1	Postoperative Complications Associated with External Skeletal Fixators in Dogs
2	
3	L. Beever1; K. Giles1; R. L Meeson1.
4	1Queen Mother Hospital for Animals, Department of Clinical Sciences and Services, Royal Veterinary College,
5	Hawkshead
6	Lane, North Mymms, Hertfordshire, UK
7	
8	Authors
9	Lee Beever BVetMed (Hons), MRCVS
10	Kirsty Giles BVetMed, MRCVS
11	Richard Meeson MA VetMB, MVetMed, DipECVS, PGCertVetEd, FHEA, MRCVS
12	
13	Keywords
14	External fixator, postoperative complication, dog, canine.
15	
16	Running head
17	L. Beever et al.: External skeletal fixator associated complications in dogs
18	
19	Conflict of interest
20	None declared.
21	
22	Correspondence to:
23	Richard Meeson MA VetMB, MVetMed, DipECVS, FHEA, MRCVS
24	The Royal Veterinary College
25	Queen Mother Hospital for Animals
26	Hawkshead Lane, North Mymms
27	Hatfield, Hertfordshire AL9 7TA
28	United Kingdom
29	Phone: +44 707 666 366
30	E-mail: rmeeson@rvc.ac.uk

1 <u>Summary</u>

- Objectives: To quantify and evaluate risks of complications attributable to external skeletal fixator (ESF) usage
 in dogs.
- 4

5 **Methods:** A retrospective review of medical records following ESF placement.

- 6
- 7 **Results:** Case records of 97 dogs were reviewed; fixator associated complications occurred in 79/97 dogs.
- 8 Region of ESF placement was significantly associated with complication development (p=0.005), not
- 9 complication type (p=0.086). Complications developed most frequently in the tarsus (9/10), manus (8/9) and
- 10 humerus (8/9). Superficial pin-tract infection and implant failure occurred in 38/97 and 17/97 dogs, respectively.
- 11 Superficial pin-tract infection occurred frequently in the femur, humerus, radius and ulna and the pes, with implant
- 12 failure frequent in the tarsus and deep pin-tract infection in the manus and tibia. Transarticular frames were
- 13 significantly more likely to develop a complication (p=0.028). Age was significantly associated with complication
- 14 development (p= 0.029). No associations between breed, sex, weight, fracture type (open or closed), ESF
- 15 classification and the incidence or type of complications were identified. No associations between, breed, age,
- 16 sex, weight, fracture type (open or closed), ESF classification and the time to complication development were
- 17 identified.
- 18

Clinical significance: Fixator associated complications are common in dogs, with the majority of complications
 related to implant infection. Region and placement of transarticular frames should be carefully considered when
 selecting stabilisation method.

- 22
- 23
- 24

25

1 Introduction

External skeletal fixators (ESF) are commonly used for fracture stabilisation in veterinary orthopaedics and are available in a variety of configurations. They can be used as either sole fixation or adjunct stabilisation for a wide variety of conditions. Numerous reported advantages of ESF include, ease of placement, accessibility for open wound management, ease of implant removal and reduced cost of placement with minimal requirement for specialised orthopaedic equipment¹⁻⁴. While improvements with surgical technique and equipment have led to a decreasing frequency of complications over the last three decades, fixator associated complication rates remain high⁵, particularly implant failure and pin-tract infection^{3, 6-11}. Development of fixator associated complications in dogs has previously been up to 100% in some studies^{9, 12}. Although numerous published studies of specific ESF configurations at defined anatomical locations have been reported, to the authors' knowledge, a comprehensive multiregional review of fixator complications has not been undertaken. The aim of this study was to review postoperative complications directly attributable to the ESF apparatus in dogs, specifically implant infection, implant failure and bone fracture, and to identify factors associated with their development.

