RVC OPEN ACCESS REPOSITORY - COPYRIGHT NOTICE

This is the peer-reviewed, manuscript version of an article published in *Journal of Equine Veterinary Science*. The version of record is available from the journal site: https://doi.org/10.1016/j.jevs.2018.03.018.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

The full details of the published version of the article are as follows:

TITLE: Local back pressure caused by a training roller during lunging with and without a Pessoa training aid

AUTHORS: Mackechnie-Guire, R; Mackechnie-Guire, E; Bush, R; Fisher, D; Fisher, M;

Weller, R

JOURNAL: Journal of Equine Veterinary Science

PUBLISHER: Elsevier

PUBLICATION DATE: 13 April 2018 (online)

DOI: 10.1016/j.jevs.2018.03.018

Accepted Manuscript

Local back pressure caused by a training roller during lunging with and without a Pessoa training aid

R. Mackechnie-Guire, E. Mackechnie-Guire, R. Bush, D. Fisher, M. Fisher, R. Weller

DOI: 10.1016/j.jevs.2018.03.018

Reference: YJEVS 2502

PII:

To appear in: Journal of Equine Veterinary Science

S0737-0806(18)30103-5

Received Date: 27 February 2018

Revised Date: 28 March 2018 Accepted Date: 29 March 2018

Please cite this article as: Mackechnie-Guire R, Mackechnie-Guire E, Bush R, Fisher D, Fisher M, Weller R, Local back pressure caused by a training roller during lunging with and without a Pessoa training aid, *Journal of Equine Veterinary Science* (2018), doi: 10.1016/j.jevs.2018.03.018.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	Local back pressure caused by a training roller during lunging with and without a Pessoa training aid
3 4	R. Mackechnie-Guire ^{1,2} , E. Mackechnie-Guire ¹ , R. Bush ¹ , D Fisher ³ , M. Fisher ³ and R. Weller ²
5 6 7	¹ Centaur Biomechanics, 25 Oaktree Close, Moreton Morrell, Warwickshire, CV35 9BB, UK ² Royal Veterinary College, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield
8 9	AL9 7TA, UK ³ Woolcroft Saddlery, Mays Lane, Wisbech PE13 5BU, UK
10 11	Corresponding author:
12 13	R. Mackechnie-Guire
14 15	Centaur Biomechanics, 25 Oaktree Close, Moreton Morrell, Warwickshire, CV35 9BB, UK
16 17	info@centaurbiomechanics.co.uk
18 19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41 42	
47.	

43	Abstract
44	Reasons for performing the study: Ground schooling (especially lunging) is routinely performed in
45	the rehabilitation and training of horses. Training rollers are commonly used to provide attachment for
46	training aids. Objectives: To objectively measure pressures beneath a training roller during lunging
47	exercise with and without a Pessoa training aid. Methods: To measure pressures underneath the roller;
48	ten non-lame horses (mean±SD age 12±8.77 years, mean±SD height 1.65±0.94m) were lunged on a
49	sixteen metre circle wearing a training roller on top of a high withered dressage square and wool pad.
50	A Pliance (Novel) pressure mat was positioned transversely over the spinous processes covering
51	thoracic vertebrae ten to fifteen. Data were collected in both trot and canter on left and right reins,
52	with and without a Pessoa training aid. For pelvic range of motion (ROM), horses were instrumented
53	with five inertial measuring units sensors (IMU). A paired T-test was used to determine differences in
54	pressure and pelvic ROM with/without Pessoa training aid (P≤0.05). <i>Results</i> : In trot and canter
55	consistent high pressures on the spinous processes beneath the roller were greater than those thought
56	to cause back discomfort. These pressures were consistent between horses. No significant differences
57	were found in any IMU outcome parameters. Conclusion: Awareness of the increased local spinal
58	pressure a training roller exerts on the back, especially in horses undergoing rehabilitation of back
59	problems.
60	
61	Keywords
62	horse, locomotion, roller, Pessoa, lunging, pressure
63	
64	
65	
66	1. Introduction
67	
68	Back pain and dysfunction in the ridden horse are common causes for poor performance with horse
69	owners (1-4), therapists, trainers and veterinarians working together to develop strategies to aid in the
70	treatment and prevention of back pain and dysfunction. Studies in man have shown the importance of
71	optimal musculature system in the protection against injury, as well as the use of specific exercises to
72	stimulate deep stabilising muscles <i>multifidi</i> , to help improve core musculature and in doing so
73	providing resolution of back pain (5, 6). A similar trend has been shown in the horse where
74	improving core muscle strength can provide stability to the vertebral column (7, 8). In cases of back
75	pain and dysfunction, these muscles can become dormant and atrophied thus compromising the
76	locomotor system and heightening the chances of back dysfunction (8).

