ejection 

193 fraction (p<0.001). A higher prevalence of spontaneous echo-contrast was observed 

194 in cats with CHF and ATE (p<0.001) (Table 2).

195 In the overall population MAPSE FW was 4.28 ± 1.15 mm, MAPSE IVS was 3.86 

196 ±1.02 mm and TAPSE 7.65±1.99 mm. Cats with CHF had significantly lower MAPSE 

197 FW, MAPSE IVS and TAPSE compared to cats not showing clinical signs (Table 2).

198  At last follow up, 74 cats were alive, a cardiac cause of death was identified in 71 

199 cats (35 due to CHF, 24 due to ATE and 12 due to sudden death) and 38 cats died of 

200 non-cardiac disease. One cat was lost to follow up. When exploring the association 

201 between survival and MAPSE FW, MAPSE IVS and TAPSE in the overall HCM 

202 population by univariable analysis, Kaplan Meier curves showed that cats in the 

203 lowest quartile (MAPSE FW < 3.58 mm, MAPSE IVS < 3.20 mm, TAPSE < 6.33 mm) 

204 were more likely to reach the final endpoint (cardiac death) earlier than cats in the 
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205 remaining quartiles. Kaplan Meier curves and survival data were therefore presented 

206 using these cut-off values (supplement data, figures 1-3). It was not possible to 

207 generate a multivariable Cox proportional hazards model that included MAPSE at the 

208 left ventricular free wall, MAPSE at the interventricular septum or TAPSE because 

209 these parameters were not statistically significant in the final multivariable model, 

210 which was similar to a previously published multivariable model [7].  Neither MAPSE 

211 FW, MAPSE IVS or TAPSE had prognostic value at the univariable level in the 

212 subgroup of cats without clinical signs or in the subgroup of cats with CHF.

213 Of the 55 cats that presented with CHF (including 3 cats with both CHF and ATE), 32 

214 cats were included in the pleural effusion ± pulmonary oedema group (16 of which 

215 had confirmed concurrent pulmonary oedema) and 21 in the pulmonary oedema only 

216 group. The remaining 2 cats presented with mild pericardial effusion not causing 

217 tamponade. In the CHF group, cats with pleural effusion ± pulmonary oedema had 

218 significantly lower MAPSE IVS and TAPSE than cats with pulmonary oedema 

219 (p=0.041 and p= 0.020 respectively). Cats with pleural effusion ± pulmonary oedema 

220 had lower LAEF (p=0.010) than cats with pulmonary oedema. No statistically 

221 significant difference was observed between the groups for MAPSE FW (p= 0.609), 

222 left atrium to aorta ratio  (p=0.237), left atrial diameter in long axis (p= 0.082),  left 

223 atrial fractional shortening (p=0.091), LVFS (p=0.071), peak velocity of systolic mitral 

224 annular motion as determined by puled wave Doppler measured  at the free wall 

225 (p=0.841) orat the interventricular septum (p=0.441) (Table 2). For the remaining 

226 groups of cats with clinical signs (aortic thromboembolism, syncope, exertional 

227 dyspnoea), no sub-analyses were performed due to small sample sizes. In the 

228 multivariable binary logistic regression model, only MAPSE IVS was independently 
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229 associated with development of pleural effusion.  The model correctly predicted 

230 62.3% of cases and the Hosmer-Lemeshow test statistic suggested good model fit 

231 (p=0.924).

232 Discussion:

233 This study has demonstrated that neither MAPSE at the free wall, interventricular 

234 septum or TAPSE are independently associated with outcome in cats with HCM. On 

235 univariable analysis, MAPSE IVS and TAPSE, but not MAPSE FW, were lower in 

236 cats with pleural effusion ± pulmonary oedema than pulmonary oedema only. 

237 Multivariable analysis of the above parameters in cats with CHF demonstrated that 

238 cats with higher MAPSE IVS were less likely to have pleural effusion.

239 Mitral and tricuspid annular plane systolic excursions  are M-mode derived 

240 parameters that assess the longitudinal displacement of the atrio-ventricular annulus 

241 during systole, as the heart base moves toward the apex. These parameters can 

242 therefore be considered as markers of systolic longitudinal function. Subclinical 

243 longitudinal dysfunction is recognised in people with HCM when assessed by 

244 deformation imaging [22] and also in cats with HCM when assessed by MAPSE [13]. 