34 Materials and methods

35

36 Medical records of dogs with an ESF placed between January 2007 and March 2014 at the Queen Mother 37 Hospital for Animals were reviewed. The information in the records was reviewed in full for the entire period until 38 the fixator was removed. The following information was gathered for each patient: signalment, ESF configuration, 39 anatomical region, fixator associated complications and fracture type (open or closed). Patients were omitted if 40 complete records were not available. Fixator configuration was determined from clinical records and radiographs, 41 and categorised into four groups: linear, free-form, hybrid and circular. Specific ESF features also assessed 42 included presence of a tied-in intramedullary pin, transarticular frame, A-frame configuration and the use of epoxy 43 putty or clamp. Each ESF was assigned to one of nine anatomical regions (Table 1). If the fixator involved more 44 than one region, they were classified according to the region of injury requiring stabilisation. Fixator associated 45 complications recorded by the case clinician were identified from the medical records and were divided into four 46 categories: 1) Superficial pin-tract infection, including cases with associated pin loosening, 2) Deep pin-tract 47 infection, including any cases with associated pin loosening, 3) fractures and 4) implant failure; defined as any 48 complication associated with the frame without concurrent infection, including loosening, breakage or bending of 49 pins, breakage of connecting bars or clamp failure, and implant migration. Superficial pin-tract infection was 50 diagnosed by presence of one or more of the following: (a) purulent discharge (with or without positive bacterial 51 culture); (b) a positive culture result, or; (c) at least one sign of infection (pain or tenderness, localized swelling, 52 redness or heat), or a positive response to antimicrobial therapy¹³. Deep pin-tract infections were diagnosed 53 when the previously mentioned criteria were met and radiographic evidence of osteomyelitis or bone sequestrum 54 was seen.

55

56 Commercially available statistical software was used to perform all statistical analyses ^a. Data were assessed for 57 normality using the Shapiro-Wilk Test. Categorical variables were analysed using Chi-square or Fisher's exact 58 test as appropriate. For analysis of regional association with complication development and type, regions with 59 less than six cases were excluded from analysis. Analysis of associations between age, weight and development 60 of complications; fracture type (open or closed) and time of fixator associated complication were assessed using 61 the Mann-Whitney U test. The Kruskal-Wallis test was used to identify associations between patient age, weight 62 and type of complications; and associations between sex, ESF configuration, with fixator associated complication 63 development and the time of fixator complication. Relationships between age, weight and time of complication 64 were assessed by Spearman's rank correlation. A p<0.05 was considered significant.

65 <u>Results</u>

66 Review of the medical records from the specified period identified 119 consecutive dogs in which an ESF had 67 been applied. From these cases, 22 were excluded due to incomplete medical records. Therefore, a total of 97 68 dog met the inclusion criteria. Age on presentation ranged from two months to 13 years (median two years). Body 69 weight ranged from 2.1kg to 50.8kg (median 18.5 kg). Forty-five dogs were female (23 neutered) and 52 were 70 male (23 neutered). Forty-one breeds of dog were represented, the most common being mongrels (n=20) 71 followed by Labrador (n = 11) then Greyhound, (n=6). Of the 97 dogs, 67 had closed fractures and 30 open 72 fractures. Overall the most common region of placement was the radius and ulna (20/97), as shown in Table 1. 73 The majority of ESF were linear in 79/97 of dogs, of which 36 were type I, 42 type II and 1 was type III. The 74 remaining fixators were free form in 12, circular in 4, and hybrid in 2 dogs. The majority of constructs used the 75 IMEX SK clamp system^b (81/97) with the remaining 16 using epoxy putty. Detailed ESF configuration results are 76 summarised in Table 2. Of the 36 transarticular frames, two involved the radius and ulna, eight the manus and 13 77 the pes. All fixators involving the tarsus and stifle were transarticular. All transarticular fixators were non-78 articulating fixed angle.

