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Background: Hypomagnesemia is associated with increased mortality and renal function decline in

humans with chronic kidney disease (CKD). Magnesium is furthermore inversely associated with

fibroblast growth factor 23 (FGF23), an important prognostic factor in CKD in cats. However, the

prognostic significance of plasma magnesium in cats with CKD is unknown.

Objectives: To explore associations of plasma total magnesium concentration (tMg) with plasma

FGF23 concentration, all-cause mortality, and disease progression in cats with azotemic CKD.

Animals: Records of 174 client-owned cats with IRIS stage 2-4 CKD.

Methods: Cohort study. Cats with azotemic CKD were identified from the records of two

London-based first opinion practices (1999–2013). Possible associations of baseline plasma tMg

with FGF23 concentration and risks of death and progression were explored using, respectively,

linear, Cox, and logistic regression.

Results: Plasma tMg (reference interval, 1.73–2.57 mg/dL) was inversely associated with plasma

FGF23 when controlling for plasma creatinine and phosphate concentrations (partial correlation

coefficient, 20.50; P< .001). Hypomagnesemia was observed in 12% (20/174) of cats, and inde-

pendently associated with increased risk of death (adjusted hazard ratio, 2.74; 95% confidence

interval [CI], 1.35–5.55; P5 .005). The unadjusted associations of hypermagnesemia (prevalence,

6%; 11/174 cats) with survival (hazard ratio, 2.88; 95% CI, 1.54–5.38; P5 .001), and hypomagne-

semia with progressive CKD (odds ratio, 17.7; 95% CI, 2.04–154; P5 .009) lost significance in

multivariable analysis.

Conclusions and Clinical Importance: Hypomagnesemia was associated with higher plasma

FGF23 concentrations and increased risk of death. Measurement of plasma tMg augments prog-

nostic information in cats with CKD, but whether these observations are associations or

causations warrants further investigation.
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Abbreviations: CI, confidence interval; CKD, chronic kidney disease; CKD-MBD, chronic kidney disease-mineral and bone disorder; FGF23, fibroblast growth

factor 23; HR, hazard ratio; IRIS, International Renal Interest Society; OR, odds ratio; PTH, parathyroid hormone; RERI, relative excess risk due to interaction;

SBP, systolic blood pressure; tMg, total magnesium concentration; UPC, urine protein-to-creatinine ratio; USG, urine specific gravity; UTI, urinary tract infection.
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1 | INTRODUCTION

Hyperphosphatemia is a well-documented sequela of chronic kidney

disease (CKD) in cats,1–5 and associated with increased risks for death

and progression of azotemia.6–8 Actions of the body to maintain nor-

mophosphatemia result in secondary renal hyperparathyroidism and

fibroblast growth factor 23 (FGF23) excess.9 These hormonal derange-

ments prevent overt hyperphosphatemia in the early stages of CKD,10

but contribute to bone pathology and soft tissue calcification.9,11,12

The systemic condition of disturbed mineral metabolism, bone disease,

and extraskeletal calcification caused by CKD has been termed CKD-

mineral and bone disorder (CKD-MBD).9,11,13 Dietary phosphate

restriction is the mainstay of management of CKD-MBD in cats, and

has been shown to reduce plasma phosphate, FGF23, and PTH con-

centrations, and to improve survival.14–18

Recently, there is increased interest in the role of magnesium in

human CKD-MBD. Magnesium is an essential mineral for numerous

intracellular processes,19 but also an inhibitor of vascular

calcification20–22 and the release of profibrotic cytokines.23 Hypomag-

nesemia is a risk factor for death,24–28 and possibly for kidney function

decline in human CKD patients.23,24 Magnesium furthermore appears

to modify the risks associated with hyperphosphatemia in humans with

CKD, as high phosphate was only associated with higher risks of

death27 and progression to end-stage renal disease23 in patients with

lower serum total magnesium concentrations (tMg). Interestingly, mag-

nesium might be involved in FGF23 regulation, because an inverse

association between these two variables was observed in human CKD

patients on hemodialysis,29 and serum FGF23 concentrations were

increased in rodents fed a magnesium deficient diet.30,31 Plasma

FGF23 itself is a strong predictor of survival and progression in cats

with CKD.5

Little is known about the role of magnesium in feline CKD-MBD.

A study among cats found significantly increased plasma tMg in end-

stage CKD, whilst low plasma tMg was observed in up to 25% of cats

with earlier stages of CKD.3 Neither the prognostic significance of

magnesium status, nor the relationship between plasma tMg and

FGF23 have been examined in cats with CKD. Therefore, we aimed to

explore, first, the prevalence and risk factors for magnesium disorders

in cats with azotemic CKD, second, the relationship of plasma tMg

with FGF23 and other clinicopathological variables, and third, the prog-

nostic significance of magnesium disorders for all-cause mortality and

renal function decline in a cohort of cats with azotemic CKD.

2 | METHODS

2.1 | Case selection

Cats were identified from the clinical records of two first opinion prac-

tices in central London (People’s Dispensary for Sick Animals in Bow

and Beaumont Sainsbury Animal Hospital in Camden). Client-owned

cats �9 years old visited these clinics for general health screening, and

those diagnosed with azotemic CKD subsequently for management of

their disease. Cats enrolled in our study were part of a larger

observational cohort for which owner consent was obtained and

approval of the Ethics and Welfare Committee of the Royal Veterinary

College had been granted.

A group of 120 apparently healthy cats �9 years seen between

September 2001 and September 2013 was selected to establish a ref-

erence interval for plasma tMg in older cats. Cats were considered

apparently healthy if no significant abnormalities were detected in the

clinical history, physical examination, or blood and urine examination,

and if no medications had been prescribed. For inclusion, a stored hep-

arinized plasma sample had to be available for measurement of tMg.

A cohort of cats diagnosed with azotemic CKD between August

1999 and July 2013 was selected in which to explore the clinical signif-

icance of baseline plasma tMg in feline CKD. Criteria for a diagnosis of

azotemic CKD were plasma creatinine concentration �2 mg/dL in con-

junction with a urine specific gravity (USG) <1.035, or plasma creati-

nine concentration �2 mg/dL on 2 consecutive occasions 2–4 weeks

apart. To be enrolled, data on plasma FGF23 concentration and a

stored residual heparinized plasma sample for measurement of tMg

had to be available from the time of diagnosis of CKD. Cats with clini-

cal signs of hyperthyroidism, plasma total thyroxine concentration >40

nmol/L, medical treatment for hyperthyroidism, diabetes mellitus, or

treatment with corticosteroids were excluded from all analyses. Cats

receiving amlodipine besylate for treatment of systemic hypertension

were included.