77	In an attempt to condition the horse's musculature and provide variety to exercise regimes, horse
78	owners use ground schooling - most commonly in the form of lunging with a training aid - as a form
79	of exercise. It has been reported that the overall force acting on the horse's back whilst trotting with a
80	rider is equivalent to two times the body mass of the rider (9). Therefore, it seems likely that when
81	lunging, and by removing the weight of the saddle/rider, the locomotor system and musculature can
82	be influenced in a different manner.
0.2	
83	Training aids are regularly used as supplementary equipment whilst lunging. Several training aids are
84	available. Although limited, a study has shown that the Pessoa training aid has an effect on whole
85	horse locomotion, where a reduction in speed, stride length, head angle, and lumbosacral angle (at
86	maximal hind limb protraction) were reported (10). Although differences were reported, no increase
87	in the loading of forelimb and hindlimb structures were found (10). Resistance created by the
88	positioning of elastic resistant bands around the horse's hind quarters and abdominals, has received
89	scientific attention where it was found that increased stability of the vertebral column was achieved
90	(7). Training aids generally require the addition of a training roller, allowing for attachments to be
91	made from the training aid to the bit/horse. Unlike saddles, bridles and girths, where there have been
92	advances with scientific information (11-15), to the authors' knowledge there have been no studies
93	looking at the effect that a roller has on the horse.
94	
95	The aims of this study were to investigate the pressure distribution beneath a roller when fitted with
96	and without a Pessoa training aid, to identify if there is an increase in pressure beneath the roller when
97	using a Pessoa training aid and to investigate its effect on pelvic ROM.
98	
99	The objectives of this study were to quantify: 1) the pressure distribution beneath a roller when fitted
100	with and without a Pessoa training aid; 2) quantify differences in pelvic ROM when fitted with and
101	without a Pessoa training aid.
102	
103	It is hypothesised that there will be: 1) repeatable high pressures beneath the roller, directly on the
104	spinous process in the region of the eleventh and twelve thoracic vertebra; 2) an increase in high
105	pressures beneath the roller when being used with a Pessoa training aid; 3) smaller pelvic ROM as a
106	result of the high pressures beneath the roller.
107	.
108	2. Materials and Methods
109	The study was approved by the ethics and welfare committee of the first author's institution, project
110	number URN 20131238.

2. Effect of rollers on pressure distribution and locomotion.

2.1 Horses

A convenience sample of ten adult sports horses (mean±SD age 12±8 years, height 1.65±0.09m) were used. Horses and riders were recruited via Facebook asking for volunteers to participate in this study. Inclusion criteria were that horses were in regular competitive work preceding the study and were deemed fit and sound by their riders. Horses were assessed by the volunteers' own veterinarian the day preceding the study. Informed consent was obtained and riders could withdraw from the study at any point should they wish to do so. All horses were housed at the same facility for mean±SD 10±2 years. As part of the normal work routine all horses engaged with lunge exercise at least once a week using a Pessoa training aid, therefore all horses were suitably acclimatised to lunging and the attachment of training aids. All horses were warmbloods and of a similar conformation, all competing at affiliated dressage (elementary – advanced medium) and displaying good muscle definition with a well-defined musculature of the thoracolumbar region.

2.2 Lunging protocol

A non-anatomically shaped headpiece with a snaffle bit was used for all horses. A standard lunging cavesson was used over the top of the headpiece. The noseband had three rings, one of which was located on the midline and another located on each side (left and right), regardless of direction of travel, the middle ring was used throughout. Horses were lunged on a sixteen metre circle, a standard lunging line was used which had marker paint on it representing the required distance for lunging.

2.3 Roller

A web roller designed to fit all horses was used for the study. The roller had a non-rigid gullet, created by two triangular pads filled with foam on the underside of the roller. The roller was made from 100% Polypropylene, ten centimetres (cm) wide and could be adjusted so that its shortest length was 192 cm long and its longest length was 225 cm. The roller was equipped with twelve rings (2" diameter). Rings were positioned on both sides of the roller allowing for the attachment of training aids. Rings were attached by webbing in the following places: 1) dorsal aspect, three rings were cranially, centrally and caudally positioned directly above the spine; 2) on the lateral aspect of the roller in line with the proximal edge of the scapular, one ring was positioned in line with ventral aspect of the scapular; 3) two rings were positioned mid scapular; 4) two rings were positioned in line with the proximal portion of the humerus. A non-anatomically shaped girth was used for the study which had a further ring positioned on the ventral aspect of the girth overlaying the sternum.