79

80 Fixator associated complications occurred in 67/97 of dogs which had an ESF placed. Three dogs had two 81 distinct complications over time; these were treated as separate complications giving 70 distinct complications. 82 The time to diagnosis of complications ranged from 1 to 28 weeks postoperatively (median 5 weeks). Figure 1 83 shows the frequency of complications that developed; the most common being superficial pin-tract infection 84 occurring in 38/97 dogs, followed by implant failure (17/97). Of these 38 dogs, 30 were radiographed to rule out 85 deep pin-tract infection. Complications occurred in all nine anatomical regions, summarised in Table 1. Excluding 86 regions with less than six dogs, region of placement was significantly associated with fixator associated 87 complication development (p=0.005). The highest complication rates were recorded in the tarsus, humerus, 88 manus, and pes as summarised in Table 1. However, region was not significantly associated with the type of 89 complication that developed (p=0.086). Regional distribution of complication types is shown in Figure 2 with 90 superficial pin-tract infection the most common complication in four regions, including the femur (2/2), humerus 91 (6/9), radius and ulna (11/20), and the pes (9/17). Implant failure was the most common complication in the 92 tarsus (5/10). Deep pin-tract infection was the most frequent complication in the tibia (3/17), manus (4/9) and 93 stifle (1/3). Bone fracture occurred in only 1 dog with a fixator applied to the manus. This transarticular circular 94 fixator had wires placed in the distal 1/3 of the radius leading to a fracture in the distal radius at the proximal wire 95 tract when the dog jumped from a height. The wire occupied 28% of the bone diameter. 96

Age was significantly associated with the incidence (p=0.029) not the type (p=0.805) of complication that
developed. The median age of dogs that developed a complication was 3 years (range four months to 11 years)

99	and those without a complication was 1 year (range three months to 13 years). No significant association
100	between breed, sex, weight, fracture type (open or closed) and the incidence or type of fixator associated
101	complication was identified. Similarly, there was no association between ESF type and the incidence (p=0.121) or
102	type (p=0.108) of complication.
103	
104	Of the frame features outlined in Table 2, only transarticular ESF design was associated with an increased
105	incidence of fixator complications however not the type of complication. The remaining features shown in the
106	table were not significantly associated with the incidence or type of complication that developed. Thirty-six
107	fixators were transarticular of which 29 suffered a complication in comparison to 38/61 frames with no
108	transarticular component. Anatomical region was the only factor significantly associated with time of complication
109	diagnosis (p=0.01). The shortest median time to diagnosis was in the femur at two weeks, followed closely by the
110	pes with a median of two and a half weeks and longest was the crus at 10 weeks. The three dogs that suffered
111	two separate complications had transarticular frames two at the pes crossing the tarso-metatarsal and intertarsal
112	joints and one at the tarsus crossing the tarsocrural joint. All three had both a superficial pin-tract infection and an
113	implant failure that occurred separately.
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	

- 133 Discussion
- 134

135 The most common type of ESF used was the linear ESF, of which the type I and II arrangements predominated.

136 Radial and ulnar fractures were the most common location for ESF placement, which is unsurprising as the

radius and ulna are reported to be the most commonly affected region of fracture in the dog¹⁴. The predominance

138 of fixator use at this location also relates to the frequency of open fractures, the relative paucity of soft tissue and

- the ability to construct bilateral or biplaner frames^{4, 5, 8, 11, 15}.
- 140

The overall fixator associated complication rate in this study was high at 69% (67/97 dogs). Previously reported complication rates in canine populations are highly variable ranging from 5% to 100%^{1, 8, 11, 12, 16, 17}. The vast majority of complications were superficial pin-tract infection followed by implant failure. While the complication rate in this study is comparable to previously reported canine complication rates, it is higher than those reported in cats ranging from 26%-50%^{6, 18}. It therefore appears that dogs may be more likely to develop complications than cats, and this is something the authors have noted anecdotally. Region of ESF placement was significantly associated with complication development, however not the type of complication that developed (Figure 2).