2.2 | Data collection

Data obtained at diagnosis of azotemic CKD were retrieved from elec-

tronic clinical records, and included age, breed, sex, body weight, body

condition score (BCS; 9-point system), muscle mass score (4-point sys-

tem), systolic blood pressure (SBP), PCV, routine plasma biochemical

variables (total protein, albumin, globulin, creatinine, sodium, potassium,

chloride, cholesterol, phosphate, and total calcium concentrations), ion-

ized calcium concentration, venous blood gases and pH values, plasma

calcidiol, calcitriol, FGF23, PTH, and total thyroxine concentrations,

USG, urine culture result, and urine protein-to-creatinine ratio (UPC).

The date of death and whether progression of azotemia occurred

(defined below) were also documented. Anomalous or missing data

from the electronic records were verified by consulting the physical

patient records. Severity of CKD and phosphate status were classified

according to International Renal Interest Society (IRIS) guidelines (Inter-

national Renal Interest Society Guidelines: IRIS Staging of CKD. http://

iris-kidney.com/guidelines/staging.html).

Plasma tMg was measured after enrollment of cats to the cohort

so the selection process was blinded to the exposure of interest. It was

measured in residual heparinized plasma, which had been stored at

2808C, by the laboratory that also had performed the routine biochem-

ical analysis (Idexx laboratories, Wetherby, UK). Blood samples had

been obtained via jugular venipuncture and urine samples via cysto-

centesis. Intact FGF23 and PTH were measured in EDTA plasma using

validated4,32 ELISA (FGF-23 ELISA Kit, Kainos Laboratories, Tokyo,

Japan) and immunoradiometric (Total intact PTH immunoradiometric

assay–coated bead version, 3KG600, Scantibodies, Santee, California)
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assays, respectively. For measurement of FGF23, samples were diluted

with the zero standard to achieve a reading on the standard curve. The

PTH assay had a limit of detection of 5.2 pg/mL,32 and samples with a

concentration below this value were assigned an arbitrary PTH concen-

tration of 2.6 pg/mL. Urinalysis included in-house measurement of

USG by refractometry, dipstick analysis, and urine sediment micro-

scopic examination. Urinary tract infections (UTI) were confirmed by

culture (Royal Veterinary College Diagnostic Laboratory Services, Hat-

field, UK). Urine biochemistry was performed by a commercial labora-

tory (Idexx laboratories), and UPC values of cats with a UTI were

omitted. Systolic BP was assessed using the Doppler method (Parks

Electronic Doppler Model 811B; Perimed UK, Bury St Edmunds, UK),

and indirect ophthalmoscopy was performed in all cats where SBP

>160 mm Hg was identified. Systemic hypertension was defined as

SBP >170 mm Hg on at least 2 occasions 1–2 weeks apart, or a single

SBP >160 mm Hg in association with ocular target organ damage.

2.3 | Statistical analysis

Statistical analyses were performed using statistical software packages

(IBM SPSS Statistics for Windows, Version 24, IBM Corp., Armonk,

New York and GraphPad Prism 7, GraphPad Software, La Jolla, Califor-

nia). For all reported analyses, two-sided tests of significance were car-

ried out with a type I error rate <0.05 defining statistical significance.

Continuous clinical data are presented as mean (SD) or as median

[25th, 75th percentiles] as appropriate. The distribution of numerical

variables was assessed for normality by Shapiro-Wilk test and visual

inspection of quantile-quantile plots. Groups were compared using

either independent samples t-test (2 groups) or one-way ANOVA with

Bonferroni post hoc comparison (�3 groups) for continuous variables

with a normal distribution, or using Mann-Whitney U tests (2 groups)

or Kruskal-Wallis test followed by Dunn’s post hoc comparison (�3

groups) for variables with a skewed distribution. Proportions were

compared using Fisher’s exact test.

Next to plasma tMg, the following variables were included in the

regression analyses presented below: age, sex, body weight, BCS,

plasma creatinine, phosphate, total calcium, cholesterol, sodium, chlo-

ride, potassium, albumin, globulin, FGF23, and PTH concentrations,

PCV, USG, UPC, hypertension status, and presence of a bacterial UTI.

Data on muscle mass score (n568), ionized calcium and venous blood

gases (n547), and vitamin D-metabolites (n517) were available in

<50% of cats, therefore these variables were excluded from analysis.

2.4 | Prevalence and factors associated with

magnesium disorders

Cats with azotemic CKD were categorized in 3 groups based on the

lower and upper limits of the reference interval for plasma tMg derived

from apparently healthy cats �9 years old, which was calculated using

the parametric method (ie, mean62SD), and baseline characteristics

among the 3 magnesium groups compared. Binary logistic regression

was performed to explore risk factors for hypomagnesemia or hyper-

magnesemia, with normomagnesemic cats as controls. Plasma FGF23

and PTH were log-transformed before analysis (logarithmus naturalis

[ln]). Variables significantly associated with these disorders (P< .05)

were entered into a multivariable binary logistic regression model. The

final linear model was derived by manual backward elimination. Good-

ness of fit of the model was assessed with Hosmer–Lemeshow test.

Results are reported as odds ratio (OR; 95% confidence interval [CI]).

2.5 | Association of plasma total magnesium with

plasma FGF23 and other clinicopathological variables

The Pearson correlation coefficient (r) was computed to evaluate the

association between plasma tMg and log-transformed FGF23 concen-

tration. Partial correlation was performed to measure the strength of

association between these two variables with the confounding effects

of ln[creatinine] and ln[phosphate] removed, both known predictors of

plasma FGF23.4

Univariable general linear models adjusted for IRIS stage were con-

structed to explore what variables were associated with plasma tMg as

a continuous variable. Plasma creatinine, phosphate, FGF23, and PTH

concentrations, and UPC were log-transformed before analysis. IRIS

stage, sex, and hypertension status were entered as categorical varia-

bles. Covariates associated with plasma tMg with P <0.10 were

assessed for statistical interaction with IRIS stage and entered into a

multivariable linear regression model including any significant interac-

tion terms (P< .05). The final regression model was derived by back-

ward elimination. The assumptions of normality and of linear

relationship among variables were checked by visual inspection of his-

tograms of the residuals and of scatter plots of the residuals against

the fitted values. Results are reported as regression coefficient (b; 95%

CI).