146	
147	The roller was positioned in the region of thoracic eleven and twelve which corresponded in all horses
148	with the line of the girth groove. One single technician, with over thirty five years' experience,
149	palpated cranially from the lumbosacral junction identifying thoracic eleven and twelve; once
150	identified, skin paint was applied. Between each trial, roller positioning was checked.
151	
152	Beneath the roller was a wool roller pad on top of a high withered dressage square which was used
153	throughout the study. The same Pessoa training aid was used and fitted following manufacturer's
154	guidelines. It was adjusted to each horse based on horse height and horse length, ensuring that, when
155	fitted, the horse's nose was on the vertical. The Pessoa training aid was attached to the snaffle for all
156	horses. The middle ring (mid scapular) of the roller was used throughout for the attachment of the
157	Pessoa to the bit and the roller.
158	
159	2.4 Kinematics - Inertial Measurement Units
160	Horses were instrumented with five MTw inertial measurement units (IMU) (Xsens ^a). These were
161	attached over the withers, sacrum and left tuber coxa (LTC) and right tuber coxae (RTC) using
162	custom built pouches and double-sided tape. Sensor data were collected at 80 Hz per individual sensor
163	channel and transmitted via proprietary wireless data transmission protocol (Xsens), to a receiver
164	station (Awinda, Xsens) connected to a laptop computer running MTManager (Xsens) software.
165	IMU data were processed following published protocol (16). In brief, tri-axial sensor acceleration
166	data were rotated into a gravity (z: vertical) and horse-based (x: craniocaudal and y: mediolateral)
167	reference frame and double integrated to displacement. Displacement data were segmented into
168	individual strides based on vertical velocity of the sacrum sensor (17) and median values for the
169	following kinematic variables were calculated over all strides for each exercise condition.
170	• range of motion: maximum – minimum value over a stride cycle for x, y and z for trot and
171	canter
172	• minimum difference (MinD): difference between the two minima in vertical (z) displacement
173	observed during the two diagonal stance phases in trot (18)
174	• maximum difference (MaxD): difference between the two maxima in vertical (z)
175	displacement observed after the two diagonal stance phases in trot (18)
176	• tuber coxae difference (TCD): difference between vertical movement amplitude of left and
177	right tuber coxae.
178	Due to the lack of direct speed measurements, stride time (from IMU data) was used as a

179	surrogate measure making use of the relationship between speed and stride time within a gait (7).
180	2.5 Kinetic Data – pressure distribution
181	Kinetic data under the roller were recorded using a pressure mapping system ^b (Pliance System, Novel,
182	MSA600, sampling rate 50 Hz). The pressure mat was positioned transversely over the back directly
183	on the horse's skin. The pressure mat consists of 256 sensors arranged into 8 columns and 16 rows,
184	although, given that the mat was positioned transversely and only the region where the roller was to
185	be positioned was of interest, only 128 cells were active. The roller was positioned in the region of the
186	eleventh and twelve thoracic vertebrae; the depth of the roller corresponded to row C (cranial edge) to
187	E (caudal edge) on the pressure mat and cells seven, eight, nine and ten corresponded to width of
188	pressure left-right with cell eight and nine being positioned on the midline; between each
189	measurement the pressure mat was evaluated to check that it had not displaced laterally or
190	cranial/caudally. For each horse, prior to measuring, the pad was zeroed without the roller or girth
191	(19) this method has previously been described in relation to saddles (15). Peak pressures (kPa) in trot
192	and canter for both conditions were collected.
193	
194	2.6 Study Protocol
195	
196	Each horse underwent a ten minute warm up period on the lunge without the roller or Pessoa training
197	aid being attached. Spherical cones positioned at seventeen metres diameter marked the
198	circumference of the circle in which trot and canter locomotion with and without the Pessoa training
199	aid were measured. All measurements were performed on the same outdoor sand and rubber surface,
200	which was groomed prior to and in between each trial (Logic, single blade leveler). All horses were
201	handled and lunged by the same handler: female, 58 years, 5'2 height. A crossover design was carried
202	out, with each horse lunging on the left and right rein in trot and canter for both conditions, the order
203	of which was randomised. If the horse lost regularity, tripped or made an obvious alteration in gait
204	pattern or circle size the trial was repeated. For two horses, circle size altered so the trial was aborted
205	and repeated.
206	From IMU and pressure distribution, data were matched in relation to movement condition and data
207	were collected from forty consecutive strides totaling mean 40±3 being used for analysis, in trot and
208	canter on both left and right circles for each horse. This was repeated for both conditions, with and
209	without a Pessoa training aid.
210	
211	2.7 Statistical Analysis