245 TAPSE is considered a robust parameter of right ventricular systolic function in 

246 people and dogs [12, 23-25]. There is increasing interest in assessing right 

247 ventricular size and function in people and cats with HCM [9, 10, 13, 26-29], given 

248 that one third of people and cats with HCM have concomitant left and right ventricular 

249 wall thickening [9, 27]. In a previous study involving a smaller population of cats, 

250 MAPSE and TAPSE were both found to be decreased in cats with HCM compared to 

251 healthy cats [13], with cats in CHF having the lowest MAPSE and TAPSE values. 

252 Another study found similar results for TAPSE [10].
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253 The present study has confirmed the decrease in MAPSE and TAPSE in cats with 

254 CHF compared to cats not showing clinical signs of congestion in a greater number 

255 of cats than previously published. Univariable survival analysis of all cats showed 

256 that those in the lowest quartile for MAPSE FW, MAPSE IVS and TAPSE had a 

257 poorer outcome than cats in the other quartiles. However, neither MAPSE FW, 

258 MAPSE IVS or TAPSE were independently associated with outcome at the 

259 multivariable level. Furthermore, MAPSE FW, MAPSE IVS and TAPSE did not show 

260 prognostic value at univariable level when cats without clinical signs or cats with CHF 

261 were assessed separately.

262 These findings confirm that longitudinal function is impaired in cats with HCM, as also 

263 shown in people [15, 22].  This may be compensated by alterations in other cardiac 

264 mechanics such as increased torsion [30,31], or circumferential function [22] so that 

265 longitudinal function is not itself a major prognostic factor for survival as long as other 

266 compensating mechanism are in place. This may explain why a decrease in LVFS 

267 had a prognostic impact in cats with HCM in a previous study [7]. LVFS can be 

268 considered a marker of short axis function, indicating that as long as circumferential 

269 function is maintained, longitudinal function may not impact survival. Once overall 

270 systolic function is decreased, as could be the case when both longitudinal and 

271 circumferential function decrease, survival may be impaired. Circumferential function 

272 assessed by advanced imaging are variable in people affected by HCM [22], but 

273 some authors have suggested that it may play a role in preserving overall systolic 

274 function.

275 Cats with pleural effusion ± pulmonary oedema had lower MAPSE IVS and TAPSE, 

276 but no difference in MAPSE FW, compared to cats with pulmonary oedema. 
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277 Multivariable analysis in this subgroup identified that lower MAPSE IVS was 

278 significantly associated with an increased risk of development of pleural effusion. 

279 Pleural effusion is a major clinical presentation in cats with CHF and HCM, and the 

280 influence of both right ventricular and left atrial function on the development of pleural 

281 effusion has been previously studied [10,17]. Our data complements previously 

282 published findings, which show that cats with pleural effusion have decreased right 

283 and interventricular longitudinal function compared to cats with pulmonary oedema 

284 as well as decreased left atrial ejection fraction. These findings would be expected 

285 since longitudinal deformation is the dominant component of myocardial deformation 

286 of the right ventricle [32] and right ventricular wall thickness and right atrial size are 

287 shown to be increased in cats with pleural effusion [10].  Furthermore, the decrease 

288 in left atrial ejection fraction in cats with pleural effusion ± pulmonary oedema in this 

289 study complements previous data showing a decrease in active atrial emptying in 

290 cats with pleural effusion [17]. Mitral annular plane systolic excursion at the 

291 interventricular septum was the only factor associated with the development of 

292 pleural effusion on multivariable regression analysis, which may indicate a role of the 

293 interventricular septum. Based on the available literature and the results of the 

294 present study, it is likely that worsening atrial function, decreased right ventricular 

295 longitudinal function and possibly more pronounced ventricular interdependence in 

296 hypertrophic cardiomyopathy [36] are potentially responsible for the development of 

297 pleural effusion. Systolic S’ waves measured at the mitral annulus by pulsed wave 

298 Doppler results did not correlate with the MAPSE results in cats with CHF in this 

299 study. This is likely to reflect the reduced number of cases where the S’ wave was 

300 available rather than being a true discrepancy between the two techniques, 
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301 particularly since these two parameters align closely in human patients [29].  When 

302 comparing outcome in cats with pulmonary oedema and pleural effusion ± pulmonary 

303 oedema, no difference in survival was found. These findings may suggest that once 

304 congestive heart failure develops, the prognosis is poor regardless of the clinical 

305 presentation (pleural effusion vs pulmonary oedema).