148

149 Pin-tract infection remains one of the most significant complications of external fixation, compromising otherwise 150 successful treatment. Infection can lead to increased patient morbidity, increased treatment costs and client 151 frustration¹³. Superficial pin-tract infection was recorded in 38/97 dogs, this is similar to previously reported 152 superficial pin-tract infection rates in dogs ranging from 13% to 58%^{9, 15, 19}. Pin-tract infections are thought to 153 occur when soft tissue penetration allows bacterial contamination of the skin to pin interface. leading to superficial 154 pin-tract infection, which can progress to deep pin-tract infection, with associated bone lysis, pin loosening and 155 osteomyelitis^{10, 20, 21}. Additionally, implant surfaces enable biofilm formation allowing bacteria to evade the host 156 immune response and antimicrobial therapy^{22, 23}. Studies of the canine humerus and femur have shown an 157 absence of clear, safe corridors for pin placement due to the complex regional anatomy with only limited safe 158 corridors in the radius^{24, 25}. This concurs with the results of this study showing superficial pin-tract infection as the 159 most common complication in these regions. Interference with tendons and musculature may lead to additional 160 discomfort, joint stiffness and decrease limb use, all of which may predispose patients to increased complications 161 due to tissue morbidity and patient interference. While the overall complication and superficial pin-tract infection 162 levels remain similar to other canine studies, direct comparison is fraught due to differences in study population, 163 case definitions and study power leading to discrepancies when comparing studies¹³. Pin-tract infection and their 164 prevention remains a difficult research area due to the multifactorial nature of surgical site infection. Various 165 strategies of pin site care have been proposed in humans, however a recent Cochrane review suggested there 166 was insufficient evidence to identify a strategy of pin site care that minimises infection rates²⁶. Other reported risk

167 factors for small animal surgical site infection included gender, concurrent endocrinopathies, increased 168 bodyweight, duration of anaesthesia and surgical hypotension²⁷⁻²⁹. Importantly, it has been shown that the risk of 169 developing a surgical site infection in dogs following implant placement was 5.6 times that of dogs with no 170 surgical implants²⁹. In this study however, when assessing complications, no association with body weight, or 171 gender was found, although anaesthesia duration data was not available. Despite the high frequency of 172 infections, ESF implants are readily removed and minor short term morbidity associated with superficial pin-tract 173 infection often resolves following antimicrobial administration and adequate pin care or removal^{7, 17, 20}. 174 175 In our population complications were less likely in younger patients. A rat model of bone healing showed that, six 176 week old rats regained normal bone biomechanics at four weeks after fracture compared with one year old rats

requiring more than six months³⁰. The speed of fracture healing will doubtless impact on both the duration of
fixator placement and the degree of load sharing, which affects load and duration of loading upon the implants.

179

180 The manus and pes suffered from high complication rates with deep and superficial pin-tract infections 181 predominating respectively. It has been reported that pin-tracts of fixators used to stabilise the small bones of the 182 metacarpus and metatarsus are particularly problematic with two out of three dogs in one study developing 183 osteomyelitis^{31, 32}. Similarly, the present study found that deep pin-tract infections were the most common 184 complication to occur in the manus. Deep pin-tract infections were also common in the tibia; the limited soft tissue 185 coverage over the medial aspect of the canine and feline tibiae make them particularly prone to complications 186 with fracture healing due to the poor extraosseous blood supply and reduced intramedullary blood supply in the 187 early stages following fracture^{33, 34}. Interestingly, in an experimental model of canine pin-tract infection, the 188 infective agent in 88% of medullary canal cultures was also cultured from the skin³⁵. Given the limited soft tissue 189 envelope in these regions and reduced vascularity it would seem logical that superficial infection could readily 190 progress to involve bone due to the close proximity of the bone to surface of the skin-pin interface.