2.6 | Association of plasma total magnesium with

survival

To assess if plasma tMg was related to survival, all cats were included

in a survival analysis for which the date of diagnosis of azotemic CKD

was designated as baseline, death of all-causes was the event of inter-

est, and censoring occurred for cats that were lost to follow-up or that

were still alive on July 1, 2016. Cats lost to follow-up were censored

on the last date they were known to be alive. The Kaplan Meier curve

of the normomagnesemic group was compared with those of the hypo-

magnesemic and hypermagnesemic cats using log-rank test, and hazard

ratios (HR) were calculated with univariable time-invariant Cox propor-

tional hazard analysis. Multivariable Cox regression was performed to

adjust for possible confounding factors. Continuous variables were

categorized if the assumption of proportional hazards, evaluated by

inspection of Kaplan-Meier curves and assessment of statistical interac-

tion of each variable with time, were not met. Grouping was based on

clinically relevant margins if possible (plasma tMg, hypertension status,

BCS), or terciles (phosphate, FGF23, sodium, USG, weight). Plasma

PTH was log-transformed because of its strongly skewed distribution.

No missing data imputation was performed. Variables associated with

survival with P <0.10 were assessed for interaction with magnesium
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status, and subsequently entered multivariable analysis together with

any statistically significant interaction term (P< .05). The final multivari-

able model was derived by manual backward elimination. The overall fit

of the Cox model was checked by visual inspection of a Cox-Snell

residual plot. Results are reported as HR (95% CI).

Given the nonlinear relationship with mortality rates, plasma tMg

was analyzed as a categorical variable divided on the lower and upper

limits of the derived reference interval in the main analysis. To explore

the effect of plasma tMg on survival on a continuous scale, a subanaly-

sis was performed. Cats were divided by a median split of tMg, and

instead of as a categorical variable, tMg entered in the fully adjusted

Cox model as a continuous variable.

2.7 | Association of plasma total magnesium with

progression of CKD

Whether plasma tMg was associated with CKD progression was exam-

ined using binary logistic regression. Cats were categorized into 2

groups: a progressive CKD group that showed >25% increase in

plasma creatinine concentration within the first 12 months of diagnosis,

and a stable CKD group that did not show an increase >25% in plasma

creatinine concentration. The cut-point of 25% was based on the pre-

sumption that smaller changes could be caused by poor measurement

precision rather than actual progression of azotemia.5,8 Only stable cats

with follow-up of �12 months were included in our analysis.

Magnesium was analyzed as a categorical variable divided on the lower

and upper limits of the derived reference interval. Plasma FGF23 and

PTH were log-transformed before analysis. Variables associated with

progressive disease with P <0.10 in univariable analysis entered multi-

variable regression. The final model was derived by manual backward

elimination. Goodness of fit was assessed with Hosmer–Lemeshow

test. Results are reported as OR (95% CI).

2.8 | Interaction between phosphate and magnesium

A pre-defined interaction between plasma tMg and phosphate status in

association with survival was explored. Cats with IRIS stage 2 and 3

CKD were divided based on phosphate status according to IRIS phos-

phate target guidelines (International Renal Interest Society Guidelines:

Treatment Recommendations for CKD in Cats (2015). http://www.iris-

kidney.com/guidelines/recommendations.html), and by a median split

of plasma tMg. This resulted in the following 4 categories:

normophosphatemic-lower magnesium (NP-LM: normophosphatemic;

tMg<2.04 mg/dL), normophosphatemic-higher magnesium (NP-HM:

normophosphatemic; tMg�2.04 mg/dL), hyperphosphatemic-lower

magnesium (HP-LM: hyperphosphatemic; tMg<2.04 mg/dL), and

hyperphosphatemic-higher magnesium (HP-HM: hyperphosphatemic;

tMg�2.04 mg/dL).

Statistical interaction between plasma tMg and phosphate in rela-

tion to survival was explored by comparing hazards of the 4

phosphate-magnesium groups using univariable Cox regression. The

NP-HM group was chosen as the joint reference category of no expo-

sure to calculate the relative excess risk due to interaction (RERI, ie, the

difference between the expected risk and the observed risk;

RERI5HRHP-LM 2 HRNP-LM 2 HRHP-HM11) of the HP-LM group

using an available online tool (http://epinet.se/Epidemiologicaltools.

htm).33

3 | RESULTS

3.1 | Determination of a 95% reference interval

for plasma total magnesium concentration in

older cats

The reference population consisted of 53 male cats (1 entire) and 67

female cats (1 entire). Cats were of the following breeds: domestic

shorthair (n597), domestic longhair (n512), Burmese (n54), 2 each

of Persian, British shorthair and Russian blue, and 1 British blue. Fur-

ther characteristics can be found in Table 1. The distribution of plasma

tMg was determined to be Gaussian, with a mean concentration of

2.15 (SD, 0.209) mg/dL, resulting in a 95% reference interval of 1.73–

2.57 mg/dL (0.71–1.06 mmol/L). No correlation was observed between

age and plasma tMg in the reference population (r, 20.09; P50.32).

3.2 | Plasma total magnesium in cats with azotemic

CKD

Between August 1999 and July 2013, a total of 517 cats were diag-

nosed with azotemic CKD, of which 96 cats were excluded for the fol-

lowing reasons: concurrent hyperthyroidism (n579), not meeting the

study criteria for diagnosis of CKD (n516), or prednisolone administra-

tion (n51). Of the 421 eligible cats, 88 cats had no residual plasma

TABLE 1 Characteristics of 120 apparently healthy cats�9 years
from which the reference interval for plasma total magnesium con-
centration was derived

Variable (reference interval) Median [25th, 75th Percentile] n

Age (years) 12.4 [11.1, 14.0] 120

Weight (kg) 4.51 [3.81, 5.20] 120

Creatinine (0.23–2.00 mg/dL) 1.45 [1.32, 1.65] 120

USG (�1.035) 1.048 [1.040, 1.058] 80

Phosphate (2.79–6.81 mg/dL) 3.85 [3.28, 4.30] 120

Total calcium (8.2–11.8 mg/dL) 9.8 [9.4, 10.2] 120

Total protein (6.0–8.0 g/dL) 7.7 [7.3, 8.0] 120

Albumin (2.5–4.5 g/dL) 3.3 [3.0, 3.4] 120

PCV (30%–45%) 38 [35, 41] 120

Sodium (145–157 mEq/L) 152 [152, 154] 120

Potassium (3.5–5.5 mEq/L) 3.9 [3.7, 4.2] 120

Chloride (100–124 mEq/L) 119 [117, 121] 120

SBP (<160 mm Hg) 136 [120, 150] 120

Abbreviations: PCV, packed cell volume; SBP, systolic blood pressure;
USG, urine specific gravity.
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sample available for measurement of tMg, 157 cats lacked baseline

information on plasma FGF23 concentration, and 2 samples were

grossly hemolyzed. Thus, 174 cats were enrolled in our study, some of

which had been included in previous studies.5,8 No significant differen-

ces were observed between baseline characteristics of the 174

included cats and of the 247 eligible cats that were excluded from anal-

ysis because of lack of a residual plasma sample or plasma FGF23 mea-

surement (data not shown).