306 The authors are aware that the study has limitations. First of all, being a retrospective 

307 study, it may contain limitations related with data collection, survival information and 

308 classification. This study included clinical patients, which received tailored treatment 

309 based on clinician’s judgement and personal preference. The timing from stabilisation 

310 to echocardiographic assessment was also variable, as well as the treatment 

311 protocol, thus we cannot exclude that the effect of treatment may have influenced the 

312 results. Fourteen cats received oral pimobendan, which in the vast majority of the 

313 cases would have been administered on the basis of, and therefore following, the 

314 echocardiographic examination, but we cannot rule out the possibility that some cats 

315 received pimobendan prior to echocardiographic assessment. It is not known how 

316 much influence this may have had on the reported MAPSE and TAPSE values. 

317 Survival information was based on the information provided by the referring vets and 

318 only if insufficient information was provided, a questionnaire was sent to the owners. 

319 It is possible that some of the cases may have been incorrectly classified into cardiac 

320 or non-cardiac cause of death due to a bias in the information provided. Due to the 

321 retrospective nature of the study, it was not possible to dichotomise the CHF 

322 population into pulmonary oedema versus pleural effusion only. The authors elected 

323 not to exclude cats with concurrent pulmonary oedema from the pleural effusion 

324 group as the focus was on right ventricular function and the development of pleural 
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325 effusion. Mitral and tricuspid annular plane systolic excursion  were derived from an 

326 M-mode technique, and this can be associated with angle-dependency, however the 

327 ability to position the M-mode cursor over the 2D image in the anatomical M-mode 

328 limits the weakness of the technique. In addition, in a previous study the coefficient of 

329 variation and the interobserver bias was deemed to be acceptable for this technique 

330 [13]. Mital and tricuspid annular plane systolic excursions  were not normalised to 

331 body length, however most cats have body weights that only cover a small range and 

332 therefore the lack of normalisation is unlikely to be an important source of error. The 

333 presence of pulmonary hypertension was not assessed with echocardiography or 

334 invasively. It was beyond the scope of the study to assess correlations with other 

335 echocardiographic parameters of right or left ventricular size or function.

336 Conclusion:

337 The present study showed that MAPSE and TAPSE were not independently 

338 associated with outcome in cats with HCM. Cats with pleural effusion± pulmonary 

339 oedema had lower TAPSE and MAPSE IVS at the univariable level and lower 

340 MAPSE IVS in the multivariable model than cats with pulmonary oedema, suggesting 

341 a potential role of right ventricular function and of the interventricular septum in the 

342 development of pleural effusion.

343 Footnotes:

344 a. IBM® SPSS® Statistics version 22, IBM (UK) Ltd, Portsmouth, UK

345
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Supplemental material

Fig 1: Univariate Kaplan Meyer survival curve for mitral annular plane systolic excursion 
measured at the left ventricular free wall (MAPSE FW). Log rank test, p <0.001. Median 
survival time for MAPSE FW < 3.58 mm is 352 (1-1902) days, for MAPSE FW ≥ 3.58 mm 
median survival time is 2171 (0-2755) days. MAPSE FW – mitral annular plane systolic 
excursion measured at the free wall,



Supplemental material 
Fig 2: Univariate Kaplan Meyer survival curve for mitral annular plane systolic excursion 
measured at the interventricular septum (MAPSE IVS). Log rank test, p < 0.001. Median 
survival time for MAPSE IVS < 3.20 mm is 352 (0-2276) days, for MAPSE IVS ≥ 3.20 mm 
median survival time is 2171 (2-2755) days. MAPSE IVS – mitral annular plane systolic 
excursion measured at the interventricular septum



Supplemental material 
Fig 3: Univariate Kaplan Meyer survival curve for tricuspid annular plane systolic excursion 
(TAPSE). Log rank test, p < 0.001
Median survival time for TAPSE < 6.33 mm is 380 (0-1902) days, for TAPSE ≥ 6.33 mm 
median survival time is 2171 (2-2755) days. TAPSE – tricuspid annular plane systolic 
excursion