191

Implant failure occurred in 17/97 dogs and was common in the tarsus (Figure 2). The tarsus has previously been shown as a common region for fixator complication development^{9, 31}, however reported tarsal fixator complication rates vary between 15% and 74%^{9, 36}. In our definition, tarsal ESF were transarticular, spanning the tarsocrural joint, and indeed transarticular configurations are an independent risk for complication development. Clearly, overloaded implants, either due to patient factors or inappropriate implant choice are mechanically vulnerable, being subject to significant transarticular bending forces as they cross the flexed tarsocrural joint^{11, 19, 20}. Additionally relatively small pins placed in the metatarsals, further increase mechanical vulnerability.

199 Reassuringly iatrogenic bone fracture was uncommon, occurring in only one dog. A case series of 11 dogs and

cats found that this complication usually had contributing factors including multiple injuries, the presence of empty
 drill holes and inappropriate postoperative exercise restriction³⁷.

202

A key ESF feature is its design flexibility, with numerous frame configurations, implant types, sizes and materials from which to choose^{38, 39}. The only ESF feature associated with increased complications was the presence of a transarticular frame, which may inevitably relate to the biomechanical requirements of a transarticular frame. Complications have previously been shown to be more common when more complex ESF frames are used^{6, 11}, however in this study no significant difference was found between type I, II and III linear ESF. This was surprising as there was an expectation that increased frame complexity would be associated with increased complications, due to greater soft tissue disturbance from increase pin penetration^{3, 10}.

210

211 Several factors not evaluated in our study must be taken into consideration when discussing fixator 212 complications. The first is the method of pin insertion which influences the critical pin-bone interface. It is well 213 documented that inappropriate insertion technique can lead to excessive heat generation resulting in thermal 214 osteonecrosis and premature pin loosening^{40, 41}, particularly when bone is heated above 50°C for 60 seconds⁴². 215 Canine models have shown that high speed pin insertion produces significantly higher bone temperatures and 216 therefore slow speed insertion is recommended (150rpm or less)^{3, 40, 41, 43}. Insufficient axial force when drilling 217 bone can also significantly increase cortical bone temperatures⁴⁴. Pre-drilling a pilot hole has been shown to 218 increase pin pull out strength by 13.5% and reduce cortical microstructural damage leading to bone resorption 219 and premature loosening ⁴⁵. The common recommendation in veterinary medicine is a drill bit 10% smaller than 220 the pin diameter⁴³. Unfortunately, this information was not available to this retrospective study, however these 221 principles are typically adhered to in this centre. Another approach to maximise the pin-bone interface is to use 222 threaded pins^{3, 40}. Threaded pins have increased pin-bone contact area and increase resistance to pull-out which 223 may significantly affect pin loosening and complication development. Finally, pin size and number influence the 224 pin-bone interface. A minimum of two pins should be placed per bone segment with the majority of authors 225 recommending three to four per segment^{3, 37, 40}. The conventional pin size recommendation is 20% to 30% of 226 bone diameter^{40,10, 37}. Pin size is a balance between a pin that is large enough to provide sufficient stiffness but 227 small enough avoid leaving a critical size defect following removal^{37, 40}. We should note here that even when all 228 guidelines are followed a degree of complications are expected due to the nature of a transcutaneous implants. 229

This study has some limitations, particularly being retrospective in nature, with multiple surgeons contributing
 cases, creating variation in case management and selection. Detailed evaluation of the initial injury, exact
 surgical technique and the pin type used wasn't possible and must be considered when discussing complications.

233 We intentionally focussed on complications associated with the fixator per se, and further those that could be 234 confidently evaluated to provide robust information. The small sample size is some regions such as the stifle and 235 femur must also be taken into consideration when interpreting regional results and may lead to overestimation of 236 regional complication rates. Due to the referral nature of the caseload and lack of specific long term follow up 237 under-reporting of minor complications may also have occurred. Overall it is also important to acknowledge that 238 complication are multifactorial and a single causative factor is not always clear with multiple independent factor 239 interacting to result in complications. The only way to evaluate all factors fully would be to perform a large 240 prospective comparative study. Nonetheless, this represents a large overview of complications relating to 241 external fixators and is informative to the surgeon.