The study population consisted of 88 females (1 entire) and 86

males (3 entire). Domestic shorthair was the most common breed

(n5127), followed by domestic longhair (n520), Persian (n510),

Burmese (n57), British shorthair (n52), Siamese (n52), and 1 each

of Abyssinian, American shorthair, Chinchilla, Ocicat, Russian blue, and

Tiffany. According to the IRIS staging system, 114 cats had stage 2, 50

cats stage 3, and 10 cats stage 4 CKD. Systemic hypertension was

diagnosed in 37 cats (21%), 16 of which had their blood pressure nor-

malized (<160 mm Hg) with PO amlodipine besylate, and 21 being

new diagnoses. The study population was older than the group of

apparently healthy cats from which the reference interval for plasma

tMg was derived (mean, 14.4 years; SD, 3.2 versus 12.7 years; SD, 2.2,

respectively).

3.3 | Prevalence and factors associated with

magnesium disorders

The median plasma tMg of the study population was 2.07 [1.87, 2.26]

mg/dL (range, 1.29–5.79). Twenty of 174 cats, including 1 Persian and

1 British shorthair, were diagnosed with hypomagnesemia (prevalence,

12%; 95% CI, 7–17), and 11 cats, including 1 Persian, with hypermag-

nesemia (prevalence, 6%; 95% CI, 3–10). Baseline characteristics of

cats with hypomagnesemia, normomagnesemia, and hypermagnesemia

are shown in Table 2. Risk factors associated with magnesium disorders

can be found in Table 3. Hypermagnesemia was predominantly

observed in cats with IRIS stage 4 (Figure 1), but no multivariable analy-

sis was performed because of the relatively low number of cases.

Higher plasma ln[FGF23] (OR, 2.07; 95% CI, 1.48–2.90; P< .001) and a

diagnosis of systemic hypertension (OR, 4.24; 95% CI, 1.41–12.78;

P5 .010) were independently associated with hypomagnesemia (Nagel-

kerke R2, 0.30). The median plasma tMg of the subgroup of cats with a

diagnosis of systemic hypertension was 1.97 [1.69, 2.14] mg/dL, com-

pared with 2.09 [1.90, 2.29] mg/dL in the normotensive group

(P5 .004). No statistically significant difference in mean tMg was

observed between cats treated with PO amlodipine besylate (mean,

1.99 mg/dL; SD, 0.408) and cats with newly diagnosed and thus

untreated hypertension (mean, 1.87 mg/dL; SD, 0.310; P5 .34).

3.4 | Association of plasma total magnesium with

plasma FGF23 and other clinicopathological variables

Hypomagnesemic cats had higher plasma FGF23 than normomagnese-

mic cats within each IRIS stage (Figure 2). No simple correlation was

evident between plasma tMg and ln[FGF23] (r, 20.06; P5 .43), but

controlling for plasma creatinine and phosphate resulted in a significant

inverse correlation (partial r, 20.50; P< .001). The final multivariable

model indicated that plasma FGF23 was an independent predictor of

plasma tMg in all 3 IRIS stages, with the strongest effect in stage 4

CKD (Table 4).

3.5 | Association of plasma total magnesium with

survival

During the total follow-up period of 270.4 patient-years (median, 1.3

[0.5, 2.3] years), 150 cats died, 20 were lost to follow-up, and 4 sur-

vived beyond 1st July 2016. Risk of death in the first 12 months after

diagnosis of azotemic CKD was 43% (72/167) for the whole popula-

tion, 35% (48/136) for cats with normomagnesemia at baseline, 80%

(16/20) for cats with hypomagnesemia, and 73% (8/11) for those with

hypermagnesemia. The incidence rate of all-cause mortality was 0.56

per patient-year for all cats, 0.48 per patient-year for cats with normo-

magnesemia, and 1.34 per patient-year for cats with hypomagnesemia

and cats with hypermagnesemia at diagnosis of CKD.

Baseline characteristics of the three magnesium categories can be

found in Table 2. Censoring occurred in 16% (23/143) of normomagne-

semic cats, 5% (1/20) of hypomagnesemic cats, and none of the hyper-

magnesemic cats. Univariable survival analysis indicated that

hypomagnesemia and hypermagnesemia were associated with

increased risk of death (Table 5 and Figure 3). After adjustment for

confounders, hypomagnesemia remained an independent predictor of

death, but the association between hypermagnesemia and risk of death

lost significance. No statistically significant differences were observed

between baseline characteristics of cats incorporated in the final

regression model (n5122) and those of cats omitted because of miss-

ing information (n552, data not shown).

Treated as a continuous variable in the fully adjusted model,

plasma tMg was inversely associated with risk of death in cats with

plasma tMg <2.07 mg/dL (HR, 0.04; 95% CI, 0.01–0.27; P5 .001;

n557; mean tMg, 1.83 mg/dL). The association was nonlinear and

nonsignificant in cats with tMg �2.07 mg/dL (HR, 0.67; 95% CI, 0.24–

1.85; P5 .44; n565; mean tMg, 2.37 mg/dL). In the highest quartile,

however, tMg was significantly associated with mortality (tMg

�2.26 mg/dL: HR, 0.12; 95% CI, 0.02–0.76; P5 .025; n531, mean

tMg, 2.62 mg/dL).

3.6 | Association of plasma total magnesium with

progression of CKD

Seventy-nine cats had sufficient follow-up data available to be included

in the progression analysis, of which 29 cats (37%) showed progression

of CKD within the first 12 months of diagnosis. Median plasma tMg

did not differ significantly between groups (stable: 2.03 [1.89, 2.21]

mg/dL, progressive: 2.04 [1.75, 2.21] mg/dL; P5 .60), but a signifi-

cantly higher proportion of hypomagnesemic cats had progressive CKD

(P5 .001; Table 2). Hypomagnesemia was associated with increased

odds of progressive disease in univariable analysis, but the effect of

magnesium lost significance after adjustment for additional variables.