Table 1: Clinical data in 184 cats with HCM

No clinical 
signs
n=108

Congestive 
heart failure

n=52

Aortic 
thromboembolism

n=12

Syncope/ 
open 
mouth 

breathing 
n=12

P value

Age (years)

6.52
(2.72-
10.02)
n=108

6.95
(2.98-10.21)

n=52

6.29
(3.52-10.59)

n=12

6.38
(2.80-
10.61)
n=12

0.963

Sex (% male) 78.7%
(85/108)

75.0%
(39/52)

75.0%
(9/12)

58.3%
(7/12) 0.470

Breed (% 
non-pedigree)

77.8%
(84/108)

76.9%
(40/52)

100.0%
(12/12)

83.3%
(10/12) 0.309

Weight (kg)
4.81 ± 
1.08
n=96

4.64 ± 1.18
n=50

4.44 ± 0.61
n=12

4.69 ± 1.01
n=11 0.623

Murmur (%) 87.0%a, b

(94/108)
55.8%b

(29/52)
50.0%a

(6/12)
83.3%
(10/12) <0.001

Gallop (%) 13.0%a

(14/108)
42.3%a

(32/52)
33.3%
(4/12)

33.3%
(4/12) <0.001

Arrhythmia 
(%)

10.2%a

(11/108)
34.6%a

(18/52)
8.3%
(1/12)

25.0%
(3/12) 0.002

Arrhythmia on 
ECG (%)

20.0%a,b

(21/105)
47.8%a

(22/46)
18.2%
(2/11)

75.0%b

(9/12) <0.001

Heart rate 
(bpm)

180
(160-200)

n=103

190
(164-200)

n=49

180
(148-206)

n=12

178
(138-200)

n=12
0.755

Respiratory 
rate 

(breaths/min)

40
(32-60)
n=97

51
(41-60)
n=48

48
(40-56)
n=11

48
(36-52)
n=11

0.063

Table 1: Clinical data in the study population grouped by the absence/ presence and type 
of clinical signs. Within a line, different superscript letters indicate statistical differences (p 
<0.0083) between groups. CHF – congestive heart failure, ATE – arterial 
thromboembolism. Normally distributed data are presented as mean ± standard deviation, 
non-normally distributed data are presented as median (IQR1-3) and proportions are 
presented as percentage (nr of cats with clinical sign/total number of cats).



Table 2 Echocardiographic data in 184 cats with HCM

No clinical 
signs
n=108

Congestive 
heart failure

n=52

Aortic 
thromboembolism

n=12

Syncope/ 
open mouth 
breathing 

n=12

P 
value

Max 2D LVWd 
thickness

7.6
(6.8-8.1)a

n=108

8.5
(7.7-9.7)a

n=52

8.6
(6.6-9.9)

n=12

8.2
(7.3-8.8)

n=12
<0.001

LVFS (%)
53.8 ± 
11.2a

n=105

43.1 ± 18.0a

n=48
45.3 ± 4.0

n=12
51.5 ± 10.8

n=12 <0.001

Infarct (%) 1.9%
(2/108)

11.5%
(6/52)

0.0%
(0/12)

0.0%
(0/12) 0.027

LVOTO (%) 74.1%a

(80/108)
52.4%
(22/42)

27.3%a

(3/11)
72.7%
(8/11) 0.003

RVOTO (%) 35.9%
(37/103)

32.5%
(13/40)

10.0%
(1/10)

41.7%
(5/12) 0.377

Restrictive 
filling (%)

8.5%a,b

(4/47)
70.8%a

(17/24)
55.6%b

(5/9)
0.0%
(0/4) <0.001

LAD (mm)

15.5
(14.2-
16.8)a

n=100

22.3
(17.5-5.7)a,b

n=44

20.1
(14.8-23.9)

n=11

15.9
(15.2 -17.3)b

n=12
<0.001

LA:Ao

1.27
(1.16-

1.44)a,b

n=102

2.17
(1.75-.61)a, c

n=46

2.15
(1.29-2.60)b

n=11

1.35
(1.24-1.69)c

n=12
<0.001

LAFS (%) 22.7 ± 6.7
n=97

9.6 ± 4.9
n=43

14.1 ± 9.1
n=11

19.8 ± 6.3
n=10 <0.001

LAEF (%)