242

243 Conclusions

On balance, ESF complications are very common in the dog, however particular consideration should be given prior to their usage in certain locations, including the radius and ulna, humerus and femur, which are prone to pintract infections. Mechanical failure was not common except when used for transarticular tarsal stabilisation and bone fracture was extremely rare. This study could not show an effect of fracture configuration, open or closed nature, or frame design on the development of complications.

250

251 References

- McCartney W. Use of the modified acrylic external fixator in 54 dogs and 28 cats. Vet Rec 1998; 143:
 330-334.
- 2. Pettit GD. History of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 1–10.
- 255 3. Egger EL. Complications of external fixation: a problem-oriented approach. Vet Clin North Am Small
 256 Anim Pract 1991; 21: 705-733.
- Ness MG. Treatment of inherently unstable open or infected fractures by open wound management and
 external skeletal fixation. J Small Anim Pract 2006; 47: 83-88.
- Johnson A, Schaeffer D. Evolution of the treatment of canine radial and tibial fractures with external
 fixators. Vet Comp Orthop Traumatol 2008; 21: 256-261.
- Perry K, Bruce M. Impact of fixation method on postoperative complication rates following surgical
 stabilization of diaphyseal tibial fractures in cats. Vet Comp Orthop Traumatol 2015; 28: 109-115.
- 7. Fitzpatrick N, Riordan JO, Smith TJ, Modlinska JH, Tucker R, Yeadon R. Combined intramedullary and
 external skeletal fixation of metatarsal and metacarpal fractures in 12 dogs and 19 cats. Vet Surg 2011;
 40: 1015–1022.
- Anderson GM, Lewis DD, Radasch RM, Marcellin-Little DJ, Degna MT, Cross AR. Circular external
 skeletal fixation stabilization of antebrachial and crural fractures in 25 dogs. J Am Anim Hosp Assoc
 2003; 39: 479-498.
- Beever L, Kulendra ER, Meeson RL. Short and long-term outcome following surgical stabilization of
 tarsocrural instability in dogs. Vet Comp Orthop Traumatol 2016; 29: 142-148.
- 271 10. Harari J. Complications of external skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 99–
 272 107.
- 273 11. Gemmill T, Cave T, Clements D, Clarke SP, Bennett D, Carmichael S. Treatment of canine and feline
 274 diaphyseal radial and tibial fractures with low-stiffness external skeletal fixation. J Small Anim Pract
 275 2004; 45: 85-91.
- 276 12. Guerin S, Lewis D, Lanz O, Stalling J. Comminuted supracondylar humeral fractures repaired with a
 277 modified type I external skeletal fixator construct. J Small Anim Pract 1998; 39: 525-532.
- 278 13. Weese J. A review of post-operative infections in veterinary orthopaedic surgery. Vet Comp Orthop
 279 Traumatol 2008; 21: 99-105.
- 280 14. Phillips I. A survey of bone fractures in the dog and cat. J Small Anim Pract 1979; 20: 661-674.
- 281 15. Rovesti GL, Bosio A, Marcellin-Little DJ. Management of 49 antebrachial and crural fractures in dogs
 282 using circular external fixators. J Small Anim Pract 2007; 48: 194-200.