Only higher plasma FGF23 remained a significant predictor of
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TABLE 2 Characteristics of cats with azotemic CKD grouped according to magnesium status

Variable (reference interval) Hypomagnesemic (n5 20) Normomagnesemic (n5 143) Hypermagnesemic (n5 11)

Total magnesium (1.73–2.57 mg/dL) 1.57 [1.41, 1.66] 20 2.07 [1.92, 2.24] 143 2.87 [2.70, 3.60] 11

Age (years) 16.6 [15.0, 18.2]a 19 14.8 [12.0, 16.2] 130 12.0 [9.8, 15.0]b 11

Weight (kg) 2.98 [2.51, 3.56]a 19 3.92 [3.14, 4.61]b 142 3.63 [3.25, 4.20] 9

BCS (1–9) 3 [3, 4] 10 4 [3, 5] 90 3 [3, 5] 5

Sex (male, n [%]) 7 (35) 20 72 (50) 143 7 (64) 11

Albumin (2.5–4.5 g/dL) 3.0 [2.8, 3.3] 20 3.1 [2.9, 3.3] 143 3.0 [2.9, 3.3] 11

Chloride (100–124 mEq/L) 117 [116, 119] 20 118 [116, 120] 143 117 [114, 122] 11

Cholesterol (85–154 mg/dL) 234 [190, 277] 20 199 [158, 246] 143 212 [170, 247] 11

Creatinine (0.23–2.00 mg/dL) 2.85 [2.32, 4.03]a 20 2.48 [2.25, 2.96]a 143 4.82 [2.65, 5.47]b 11

FGF23 (56–700 pg/mL) 4950 [1931, 15893]a 20 637 [351, 1941]b 143 2658 [684, 8582] 11

FGF23 excess (n [%]) 18 (90)a 20 68 (48)b 143 8 (73) 11

Globulin (2.5–4.5 g/dL) 4.4 [4.1, 4.9]a 20 4.7 [4.3, 5.3] 143 4.8 [4.5, 6.2]b 11

PCV (30%–45%) 30 [24, 34] 20 34 [30, 37] 141 32 [23, 34] 11

Phosphate (2.79–6.81 mg/dL) 5.51 [4.47, 6.93]a 20 4.43 [3.75, 5.39]b 143 6.16 [4.46, 9.54]a 11

Hyperphosphatemia (% [n]) 14 (70) 20 64 (45) 143 7 (64) 11

Potassium (3.5–5.5 mEq/L) 3.9 [3.7, 4.4] 20 4.1 [3.7, 4.3] 143 4.0 [3.4, 4.8] 11

Hypokalemia (n [%]) 2 (10) 20 17 (12) 143 3 (27) 11

Hyperkalemia (n [%]) 0 (0) 20 0 (0) 143 1 (9) 11

PTH (2.6–17.6 pg/mL) 46.3 [12.5, 93.0]a 17 15.2 [6.5, 31.2]b 138 25.0 [11.7, 81.9] 10

SRHPT (n [%]) 12 (71) 17 67 (49) 138 6 (60) 10

SBP (<160 mm Hg) 153 [134, 163] 20 142 [128, 156] 143 136 [128, 150] 11

Hypertension (n [%]) 9 (45)a 20 26 (18)b 143 2 (18) 11

Sodium (145–157 mEq/L) 154 [153, 155] 20 153 [152, 155] 143 151 [150, 156] 11

Total calcium (8.2–11.8 mg/dL) 10.7 [10.1, 11.0]a 20 10.2 [9.7, 10.5] 143 9.6 [9.4, 10.4]b 11

Hypocalcemia (n, [%]) 0 (0) 20 1 (1) 143 0 (0) 11

Hypercalcemia (n, [%]) 1 (5) 20 2 (1) 143 0 (0) 11

Total protein (6.0–8.0 g/dL) 7.6 [7.1, 7.9]a 20 7.8 [7.5, 8.3]b 143 8.2 [7.6, 9.1]b 11

UPC (<0.20) 0.31 [0.27, 0.61]a 13 0.17 [0.12, 0.32]b 115 0.50 [0.23, 1.19]a 9

UPC <0.20 (n [%]) 1 (8)a 13 70 (61)b 115 1 (11)a 9

UPC >0.40 (n [%]) 5 (39) 13 21 (18)a 115 5 (56)b 9

USG (�1.035) 1.016 [1.014, 1.020] 19 1.018 [1.016, 1.021] 136 1.016 [1.014, 1.018] 10

UTI (n, [%]) 1 (5) 19 15 (11) 136 0 (0) 10

Progressive CKD (n [%]) 7 (88)a 8 19 (28)b 67 3 (75) 4

Survival time (days) 147 [52, 328]a 19 559 [205, 879]b 120 125 [50, 423]a 11

Follow-up (days) 152 [53, 336]a 20 546 [207, 890]b 143 125 [50, 423]a 11

Year of diagnosis 2008 [2004, 2011] 20 2009 [2007, 2011] 143 2008 [2003, 2012] 11

Data presented as median [25th, 75th percentile] or prevalence (n [%]). Rows bearing a different superscript letter are significantly different from one
another.
Abbreviations: BCS, body condition score; FGF23, fibroblast growth factor 23; PCV, packed cell volume; PTH, parathyroid hormone; SRHPT, secondary
renal hyperparathyroidism; SBP, systolic blood pressure; UPC, urine protein to creatinine ratio; USG, urine specific gravity; UTI, bacterial urinary tract
infection.
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progressive CKD in the final logistic regression model (Nagelkerke R2,

.21; Table 6).

3.7 | Interaction between phosphate and magnesium

In the subgroup analysis of NP and HP cats (based on IRIS targets for

plasma phosphate for each stage) with IRIS stage 2 and 3 CKD, plasma

FGF23 concentration was significantly higher in cats with lower plasma

tMg compared to cats with higher plasma tMg (Figure 4). In a general

linear model adjusted for IRIS stage, ln[FGF23] was negatively associ-

ated with plasma tMg both in normophosphatemic cats (b, 20.11; 95%

CI, 20.17 to 20.05; P5 .001) and hyperphosphatemic cats (b, 20.10;

95% CI, 20.15 to 20.05; P< .001).

Cats that were hyperphosphatemic for IRIS stage at diagnosis of

CKD (n588) had increased risk of death (HR, 1.44; 95% CI, 1.03–2.01;

P5 .034) compared with normophosphatemic cats (n576). However,

taking plasma tMg into account, a significantly increased risk of death

was observed only in hyperphosphatemic cats with plasma tMg below

the median (HP-LM5 reference group; P5 .025, NP-HM: HR, 0.53;

95% CI, 0.33–0.84; P5 .008, NP-LM: HR, 0.51; 95% CI, 0.31–0.83;

P5 .007, HP-HM: HR, 0.60; 95% CI, 0.36–0.99; P5 .043). Compared

with the NP-HM group as the joint reference category of no exposure,

departure from additivity was observed with a relative excess risk of

0.79 (95% CI, 20.05–1.65) in the HP-LM group, suggesting interaction

might exist between low magnesium and high phosphate in relation to

survival, although the 95% CI included zero (Table 5).

No statistically significant difference in risk of progression of azote-

mia was observed between hyperphosphatemic and normophosphatemic

cats (HP versus NP: OR, 1.62; 95% CI, 0.63–4.15; P5 .32). Therefore,

the effect of joint exposure of plasma tMg and phosphate in relation

to progressive CKD was not explored.