213	Statistical analysis was performed in SPSS (vers. 22, IBM, Armonk, USA). Kinetic and kinematic
214	outcome parameters were assessed for normality using a Shapiro Wilks Test and found to be normally
215	distributed. Differences in outcome parameters for IMU and pressure data with and without a training
216	aid in both trot and canter were assessed using a paired T-test with a significance level set at P≤0.05.
217	
218	3. Results
219	
220	
221	3.1 Speed
222	Since many kinematic parameters are influenced by speed, we tested for differences in speed between
223	different training aid conditions. Using a paired T-test with a significance level set at P≤0.05 no
224	significant differences were found in stride time between the two conditions for any of the 4
225	combinations of gait (trot/canter) and movement direction (left/right rein direction): trot left rein, with
226	training aid 724.71±52.49ms, without training aid 730.86±49.71ms, P=0.85), trot right rein, with
227	training aid 730.00±50.43ms, without training aid 728.43±50.73ms, P=0.81), canter left rein, with
228	training aid 626.00±26.43ms, without training aid 627.57±22.87ms, P=0.78), canter right rein, with
229	training aid 628.43±24.65 ms, without training aid 626.71±22.76ms, P=0.80).
230	
231	
232	3.2 Kinetic Data – pressure distribution
233	In trot, repeatable pressures were recorded beneath the roller in the region of thoracic eleven and
234	twelve. Significantly higher peak pressures (kPa) were found beneath the width of the roller, directly
235	on top of the spinous process in the region of the eleventh and twelve thoracic vertebrae, identified as
236	row C-E cell 9 (Mean \pm SD) when using a training aid 38.1 \pm 11.1 (figure 1) compared to no training
237	aid 31.3 ± 11.3 (P=0.0007). The peak pressures occurred during both forelimb stance phases.
238	Significantly increased pressures beneath the roller were also seen at cell rows C-E cell 8 when using
239	a training aid 18.9 ± 4.8 compared to no training aid 15.8 ± 6.1 (P \leq 0.05) the pressure distribution
240	beneath the roller was more caudal when using the Pessoa training aid. No significant differences
241	(Mean \pm SD) in pressures were found either side of the spine identified as row C-E cell 7 when using
242	a training aid 8.4 ± 2.8 compared to no training aid 8.4 ± 2.7 (P=0.92) and rows C-E cell 10 with a
243	training aid 20.8 \pm 5.9 and without training aid 19.9 \pm 5.9 (P=0.43) (Table 1).
244	Similar to trot, in canter repeatable pressures were recorded in the region of thoracic eleven and
245	twelve. Significantly higher peak pressures (kPa) were found beneath the width of the roller, directly

246	on top of the spinous process in the region of the eleventh and twelve thoracic vertebrae, identified as
247	row C-E cell 9 (Mean \pm SD) when using a training aid 40.4 \pm 12.9 compared to no training aid 32.9 \pm
248	12.0 (P=0.01) the pressure distribution was more caudal when using the Pessoa training aid. The peak
249	pressures occurred during the inside forelimb stance phase. No significant differences (Mean \pm SD) in
250	pressures were found either side of the spine identified as row C-E cell 8 when using a training aid
251	21.2 ± 6.3 compared to no training aid 17.7 ± 8.6 (P =0.13), rows C-E cell 7 when using a training aid
252	15.0 ± 5.1 compared to no training aid 12.6 ± 3.6 (P=0.78) and rows B-D cell 10 with a training aid
253	31.4 ± 7.9 and with no training aid 27.6 ± 8.4 (P=0.06) (Table 1).
254	
255	3.3 Kinematics - IMU
256	
256	No significant difference for any of the IMU derived movement parameters were found for the LTC
257	and RTC, wither or sacrum when using a training aid compared to no training aid in left/ right or
258	trot/canter. All outcome parameters P=>0.1. (Table 2)
259	
260	
261	
262	4. Discussion
263	In accordance with our hypothesis, high pressures directly beneath a roller were found in the region of
264	the eleventh and twelve thoracic vertebrae. Although training aids have received some scientific
265	scrutiny (7, 10, 20) to the authors' knowledge there are no published studies looking at the effect that
266	a roller has on pressures applied to the equine back. Similar to treeless saddles, the roller used in the
267	current study did not have a rigid component (23), as such it is likely that when secured, the roller will
268	be pulled down close to the equine back creating the localised pressures to the epaxial musculature in
269	the region of the eleventh and twelve thoracic vertebrae. The horses used in this study were of similar
270	conformation and had well defined back musculature adjacent to the spinous processes, it is likely if
271	using a roller on a horse which has poor back musculature and protruding spinous processes the
272	pressures would increase.
273	This study found, without a Pessoa training aid, there were consistent high pressures directly beneath
274	the roller on the most dorsal aspect of the spinous process in the region of the eleventh and twelve
275	thoracic vertebrae (figure 1). Peak pressures were similar to those reported in sitting trot and higher
276	than (>35 kPa) those reported for pressures stimulating back discomfort (22) and vascular occlusion
277	(4.7 kPa). The association between reduced pressures and improved gait characteristics has been
278	shown in respect to saddles (15), bridles (14) and girths (13), where improved locomotion was found