60.1
(50.8-

66.0)a, b

n=97

22.3
(12.3-9.8)a, c

n=43

27.5
(22.6-46.5)b

n=11

57.3
(33.6-63.0)c

n=10
<0.001

SEC/Thrombus 
(%)

0.0%a,b

(0/108)
49.0%a

(25/51)
50.0%b

(6/12)
8.3%
(1/12) <0.001

MAPSE FW 
(mm)

4.75 ± 
0.88 a
n=105

3.35 ± 1.06 
a, b

n=51

3.94 ± 1.31
n=12

4.43 ± 1.12b

n=12 <0.001

MAPSE IVS 
(mm)

4.16 ± 
0.78 a
n=108

3.08 ± 0.97 
a, b

n=52

3.61 ± 1.34
n=12

4.14 ± 1.15 b
n=12 <0.001

TAPSE (mm)
8.41 ± 
1.65 a
n=99

6.10 ± 1.89 
a

n=48

7.50 ± 1.61
n=12

7.77 ± 1.90
n=10 <0.001

S’ FW (cm/s)
7.0

(6.0-9.0) a

n=73

5.0
(3.2-7.0)a

n=19

6.4
(3.7-10.1)

n=6

9.0
(6.5-10.5)

n=6
0.001

S’ IVS (cm/s)
9.0

(8.0-11.0)a

n=99

6.0
(5.0-7.0)a, b

n=41

7.3
(6.3-9.1)

n=10

9.3
(7.5-14.9)b

n=9
<0.001



Table 2: Echocardiographic data in the study population grouped by the absence/ 
presence and type of clinical signs.  Within a line, different superscript letters indicate 
statistical differences (p <0.0083) between groups. Normally distributed data are 
presented as mean ± standard deviation, non-normally distributed data are presented as 
median (IQR1-3) and proportions are presented as percentage (nr of cats with 
echocardiographic finding/total number of cats). CHF – congestive heart failure, ATE – 
arterial thromboembolism, 2D LVWd – two dimensional end-diastolic left ventricular wall 
thickness, LVFS – left ventricular fractional shortening, LVOTO – left ventricular outflow 
tract obstruction, RVOTO – right ventricular outflow tract obstruction, LAD – left atrial 
diameter in long axis, LA:Ao – left atrium to aorta ratio, LAFS – left atrial fractional 
shortening, LAEF – left atrial ejection fraction, SEC – spontaneous echo contrast, MAPSE 
FW – mitral annular plane systolic excursion measured at the free wall, MAPSE IVS – 
mitral annular plane systolic excursion measured at the interventricular septum, TAPSE – 
tricuspid annular plane systolic excursion, S’ FW – peak velocity of systolic mitral annular 
motion as determined by pulsed wave Doppler measured at the level of the left ventricular 
free wall, S’ IVS – peak velocity of systolic mitral annular motion as determined by pulsed 
wave Doppler measured at the level of the interventricular septum



Table 3: Clinical data in 53 cats with hypertrophic cardiomyopathy and congestive heart 
failure 

Pleural effusion
n=32

Pulmonary oedema
n=21 P value

Age (years) 9.02 (3.08-11.78)
n=32

4.76 (2.58 – 8.38)
n=21 0.079

Sex 
(% male)

71.9%
(23/32)

76.2%
(16/21) >0.999

Breed
(% non-

pedigree)

71.9%
(23/32)

90.5%
(19/21) 0.167

Weight (kg) 4.52 ± 1.16
n=31

4.72 ± 1.20
n=20 0.561

Murmur (%) 40.6%
(13/32)

71.4%
(15/21) 0.048

Gallop (%) 53.1%
(17/32)

28.6%
(6/21) 0.096

Arrhythmia (%) 34.4%
(11/32)

23.8%
(5/21) 0.544

Arrhythmia on 
ECG (%)

51.9%
(14/27)

30.0%
(6/20) 0.152

Heart rate (bpm) 200 (168-200)
n=31

180 (160-200)
n=19 0.559

Resp rate 
(breaths/min)

50 (36-60)
n=31

60 (48-83)
n=18 0.033

Table 3: Clinical data in cats with hypertrophic cardiomyopathy and congestive heart 
failure . Cats were grouped in the pulmonary oedema group if thoracic radiographs 
showed alveolar/ interstitial pattern, whereas to be include in the pleural effusion group at 
radiographic or thoracic ultrasound had to confirm the presence of pleural effusion. A t-test 
or Mann-Whitney U test (for normally and non- normally distributed data, respectively) to 
test for significant difference between cats with pleural effusion vs pulmonary oedema.