4 | DISCUSSION

Results from our observational cohort demonstrate an inverse relation-

ship between plasma tMg and plasma FGF23 concentrations in cats

with azotemic CKD. A significant independent association between

TABLE 3 Univariable binary logistic regression results identifying
risk factors for hypomagnesemia (n520) and hypermagnesemia
(n511) in 174 cats with azotemic CKD

Univariable analysis n OR (95% CI) P

Hypomagnesemia

ln[FGF23] (pg/mL) 163 1.99 (1.46–2.73) <.001
Weight (kg) 161 0.25 (0.11–0.55) .001
Diagnosis of hypertension 163 3.68 (1.38–9.79) .009
Phosphate (mg/dL) 163 1.26 (1.05–1.51) .013
ln[PTH] (pg/mL) 155 1.77 (1.13–2.77) .013
PCV (%) 161 0.92 (0.85–0.99) .028
Creatinine (mg/dL) 163 1.48 (1.04–2.12) .032
Age (years) 149 1.20 (1.01–1.42) .033
Total calcium (mg/dL) 163 1.86 (1.03–3.38) .041

Hypermagnesemia

Creatinine (mg/dL) 154 2.22 (1.36–2.63) .001
UPC 124 2.72 (1.37–5.37) .004
Phosphate (mg/dL) 154 1.33 (1.09–1.61) .006
PCV (%) 152 0.90 (0.82–0.99) .029
Age (years) 141 0.81 (0.66–0.99) .044

Plasma FGF23 concentration (or, 2.07; 95% CI, 1.48–2.90; P< .001) and
a diagnosis of systemic hypertension (or, 4.24; 95% CI, 1.41–12.78;
P5 .010) remained independent risk factors for hypomagnesemia in mul-
tivariable analysis (n5 163). No multivariable regression was performed
for hypermagnesemia.
Abbreviations: 95% CI, 95% confidence interval; FGF23, fibroblast
growth factor 23; OR, odds ratio; PCV, packed cell volume; PTH, para-
thyroid hormone; UPC, urine protein to creatinine ratio.
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FIGURE 1 Plasma total magnesium concentration in cats with IRIS
stages 2–4 CKD. Significantly higher plasma magnesium
concentrations were observed in cats with IRIS stage 4 CKD
(mean, 3.01 mg/dL; SD, 1.206; P< .001) compared with cats with
IRIS stage 2 (mean, 2.04 mg/dL; SD, 0.261) and 3 CKD (mean,
2.04 mg/dL; SD, 0.361). The prevalence (95% CI) of

hypomagnesemia was 9% (4–14), 18% (7–29), and 10% (0–27),
respectively, in IRIS stages 2, 3, and 4. The prevalence of
hypermagnesemia was significantly higher in IRIS stage 4 (50%;
95% CI, 19–81; P< .001) compared with IRIS stages 2 (3%; 95% CI,
0–6) and 3 (6%; 95% CI, 0–13). The boxes represent medians with
25th and 75th percentiles, the whiskers represent ranges. Dotted
lines mark the lower and upper limits of the reference interval for
plasma total magnesium (1.73-2.57 mg/dL)
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hypomagnesemia and increased risk of death was observed. Insufficient

evidence was found for an independent association between magne-

sium status and risk of progressive CKD. In additional analyses, the risk

of death associated with hyperphosphatemia appeared mitigated by

higher plasma tMg, and a possible link between hypomagnesemia and

systemic hypertension was identified.

Hypomagnesemia in CKD is thought to be secondary to impaired

intestinal absorption or increased renal excretion of magnesium, with

depletion of bone and muscle reserves,34–37 whilst hypermagnesemia

results from incapacity of the kidneys to filter sufficient magne-

sium.37,38 Hypermagnesemia was found mostly in cats with severe

renal dysfunction in our study (5 of 10 cats with IRIS Stage 4 CKD),

and the distribution of magnesium disorders across the different stages

of CKD was comparable to those reported before in a smaller number

of cats.3 However, the prevalences of hypomagnesemia and hypermag-

nesemia were possibly underestimated in our study, because these

frequencies were assessed on a single time point rather than in a given

time interval, whilst cats with these disorders were characterized by

higher risks of death. Missing information on muscle mass necessitated

IRIS stage classification based solely on plasma creatinine concentra-

tion, and consequently the severity of CKD could have been underesti-

mated in some cats.

Hypomagnesemia was independently associated with systemic

hypertension in cats, a relationship that is well-known in human

medicine.36,39–44 Magnesium plays an active role in vascular resistance

via various mechanisms such as regulation of intracellular calcium con-

centration, nitric oxide production, and vascular calcification,45–54 and

in dogs a decrease in vascular resistance and SBP was observed after

magnesium infusion.55 The difference in plasma tMg between normo-

tensive cats and cats with a (previous) diagnosis of systemic hyperten-

sion, however, was small, and therefore not directly clinically relevant.

Increased plasma aldosterone is commonly observed in azotemic cats

TABLE 4 General linear model to identify predictors of plasma total magnesium concentration (mg/dL)

Univariable analysisa Multivariable model (n5160)

Variable b (95% CI) n b (95% CI) n

IRIS stage

IRIS 2 2.04 (1.97 to 2.11) 114 2.83 (1.97 to 3.70) 106
IRIS 3 2.04 (1.93 to 2.16) 50 2.90 (1.59 to 4.20) 46
IRIS 4 3.01 (2.76 to 3.26) 10 10.80 (7.87 to 13.72) 8

Age (years) 20.02 (20.04 to 20.01) 160 20.03 (20.04 to 20.01)

Weight (kg) 0.09 (0.02 to 0.15) 170

ln[PTH] (pg/dL) 20.05 (20.10 to 0.00) 165

Chloride (mEq/L) 0.01 (20.00 to 0.03) 174

Hypertension 20.19 (20.33 to 20.04) 174

ln[Creatinine] (mg/dL)

IRIS 2 0.17 (20.56 to 0.90) 114 0.63 (0.04 to 1.22)
IRIS 3 0.27 (20.33 to 0.87) 50 0.68 (0.08 to 1.29)
IRIS 4 1.57 (1.05 to 2.08) 10 1.48 (1.05 to 1.90)

ln[FGF23] (pg/mL)

IRIS 2 20.10 (20.16 to 20.05) 114 20.11 (20.16 to 20.06)
IRIS 3 20.06 (20.11 to 20.00) 50 20.10 (20.16 to 20.03)
IRIS 4 20.76 (20.93 to 20.60) 10 20.44 (20.65 to 20.24)

Albumin (g/dL)

IRIS 2 0.10 (20.11 to 0.33) 114
IRIS 3 0.27 (20.02 to 0.57) 50
IRIS 4 2.67 (1.89 to 3.45) 10

Potassium (mEq/L)

IRIS 2 0.08 (20.06 to 0.23) 114
IRIS 3 0.02 (20.17 to 0.21) 50
IRIS 4 0.84 (0.57 to 1.12) 10

Total calcium (mg/dL)

IRIS 2 20.05 (20.15 to 0.04) 114 20.02 (20.10 to 0.06)
IRIS 3 20.06 (20.20 to 0.07) 50 20.06 (20.17 to 0.05)
IRIS 4 20.97 (21.32 to 20.63) 10 20.59 (20.97 to 20.21)

R2 multivariable model50.69.
aAll variables are accounted for IRIS stage.
Abbreviations: b, regression coefficient; 95% CI, 95% confidence interval; IRIS, international renal interest society; ln[PTH], log-transformed plasma
parathyroid hormone concentration; ln[FGF23], log-transformed plasma fibroblast growth factor 23 concentration.