as a result of reduced pressures (13-15). It is speculated that by exposing the horse to these pressures
beneath the roller, directly on the spinous process, it is likely to alter horse locomotion (23) and create
localised back pressures. A large number of training aids require the use of a roller to enable them to
be attached and, in keeping with our hypothesis, this study found that pressures beneath the roller in
the region of the eleventh and twelve thoracic vertebrae increased when using the Pessoa training aid.
Without the Pessoa training aid the area of high pressure was directly beneath the width of the roller
with each cell being loaded. When using the Pessoa training aid, the high pressures moved caudally
beneath the roller compared to the pressure distribution without the Pessoa training aid. The back
strap of the Pessoa training attached to a ring which was positioned on the most dorsal aspect of the
roller, directly over the spinous process; it is likely that during locomotion this attachment pitched the
cranial edge of the roller up thus creating pressures in the caudal region. The timings in which the
peak pressures occurred varied between gaits; in trot, two peak pressures occurred during the stance
phases of both the left and right forelimb and in canter, a consistent peak pressure occurred during the
stance phase of the inside forelimb. Given the direction of pressures beneath a training roller when
using a Pessoa training aid were more caudal, it is speculated that other training aids (side reins) may
have higher pressures more cranially; this area warrants further research.
In contrast to our hypothesis we found no statistically significant differences in pelvic ROM from the
IMU derived parameters when using the Pessoa training aid compared to no training aid. Although
not statistically different, differences in movement were found and when looking at the direction of
change, for most IMU locations there was a decrease in ROM in a mediolateral and craniocaudal
direction and an increase in a vertical direction in both trot and canter when using the Pessoa training
aid. These changes warrant further investigation however, based on previous studies where it has been
shown improved gait features were associated with less pressure beneath a saddle (15), girth (13) and
bridle (14), it seems likely that the pressure beneath the roller was in some way altering locomotion.
Further work should look at the direct mechanics behind these changes in relation to pressures created
by a training roller.
The region of the eleventh and twelve thoracic vertebrae is an area of considerable muscular
attachment aiding the support of the vertebral column. Studies have shown that the <i>longissimus dorsi</i> ,
responsible for trunk stabilization, is most active at thoracic twelve (24) whilst walking and trotting.
In the current study, the roller was positioned in this region, it is speculated that the increased peak
pressures observed beneath the roller could have an effect on longissimus dorsi activation, this is pure
speculation however, this warrants further investigation. The Pessoa training aid has been shown to
have an effect on whole horse locomotion, where a reduction in speed, stride length, head angle, and
lumbosacral angle (at maximal hind limb protraction) was reported (10). Based on the current study it
seems likely that there is an association between peak pressures and locomotion similar to other

studies. Therefore, users of the Pessoa training aid should ensure that there is clearance of the spinous process in order to optimise the benefits of using a Pessoa training aid which have previously been reported (10). This study used a high wither dressage square and a wool pad beneath the roller, despite this, peak pressures were seen. Studies have shown that pads, when used beneath the saddle, are associated with reducing saddle pressures (12); it is likely that using a pad beneath the roller would act as a dampening effect. Alternatively users could use a correctly fitted saddle and position the roller over the top.