- 283 16. Piras L, Cappellari F, Peirone B, Ferretti A. Treatment of fractures of the distal radius and ulna in toy
 284 breed dogs with circular external skeletal fixation: a retrospective study. Vet Comp Orthop Traumatol
 285 2011; 24: 228-235.
- 17. Kirkby KA, Lewis DD, Lafuente MP, Radasch RM, Fitzpatrick N, Farese JP, et al. Management of
 humeral and femoral fractures in dogs and cats with linear- circular hybrid external skeletal fixators. J
 Am Anim Hosp Assoc 2008; 44: 180–197.
- 18. Könning T, Maarschalkerweerd RJ, Endenburg N, Theyse LFH. A comparison between fixation methods
 of femoral diaphyseal fractures in cats a retrospective study. J Small Anim Pract 2013; 54: 248-252.
- 19. Nielsen C, Pluhar GE. Outcome following surgical repair of Achilles tendon rupture and comparison
 between postoperative tibiotarsal immobilization methods in dogs 28 cases (1997–2004). Vet Comp
 Orthop Traumatol 2006; 19: 246–249.
- 20. Krischak GD, Janousek A, Wolf S, Augat P, Kinzl L, Claes LE. Effects of one-plane and two-plane
 external fixation on sheep osteotomy healing and complications. Clinical Biomech 2002; 17: 470-476.
- 296 21. Dudley M, Johnson AL, Olmstead M, Smith C, Schaeffer D, Abbuehl U. Open reduction and bone plate
 297 stabilization, compared with closed reduction and external fixation, for treatment of comminuted tibial
 298 fractures: 47 cases (1980-1995) in dogs. J Am Vet Med Assoc 1997; 211: 1008-1012.
- 299 22. Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus
 300 implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials.
 301 Biomaterials 2012; 33: 5967-5982.
- 302 23. Azab MA, Allen MJ, Daniels JB. Evaluation of a silver-impregnated coating to inhibit colonization of
 303 orthopaedic implants by biofilm forming methicillin-resistant Staphylococcus pseudintermedius. Vet
 304 Comp Orthop Traumatol 2016; 29: 347-350.
- 305 24. Marti JM, Miller A. Delimitations of safe corridors for the insertion of external fixator pins in the dog. 2:
 306 Forelimb. J Sm Anim Pract 1994; 35: 78–85.
- 307 25. Marti JM, Miller A. Delimitations of safe corridors for the insertion of external fixator pins in the dog. 1:
 308 Hindlimb. J Sm Anim Pract 1994; 35: 16–23.
- 309 26. Lethaby A, Temple J, Santy-Tomlinson J. Pin site care for preventing infections associated with external
 310 bone fixators and pins. Cochrane Database Syst Rev [Internet]. 2013 [cited on 2016 November 10];
 311 Issue 12. Art. No.: CD004551. Available from: DOI: 10.1002/14651858.CD004551.pub3.
- Eugster S, Schawalder P, Gaschen F, Boerlin P. A prospective study of postoperative surgical site
 infections in dogs and cats. Vet Surg 2004; 33: 542-550.
- 314 28. Nicholson M, Beal M, Shofer F, Brown DC. Epidemiologic evaluation of postoperative wound infection in
 315 clean-contaminated wounds: a retrospective study of 239 dogs and cats. Vet Surg 2002; 31: 577-581.