8 | Journal of Veterinary Internal Medicine VAN DEN BROEK ET AL.



with systemic hypertension and not influenced by treatment with

amlodipine besylate.56,57 It could be a possible link between hypomag-

nesemia and hypertension, because aldosterone stimulates urinary

magnesium excretion58,59 whilst magnesium inhibits aldosterone

release.60,61 No information on plasma aldosterone concentration was

available for cats included in our study.

An inverse association of plasma tMg with FGF23 was found in

our population of cats with CKD, and has previously been identified in

human CKD patients on hemodialysis.29 Rodent studies suggest that

circulating FGF23 is influenced by dietary magnesium intake,30,31,62

and lower serum FGF23 concentrations were observed in

hemodialysis-patients receiving magnesium-containing laxatives or

phosphate binders in comparison to patients not receiving PO magne-

sium.29,63 However, no significant reduction in FGF23 concentration

was reported in a study examining the effect of oral magnesium sup-

plementation on serum calcification propensity in human CKD stage 3

and 4 patients.64 The underlying mechanisms of the relationship

between magnesium and FGF23 remain to be elucidated, but it could

be hypothesized that FGF23 has an effect on renal magnesium han-

dling, as it was also shown to regulate tubular phosphate,65,66 cal-

cium,67 and sodium68 reabsorption. Aldosterone stimulates Fgf23

(mRNA) expression by osteoblasts,69 so alternatively increased plasma

aldosterone, either as the cause of or secondary to hypomagnesemia,

could contribute to higher circulating FGF23.

Hypomagnesemia at diagnosis of azotemic CKD was an independ-

ent predictor of death in cats. No previous survival studies in cats with

CKD assessed the effect of magnesium status,5–7 but both hypomag-

nesemia and hypermagnesemia were associated with decreased sur-

vival in cats hospitalized in an intensive care unit.70 Multiple

observational studies in human CKD patients report a link between

TABLE 5 Time-invariant cox regression results identifying baseline
predictors of mortality in cats with azotemic CKD

Variables n HR 95% CI P

A. Univariable results

Normomagnesemia 143 <.001
Hypomagnesemia 20 2.92 1.78–4.82 <.001
Hypermagnesemia 11 2.88 1.54–5.38 .001

FGF23 (<460 pg/mL) 56 <.001
460–1800 pg/mL 58 1.12 0.75–1.69 .58
>1800 pg/mL 60 2.69 1.80–4.01 <.001

Age (years) 160 1.09 1.03–1.16 .003
Weight (�3.20 kg) 57 <.001

3.21–4.15 kg 57 0.57 0.38–0.84 .005
�4.16 kg 56 0.40 0.26–0.60 <.001

BCS (ideal weight) 26 .015
Underweight 65 2.03 1.23–3.37 .006
Overweight 14 1.25 0.60–2.61 .55

Albumin (g/dL) 174 0.38 0.22–0.67 .001
Creatinine (mg/dL) 174 1.48 1.32–1.65 <.001
PCV (%) 172 0.91 0.88–0.94 <.001
Phosphate (<4.00 mg/dL) 57 .001

4.00–5.26 mg/dL 58 1.15 0.77–1.72 .49
�5.27 mg/dL 59 2.09 1.41–3.10 <.001

ln[PTH] (pg/mL) 164 1.17 1.01–1.36 .043
Normotensive cats 137

Diagnosis of hypertension 37 1.51 1.03–2.23 .036
USG (�1.016) 66 .031

1.017–1.019 45 0.68 0.45–1.03 .068
�1.020 54 0.62 0.42–0.91 .014

UPC 137 1.74 1.34–2.25 <.001

Interactions with magnesium status

Creatinine (mg/dL) .019
Normomagnesemia 143 1.82 1.47–2.24 <.001
Hypomagnesemia 20 1.23 0.97–1.56 .092
Hypermagnesemia 11 1.69 1.09–2.65 .020

UPC .030
Normomagnesemia 115 1.62 1.18–2.23 .003
Hypomagnesemia 13 1.30 0.54–3.12 .56
Hypermagnesemia 9 6.13 1.13–33.29 .036

Multivariable model (n5 122)

Normomagnesemia 101 .017
Hypomagnesemia 12 2.74 1.35–5.55 .005
Hypermagnesemia 9 1.66 0.74–3.70 .22

Age (years) 122 1.18 1.08–1.28 <.001
Creatinine (mg/dL) 122 1.29 1.12–1.49 .001
PCV (%) 122 0.92 0.89–0.96 <.001
UPC 122 2.28 1.45–3.60 <.001

B. Phosphate-magnesium groups

NP-HM 46 .025
NP-LM 42 0.97 0.61–1.53 .89
HP-HM 41 1.14 0.71–1.80 .59
HP-LM 35 1.90 1.19–3.04 .008

A. Univariable and multivariable regression results of the main analysis.
B. Univariable results of the subanalysis examining the prespecified inter-
action between phosphate and magnesium.
Abbreviations: 95% CI, 95% confidence interval; BCS, body condition
score; FGF23, fibroblast growth factor 23; HM, higher plasma magnesium;
HP, hyperphosphatemic; HR, hazard ratio; LM, lower plasma magnesium;
PCV, packed cell volume; PTH, parathyroid hormone; NP, normophospha-
temic; UPC, urine protein to creatinine ratio; USG, urine specific gravity.
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FIGURE 3 Kaplan-Meier curve illustrating survival in cats with
azotemic CKD grouped by magnesium status. Cats with
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(P5 .95). Hypomagnesemia remained an independent predictor of
mortality in multivariable analysis (HR, 2.74; 95% CI, 1.35-5.55;
P5 .005), but the association between hypermagnesemia and
mortality lost significance (HR, 1.66; 95% CI, 0.74-3.70; P5 .22).
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hypomagnesemia and increased mortality, both in hemodialysis-

patients25,28 and patients with nondialysis-dependent CKD.24,26 More-

over, the risk of death associated with hyperphosphatemia appears

modified by serum tMg in hemodialysis-patients.27 Hyperphosphatemia

is a well-recognized risk factor in feline CKD,6,7 and our results might

suggest that higher tMg mitigates the risk of death associated with

hyperphosphatemia, as a significantly increased risk was observed only

in HP cats with plasma tMg below the median value. A possible expla-

nation could be an inhibitory role of magnesium on phosphate-induced

vascular calcification,21,71 although only scant reports exist on soft tis-

sue and vascular calcification in cats with CKD.2,72,73 In addition, both

phosphate and magnesium could influence plasma FGF23, which has

been identified as an important prognostic factor in cats with CKD.5

Plasma FGF23 was not a significant independent predictor of survival

in the analysis presented here. Adjustment for additional variables in

our study and differences in grouping of variables could explain this

discrepancy. Baseline FGF23 was not included in the above-mentioned

survival models for humans with CKD.