This study did not look at horse locomotion without a roller, to do so would provide evidence on the effect that a roller has on horse locomotion. It only looked at one type of roller and if the study were to be repeated it could be improved by evaluating a leather roller or a modified roller which is designed to provide clearance of the spinous process. Using a treed saddle, providing clearance of the spinous process and roller with a Pessoa training aid would be useful. This study only looked at pelvic ROM, however, using a camera based system would provide detailed analysis of limb loading as well as using IMUs along the spinous process which would provide greater understanding on back kinematics in relation to roller pressures. Although in the current study a wool pad was used beneath the roller it would be interesting to evaluate various pads beneath the roller to determine the dampening effect, if any, which they may have. This study was sufficiently powered (0.94) however, increasing the sample size would be useful especially with the IMU derived parameters. In order to apply these findings in a practical context, future work should look at determining how lunge exercise is performed within the industry.

5. Conclusion

This study found that when using a roller with a high withered dressage square and wool pad, there were localised pressures similar to ridden exercise, located beneath the roller directly on the spinous process. Furthermore, these localised pressures increased and moved caudally beneath the roller when a Pessoa training aid was fitted, likely due to the back strap of the Pessoa training aid attaching to the ring positioned on the back of the roller. Improved manufacturing design is needed to create clearance of the vertebrae, similar to a treed saddle, during lunge exercise. Horse owners, veterinarians, therapists and instructors should be aware of the effect that a training roller can have on back pressures, especially in horses undergoing rehabilitation of back problems. Attempts to alleviate pressures should be made with either a pad creating clearance of the vertebrae or by placing a roller over the top of a correctly fitted saddle.

None of the authors of this paper have a financial or personal relationship with other people or

organisations that could inappropriately influence or bias the content of this paper.

348349

350

351

389390

391

6. Conflict of Interest Statements

352	
353	7. Acknowledgements
354	The authors thank Ruth Wyatt for assisting with data collection.
355	
356	Manufacturers' details
357	^a Xsens, Enschede, The Netherlands
358 359	^b Novel, Pliance, smaninger Str. 51, 81675 Munich, Germany
360	
361	
362	
363	
364	
365	8. References
366	
367	1. Dyson S. Evaluation of poor performance in competition horses: A musculoskeletal
368	perspective. Part 1: Clinical assessment. Equine Veterinary Education. 2016;28(5):284-93.
369	2. Greve L, Dyson S, Pfau T. Alterations in thoracolumbosacral movement when pain
370	causing lameness has been improved by diagnostic analgesia. Vet J. 2017;224:55-63.
371	3. Greve L, Dyson SJ. The interrelationship of lameness, saddle slip and back shape in
372	the general sports horse population. Equine Vet J. 2014;46(6):687-94.
373	4. Dyson S, Carson S, Fisher M. Saddle fitting, recognising an ill-fitting saddle and the
374	consequences of an ill-fitting saddle to horse and rider. Equine Veterinary Education.
375	2015;27(10):533-43.
376	5. Hides J, Gilmore C, Stanton W, Bohlscheid E. Multifidus size and symmetry among
377	chronic LBP and healthy asymptomatic subjects. Man Ther. 2008;13(1):43-9.
378	6. Hodges P, Holm AK, Hansson T, Holm S. Rapid atrophy of the lumbar multifidus
379	follows experimental disc or nerve root injury. Spine (Phila Pa 1976). 2006;31(25):2926-33.
380	7. Pfau T, Simons V, Rombach N, Stubbs N, Weller R. Effect of a 4-week elastic
381	resistance band training regimen on back kinematics in horses trotting in-hand and on the
382	lunge. Equine Vet J. 2017.
383	8. Stubbs NC, Kaiser LJ, Hauptman J, Clayton HM. Dynamic mobilisation exercises
384	increase cross sectional area of musculus multifidus. Equine Vet J. 2011;43(5):522-9.
385	9. Fruethwirth B. PC, Scheidle M., Schobesberger H. Evaluation of pressure distribution
386	under an English saddle at walk, trot and canter. Equine Veterinary Journal. 2004;38(8):754-
387	7.
388	10. Walker VA, Dyson SJ, Murray RC. Effect of a Pessoa training aid on temporal, linear

and angular variables of the working trot. Vet J. 2013;198(2):404-11.

Geutjens CA, Clayton HM, Kaiser LJ. Forces and pressures beneath the saddle during

mounting from the ground and from a raised mounting platform. Vet J. 2008;175(3):332-7.