- 316 29. Turk R, Singh A, Weese JS: Prospective surgical site infection surveillance in dogs. Vet Surg 2014; 44:
 317 2–8.
- 30. Meyer RA, Tsahakis PJ, Martin DF, Banks DM, Harrow ME, Kiebzak GM. Age and ovariectomy impair
 both the normalization of mechanical properties and the accretion of mineral by the fracture callus in
 rats. J Orthop Res 2001; 19: 428-435.
- 321 31. Halling K, Lewis D, Jones R, Hill R, Anderson G. Use of circular external skeletal fixator constructs to
 322 stabilize tarsometatarsal arthrodeses in three dogs. Vet Comp Orthop Traumatol 2004; 17: 204.
- 32. Nelligan M, Wheeler J, Lewis D, Thompson M. Bilateral correction of metatarsal rotation in a dog using
 32. circular external skeletal fixation. Aust Vet J 2007; 85: 332-336.
- 325 33. Harari J. Treatments for feline long bone fractures. Vet Clin North Am Small Anim Pract 2002; 32: 927326 947.
- 327 34. Dugat D, Rochat M, Ritchey J, Payton M. Quantitative analysis of the intramedullary arterial supply of
 328 the feline tibia. Vet Comp Orthop Traumatol 2011; 24: 313-319.
- 329 35. Respet PJ, Kleinman PG, Meinhard BP. Pin tract infections: a canine model. J Orthop Res 1987; 5: 600603.
- 36. Diamond DW, Besso J, Boudrieau RJ. Evaluation of joint stabilization for treatment of shearing injuries
 of the tarsus in 20 dogs. J Am Anim Hosp Assoc 1999; 35: 147-153.
- 333 37. Knudsen C, Arthurs G, Hayes G, Langley-Hobbs S. Long bone fracture as a complication following
 334 external skeletal fixation: 11 cases. J Small Anim Pract 2012; 53: 687-692.
- 335 38. Lewis D, Cross A, Carmichael S, Anderson M. Recent advances in external skeletal fixation. J Small
 336 Anim Pract 2001; 42: 103-112.
- 337 39. White DT, Bronson DG, Welch RD. A mechanical comparison of veterinary linear external fixation
 338 systems. Vet Surg 2003; 32: 507-514.
- 339 40. Palmer RH, Hulse DA, Hyman WA, Palmer DR. Principles of bone healing and biomechanics of external
 340 skeletal fixation. Vet Clin North Am Small Anim Pract 1992; 22: 45-68.
- 341 41. Egger EL, Histand MB, Blass CE, Powers BE. Effect of fixation pin insertion on the bone-pin interface.
 342 Vet Surg 1986; 15: 246-252.
- 343 42. Eriksson R, Albrektsson T, Magnusson B. Assessment of bone viability after heat trauma: a histological,
 344 histochemical and vital microscopic study in the rabbit. Scand J Plast Reconstr Surg 1984; 18: 261-268.
- 345 43. Piermattei DL, Flo GL, DeCamp CE. Brinker, Piermattei, and Flo's handbook of small animal
 346 orthopaedics and fracture repair. 5th edition. St. Louis, Missouri: Elsevier; 2016. pg. 66–95.
- 347 44. Bachus KN, Rondina MT, Hutchinson DT. The effects of drilling force on cortical temperatures and their
 348 duration: an in vitro study. Med Eng Phys 2000; 22: 685-691.

- 349 45. Clary EM, Roe SC. In vitro biomechanical and histological assessment of pilot hole diameter for
- 350 positive-profile external skeletal fixation pins in canine tibiae. Vet Surg 1996; 25: 453-462.

Legend

<u>Tables</u>

- **Table 1.** Fixator associated complication development at each anatomical region.
- **Table 2.** Additional external skeletal fixator configuration details and association with complication development.

Figures

- Figure 1. Distribution of fixator associated complications.
- **Figure 2.** Regional distribution of fixator associated complication types as a percentage of the total number of fixators at each site.

Footnotes

- a- IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp
- b- IMEX SK Linear External Skeletal Fixation System: IMEX Veterinary Inc., Longview, TX, USA

 Table 1 Fixator associated complication development at each anatomical region.

Region	Number of dogs that developed a complication	Total number of fixators in region
Radius & Ulna	14	20
Tibia	7	17
Femur	2	2
Tarsus	9	10
Humerus	8	9
Mandible & Maxilla	4	10
Manus	8	9
Pes	14	17
Stifle	1	3

Table 2 Additional external skeletal fixator configuration deta	Is and association with complication development
---	--

Frame Feature	Total number	FAC developed	Incidence of FAC	Type of FAC
Tied-in IM Pin	9	7	P=0.574	P=0.088
Trans-articular ESF	36	29	*P=0.028	P=0.163
A-frame ESF	6	4	P=0.585	P=0.108
Epoxy putty	16	11	P=0.560	P=0.519

FAC-Fixator associated complication, IM- Intramedullary pin, ESF-external skeletal fixator, * values of P<0.05 are significant.

Figure 1 Distribution of fixator associated complications.

Figure 2 Regional distribution of fixator associated complication types as a percentage of the total number of fixators at each site.

SPTI- Superficial pin tract infection, DPTI- Deep pin tract infection