Table 4: Echocardiographic data in 53 cats with hypertrophic cardiomyopathy and 
congestive heart failure 

Pleural effusion
n=32

Pulmonary 
oedema

n=21
P value

Max 2D 
LVWd 

thickness

8.3 (7.6-9.3)
n=32

8.5 (7.7-9.8)
n=21 0.682

LVFS (%) 39.6 ± 19.0
n=29

48.7 ± 13.4
n=20 0.071

Infarct 19.4%
(6/32)

0.0%
(0/21) 0.070

LVOTO 34.8%
(8/23)

65.0%
(13/20) 0.069

RVOTO 14.3%
(3/21)

52.6%
(10/19) 0.017

Restrictive 
filling (%)

78.6%
(11/14)

66.7%
(8/12) 0.665

LAD (mm) 23.3 (19.0-26.8)
n=27

20.3 (17.4-22.6)
n=18 0.082

LA:Ao 2.44 (1.85-2.61)
n=27

2.06 (1.70-2.48)
n=20 0.237

LAFS (%) 8.6 ± 4.7
n=24

11.1 ± 4.9
n=20 0.091

LAEF (%) 17.4 (8.6-32.5)
n=24

29.1 (20.2-44.1)
n=20 0.010

SEC/Thro
mbus (%)

54.8%
(17/31)

42.9%
(9/21) 0.572

MAPSE 
FW (mm)

3.29 ± 1.17
n=32

3.43 ± 0.91
n=21 0.609

MAPSE 
IVS (mm)

2.87 ± 1.01
n=32

3.42 ± 0.80
n=21 0.041

TAPSE 
(mm)

5.68 ± 1.95
n=30

6.86 ± 1.47
n=19 0.020

S’ FW 
(cm/s)

4.5 (3.0-7.0)
n=14

4.9 (4.0-5.5)
n=6 0.841

S’ IVS 
(cm/s)

6.0 (4.1-7.0)
n=24

6.5 (5.0-7.1)
n=17 0.441

Table 4. Echocardiographic data in cats with hypertrophic cardiomyopathy and congestive 
heart failure. Cats were grouped in the pulmonary oedema group if thoracic radiographs 
showed alveolar/ interstitial pattern, whereas to be include in the pleural effusion group at 
radiographic or thoracic ultrasound had to confirm the presence of pleural effusion. A t-test 
or Mann-Whitney U test (for normally and non- normally distributed data, respectively) to 
test for significant difference between cats with pleural effusion vs pulmonary oedema.2D 
LVWd – two dimensional end-diastolic left ventricular wall thickness, LVFS – left 
ventricular fractional shortening, LVOTO – left ventricular outflow tract obstruction, RVOTO 



– right ventricular outflow tract obstruction, LAD – left atrial diameter in long axis, LA:Ao – 
left atrium to aorta ratio, LAFS – left atrial fractional shortening, LAEF – left atrial ejection 
fraction, SEC – spontaneous echo contrast, MAPSE FW – mitral annular plane systolic 
excursion measured at the free wall, MAPSE IVS – mitral annular plane systolic excursion 
measured at the interventricular septum, TAPSE – tricuspid annular plane systolic 
excursion, S’ FW – peak velocity of systolic mitral annular motion as determined by pulsed 
wave Doppler measured at the level of the left ventricular free wall, S’ IVS – peak velocity 
of systolic mitral annular motion as determined by pulsed wave Doppler measured at the 
level of the interventricular septum



Table 5: multivariable regression model in cats with pleural effusion ± pulmonary oedema 
vs pulmonary oedema only

Odds ratio (95% CI) p value
MAPSE IVS 0.528 (0.281-0.992) 0.047

Constant 11.390 0.023

Table 5.  Multivariable binary logistic regression model of factors associated with 
development of pleural effusion± pulmonary oedema rather than pulmonary oedema 
alone. MAPSE IVS – mitral annular plane systolic excursion measured at the 
interventricular septum