- 392 12. Kotschwar AB, Baltacis A, Peham C. The influence of different saddle pads on force
- and pressure changes beneath saddles with excessively wide trees. Vet J. 2010;184(3):322-5.
- 394 13. Murray R, Guire R, Fisher M, Fairfax V. Girth pressure measurements reveal high
- peak pressures that can be avoided using an alternative girth design that also results in
- increased limb protraction and flexion in the swing phase. Vet J. 2013;198(1):92-7.
- 397 14. Murray R, Guire R, Fisher M, Fairfax V. A Bridle Designed to Avoid Peak Pressure
- 398 Locations Under the Headpiece and Noseband Is Associated With More Uniform Pressure
- and Increased Carpal and Tarsal Flexion, Compared With the Horse's Usual Bridle. Journal
- 400 of Equine Veterinary Science. 2015;35(11-12):947-55.
- 401 15. Murray R, Guire R, Fisher M, Fairfax V. Reducing Peak Pressures Under the Saddle
- 402 Panel at the Level of the 10th to 13th Thoracic Vertebrae May Be Associated With Improved
- 403 Gait Features, Even When Saddles Are Fitted to Published Guidelines. Journal of Equine
- 404 Veterinary Science. 2017;54:60-9.
- 405 16. Bell R. SR, Schoonover M., Whitfield C., Yonezawa Y., Maki H., Pai P., Keegan K.
- 406 Associations of force plate and body-mounted inertial sensor measurements for identification
- of hind limb lameness in horses. American Journal Veterinary Research. 2016;77(4).
- 408 17. Starke SD, Witte TH, May SA, Pfau T. Accuracy and precision of hind limb foot
- 409 contact timings of horses determined using a pelvis-mounted inertial measurement unit. J
- 410 Biomech. 2012;45(8):1522-8.
- 411 18. Kramer J, Keegan, K.G., Kelmer, G. and Wilson, D.A. Objective determination of
- 412 pelvic movement during hind limb lameness and pelvic height differences. . Am J Vet Res
- 413 2004;65:741 7.
- 414 19. de Cocq P, Clayton HM, Terada K, Muller M, van Leeuwen JL. Usability of normal
- force distribution measurements to evaluate asymmetrical loading of the back of the horse
- and different rider positions on a standing horse. Vet J. 2009;181(3):266-73.
- 417 20. Cottriall S, Ritruechai P, Wakeling JM. The effects of training aids on the longissimus
- dorsi in the equine back. Comparative Exercise Physiology. 2009;5(3-4):111.
- 419 21. Clayton, H, Belock, B, Kaiser, L. Forces and pressures on the horse's back during
- 420 bareback riding. Veterinary Journal. 2013;(195):48-52.
- 421 22. Bystrom A, Stalfelt A, Egenvall A, Von Peinen K, Morgan K, Roepstorff L. Influence
- of girth strap placement and panel flocking material on the saddle pressure pattern during
- 423 riding of horses. Equine Vet J Suppl. 2010(38):502-9.
- 424 23. Belock B, Kaiser LJ, Lavagnino M, Clayton HM. Comparison of pressure distribution
- 425 under a conventional saddle and a treeless saddle at sitting trot. Vet J. 2012;193(1):87-91.
- 426 24. Licka T. PC, Frey M. Electromyographic activity of the longissimus dorsi muscles in
- horses during trotting on a treadmill. American Journal of Veterinary Reserach. 2004;65(2).

429

428

430

431 432

433

434

435

436

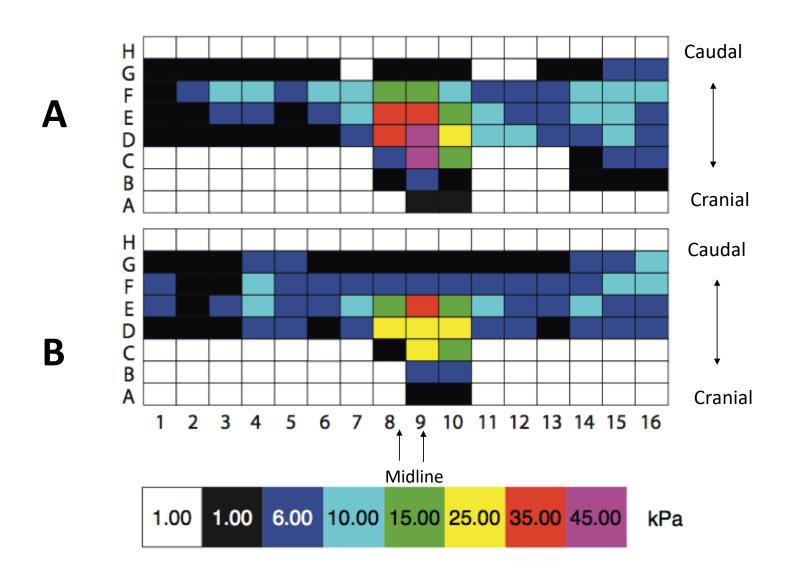
Table 1 – Peak pressures (kPa) found beneath the roller whilst trotting and cantering with and