The higher risk of death associated with hypermagnesemia in cats

was lost after adjustment for additional variables and was possibly

caused by its predominance in end-stage CKD. It must be noted that

this result was based on a low number of observations, resulting in a

wide 95% confidence interval.

Magnesium has been shown to suppress phosphate-induced dam-

age to murine proximal tubular cells,23 and to reduce the degree of renal

function decline associated with hyperphosphatemia in human CKD

patients.23 Hypomagnesemia was a risk factor for progression of azote-

mia in our cats, but, similar to humans,24 the association was lost in mul-

tivariable analysis. Our analysis could have been impacted by the short

survival time of cats with magnesium disturbances, as demonstrating

progressive increases in plasma creatinine is more difficult when the

follow-up period is short. Moreover, hypomagnesemia might be a pre-

dictor for progression to end-stage disease only in humans with diabetic

nephropathy, but not in patients with nondiabetic CKD.74,75 However,

diabetes was not associated with risk of progression in another cohort

of humans with CKD,24,75,76 in which use of diuretics was identified as

a confounder instead. None of the cats in the present study had diabe-

tes mellitus or were administered diuretics. All mentioned models exam-

ining the relation between serum magnesium and survival in human

CKD were adjusted for concurrent diabetes mellitus.24–28

Although the relationship between hyperphosphatemia and renal

fibrosis is well-known in cats with CKD,8,77–79 no evidence for a signifi-

cant independent effect of plasma phosphate on progression of azote-

mia was found in the present study. Similar to the result from a previous

study,5 plasma FGF23 was a positive confounder for this relationship.

Moreover, the relatively low number of progressive cases might have led

to insufficient statistical power to identify a significant association.

The effects of hypomagnesemia and hypermagnesemia on pro-

gression and survival might have been underestimated because of mis-

classification bias. Firstly, grouping of cats in different magnesium

categories based on a single baseline measurement could have intro-

duced regression dilution bias. Baseline magnesium concentration is

lower in human patients that will develop hypomagnesemia during the

course of their CKD,24 but in what manner plasma magnesium changes

TABLE 6 Univariable binary logistic regression results identifying predictors of progressive CKD within the first 12 months of diagnosis of
azotemic CKD in cats

Univariable analysis Stable (n5 50) Progressive (n 5 29) n OR (95% CI) P

Normomagnesemia 48 (72) 19 (28) 67 .010

Hypomagnesemia 1 (12) 7 (88) 8 17.68 (2.04–153.59) .009
Hypermagnesemia 1 (25) 3 (75) 4 7.58 (0.74–77.48) .088

FGF23 (pg/mL) 459 [334, 1037] 1944 [575, 5761] 79 1.90 (1.29–2.80) .001

PCV (%) 34 [32, 37] 30 [25, 34] 79 0.87 (0.79–0.96) .004

Creatinine (mg/dL) 2.37 [2.23, 2.80] 2.69 [2.39, 3.77] 79 2.65 (1.26–5.56) .010

Phosphate (mg/dL) 4.38 [3.50, 5.09] 4.95 [3.95, 6.05] 79 1.33 (1.01–1.74) .043

Albumin (g/dL) 3.2 [3.1, 3.3] 3.0 [2.8, 3.2] 79 0.19 (0.04–0.95) .043

Only log-transformed plasma FGF23 concentration remained an independent risk factor for progression with multivariable regression. Group character-
istics are reported as number (%) or median [25th, 75th percentiles].
Abbreviations: 95% CI, 95% confidence interval; FGF23, fibroblast growth factor 23; OR, odds ratio; PCV, packed cell volume.
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FIGURE 4 Plasma FGF23 concentrations of NP and HP cats with
IRIS stage 2 and 3 CKD subdivided by the median plasma tMg
concentration (2.04 mg/dL). Plasma FGF23 was significantly higher
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over time in cats with CKD is unknown. Secondly, tMg consist of 3

fractions: ionized, protein-bound, and complexed magnesium.19 Ionized

magnesium status was overestimated by tMg in cats with renal trans-

plants and in cats with diabetes mellitus.80,81 Thus, cats with ionized

hypomagnesemia could have been included in the normomagnesemic

category, which would have introduced exposure identification bias if

the effects observed with low magnesium are because of ionized rather

than total magnesium status. However, only 1% of body magnesium is

located in the extracellular fluid and no consensus exists on whether

measurement of tMg or biologically active ionized magnesium best rep-

resents magnesium status, nor is there good agreement between these

methods.36,37,82

Although multivariable analyses were performed, the possibility of

residual confounding cannot be eliminated, and incomplete information

for muscle mass score, vitamin D-metabolites, blood gases, bone param-

eters, and plasma aldosterone concentration prohibited investigation of

relationships between magnesium and these variables. Multiple obser-

vations were made on a relatively small cohort of cats, and our findings

therefore require validation by other studies in different populations of

cats. Sequential measurements of plasma tMg would allow longitudinal

analysis of the associations explored in our study and would especially

benefit assessment of the relationship between plasma tMg and pro-

gression of azotemia. Further studies are warranted to explore possible

relationships of magnesium with plasma aldosterone concentration,

renal osteodystrophy and vascular calcification in cats.

Our study identified low plasma tMg to be associated with higher

plasma FGF23 concentrations and reduced survival in cats with CKD,

which is in agreement with results from studies exploring the relation-

ships of tMg with FGF23 and survival in humans with CKD.24,26,28,29,63

These observations were made on client-owned cats from first opinion

practice with naturally occurring CKD and should be relevant to other

populations of pet cats. Our results suggest that plasma tMg should be

added to the routine plasma biochemistry panel assessed in cats with

CKD, as this analyte adds prognostic information and helps to identify

cats with marked bone-mineral disorders. The observational design of

our study does not allow conclusions on causation, and clinical trials

could help investigate if magnesium is a modifiable risk factor, and if

our findings could lead to the development of new management strat-

egies in CKD-MBD in cats.
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