without a Pessoa training aid. Significant (P=≤0.05) peak pressures found beneath the roller

at cells C-E 9 in trot P=0.0007 and in canter P=0.01

Cell	Gait	Control, Mean	Training Aid,	P Va l use7
Location		Peak Pressure	Mean Peak	458
		(1D) M	Draggura (IrDa)	459
		(kPa) Mean ±	Pressure (kPa)	460
		SD	Mean ± SD	461
G F 7			0.4	462
C-E 7	Trot	8.4 ± 2.7	8.4 ± 2.8	0.92463
C-E 8	Trot	15.8 ± 6.1	18.9 ±4.8	0.0464
	_	`		465
C-E 9	Trot	31.3 ± 11.3	38.1 ± 11.1	0.00076
C-E 10	Trot	19.9 ± 5.9	20.8 ± 5.9	0.4 3 67
				468
C-E 7	Canter	12.6 ± 3.6	15.0 ± 5.1	0.7869
C-E 8	Canter	17.7 ± 8.6	21.2 ± 6.3	0.1470
				471
C-E 9	Canter	32.9 ± 12.0	40.4 ± 12.9	0.0172
C-E 10	Canter	31.4 ± 7.92	27.6 ± 8.4	0.0473
	7			474

Table 2


Horse movement data whilst trotting and cantering with the Pessoa training aid and with no training aid. No significant (P=>0.1) differences found between conditions for any inertial measuring unit outcome parameters. (ROMY=range of motion in mediolateral direction, ROMX = range of motion craniocaudal direction, ROMZ = range of motion in a vertical direction).

	Gait	No: of	No Training	Training Aid	P
		observations	Aid mm (Mean	mm (Mean \pm S)	Value
			± SD)		
LTC ROM Z	Trot	10	97.4 ± 34.00	109.6 ± 15.6	0.30
LTC ROM Y	Trot	10	66.3 ± 41.1	52.7 ± 21.2	0.35
LTC ROM X	Trot	10	36.8 ± 9.1	34.56 ± 11.31	0.76
RTC ROM Z	Trot	10	$108.\ 1 \pm 29.60$	102.1 ± 32.5	0.18
RTC ROM Y	Trot	10	49 ± 28.6	55.1 ± 40.4	0.22
RTC ROM X	Trot	10	32.2 ± 12.1	34.3 ± 13.4	0.45
Sacrum ROM	Trot	10	95.6 ± 10.43	96.3 ±7.6	0.98
Z					
Sacrum ROM	Trot	10	40 ± 8.6	39.7 ± 10.8	0.91
Y					
Sacrum ROM	Trot	10	24.25 ± 4.1	23.6 ± 9.6	0.92

X					503
LTC ROM Z	Canter	10	112.3±20.2	115.3±11.8	0.70 505
LTC ROM Y	Canter	10	48.87±13.7	45.12±7.9	507
LTC ROM X	Canter	10	32.5±9.8	27±3.2	0.16 508
RTC ROM Z	Canter	10	117.8±32.1	125.8±10.7	⅓
RTC ROM Y	Canter	10	39.8±27.7	29.75±5.0	0.34 511
RTC ROM X	Canter	10	27.2±7.0	26.5±6.67	%512
Sacrum ROM	Canter	10	101.6±13.7	101±12.3	0.83 514
Z					515
Sacrum ROM	Canter	10	38.8±5.9	36.1±5.6	6.24 517
Y					518
Sacrum ROM	Canter	10	22.8±4.3	21.8±4.7	0519
X			/		520
			4		521

Figure 1

Peak pressure (kPa) distribution beneath a training roller when fitted with a Pessoa training aid (A) and when fitted without a Pessoa training aid (B). Peak pressures were found beneath the width of the training roller (B) when fitted without the Pessoa training aid. When fitted with a Pessoa training aid (A) the peak pressures were located more caudally beneath the roller.

Highlights

- 1. High pressures found at thoracic eleven-twelve beneath a training roller.
- 2. High pressures found beneath a training roller when using a training aid.
- 3. Training rollers should be fitted to ensure clearance of the spinous process.
- 4. Peak pressures beneath a training roller are associated with gait.