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Voxel-wise comparisons of cellular 
microstructure and diffusion-
MRI in mouse hippocampus using 
3D Bridging of Optically-clear 
histology with Neuroimaging Data 
(3D-BOND)
H. B. Stolp1,4, G. Ball   1,3, P.-W. So2, J.-D. Tournier   1, M. Jones1, C. Thornton1 &  
A. D. Edwards   1

A key challenge in medical imaging is determining a precise correspondence between image properties 
and tissue microstructure. This comparison is hindered by disparate scales and resolutions between 
medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology 
with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome 
these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T 
from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained 
with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue 
microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration 
between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI 
voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND 
provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular 
layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural 
features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional 
anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. 
Astrocytes, axons and blood vessels correlated to tensor orientation.

Medical imaging technologies, such as position emission tomography (PET), computed tomography (CT) and 
magnetic resonance imaging (MRI), have facilitated substantial advances in the diagnosis, monitoring and treat-
ment of disease. A key challenge in medical imaging is to understand how the image properties correspond to 
specific elements of the tissue microstructure. The side-by-side comparison with histologically stained tissue 
samples can serve as a validation for medical imaging. However, this comparison is challenged by substantial 
differences in scale and resolution between the two modalities. Imaging data is typically produced from 1–2 mm3 
voxels in patients, compared to high-resolution (1–10 μm/pixel) but two-dimensional microscopy data, resulting 
in inherent limitations and inaccuracies in comparisons.

Diffusion MRI (dMRI) has proven sensitive to microstructural changes in neuropathological disease, show-
ing capacity to distinguish between phases of disease (e.g. in Alzheimer’s disease, Amyotrophic Lateral Sclerosis, 
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Epilepsy1–3), and to identify changes associated with neuropathology. For example, increased mean diffusivity 
and decreased fractional anisotropy are consistent findings in Alzheimer’s disease and are sufficiently sensitive 
to distinguish the prodromal form from age-matched healthy controls4, potentially detecting early cytoarchitec-
tural changes as a result of neurofibrillary tangle formation5. While dMRI is extremely sensitive to microscopic 
changes that occur as a result of pathological (i.e. demyelination, axonal loss, oedema, inflammation), as well 
as developmental (e.g. dendritic arborisation, axonal growth) processes, assigning changes in dMRI metrics to 
specific microstructural alterations is an ill-posed problem with multiple possible solutions. This complexity is 
highlighted when considering changes in diffusion-based metrics such as fractional anisotropy which may be due 
to changes in myelin, membrane permeability, axonal number or size, or a combination of all of those factors6. 
This has led to a number of recent investigations into the histological correlates of the diffusion signal7,8.

Traditional histological techniques require the sectioning of tissue samples followed by digital reconstruction 
and an in-plane comparison with co-aligned imaging data. This process does not account for the true 3D structure 
of the intact tissue sample and assumes precise through-plane alignment of both modalities. Resolution and con-
trast differences also limit structure recognition and therefore subsequent alignment of the disparate datasets. In 
the complex environment of injury, particularly in the developing or ageing brain, where multiple cellular changes 
are occurring together, a new method for histological assessment and interrogation of medical imaging is required.

The recent development of tissue clearing techniques has made it possible for a true comparison of 3D tis-
sue microstructure with 3D medical imaging. These clearing methods work by masking9–12 or removing13,14 the 
light-refracting lipids within the tissue, allowing detection of cellularly-located fluorescent proteins over large 
tissue volumes. These tissue preparation methods also take advantage of technical advances in light microscopy 
such as specialised objectives with long working distance and high numerical aperture, and altered light paths to 
minimise noise from out-of-focus tissue and speed up image acquisition11,15,16. Furthermore, a number of these 
clearing procedures are compatible with immunohistochemistry13,17,18, enabling the simultaneous assessment of 
multiple cellular populations.

Here we present an analysis of dMRI metrics and cellular microstructure, using 3D-BOND (3D Bridging 
of Optically-clear histology with Neuroimaging Data), a technique for registering medical images with 3D his-
tology. This analysis has been performed in the hippocampus, a brain region with a complex microstructure 
and a primary focus of many disease-related MRI studies. Bridging the gap between low-resolution MRI and 
cellular-resolution histology, and allowing cell-specific, 3D analysis of the histological data influencing MRI, 
is paramount to our understanding and accurate clinical translation of in vivo MRI to neurodevelopment and 
neuropathology.

Materials and Methods
Brain tissue was prepared for MRI, CLARITY-based histological processing, registration and analysis as indicated 
below, and in the schematic diagram in Fig. 1.

Figure 1.  3D-BOND Workflow. Ex vivo, high-resolution dMRI was performed on fixed mouse brains which 
were then optically-cleared with CLARITY-based processing. Tissue was fluorescently stained with CLARITY-
validated, cell-specific antibodies and imaged using confocal microscopy. MR and confocal images were 
processed and registered before voxel-wise analyses.
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Tissue preparation.  All animals were housed in standard conditions, with a 12 h light/dark cycle in indi-
vidually ventilated cages, and treated in accordance with the UK Animals (Scientific Procedures) Act 1986 and 
local King’s College London Animal Welfare and Ethical Review Body guidelines under project licence 70/8367. 
Adult C57Bl/6 mice (n = 9) were killed by cervical dislocation; brain tissue was dissected out, cut to a 4–6 mm 
block from approximately Bregma 1.0 mm to −4.5 mm, and fixed by immersion in 4% paraformaldehyde (PFA) 
for 48 hours. Tissue was then washed in phosphate-buffered saline (PBS, pH 7.4) for at least 7 days prior to MRI.

Ex vivo MRI.  Fixed brain tissue blocks were held in a customised sample holder and immersed in Fomblin 
(Galden SV40, Performance Fluids, UK) for MRI on a 7T horizontal bore MRI scanner (Agilent Technologies 
Inc, Walnut Creek, CA, USA) using a quadrature volume radiofrequency coil (26 mm inner diameter; Rapid 
Biomedical, Rimpar, Germany), in a temperature controlled environment (21 °C). Diffusion MR images were 
obtained using a fast spin echo (FSE) sequence with the application of diffusion gradients in 42 directions at a 
b-value of 1500 s/mm2, repetition time (TR) = 3500 ms, echo time (TE) = 41.30 ms, Δ = 26 ms, δ = 5 ms, 40 aver-
ages, 22.5 hour scan time. Coronal contiguous slices (21) of 0.2 mm thickness were collected using the smallest 
field of view possible for the specific tissue sample and the matrix was adjusted to produce a final voxel size of 
125 × 125 × 200 µm.

The 42-direction diffusion data was initially denoised using a local Principal Component Analysis (PCA) 
filter19. Diffusion tensors were calculated with a weighted least-squares fit at each voxel and fractional anisotropy 
(FA), mean diffusivity (MD), radial diffusivity (RD) and parallel diffusivity (PD) maps derived using FSL’s dtifit20. 
Apparent fibre density (AFD) maps were derived using MRTrix3 (http://www.mrtrix.org).

Histological tissue processing.  Following MR imaging, tissue blocks were cut into 2 mm coronal slices 
and processed with the passive CLARITY protocol13,14,16; this slow, passive clearing method overcomes the issue 
of tissue inflation assocated with the original method21. Briefly, tissue was immersed in hydrogel (4% acrylamide, 
0.05% bis-acrylamide, 4% PFA in PBS) at 4 °C for 48 hours. Samples were deoxygenated with nitrogen using a 
Schlenk line attached to a vacuum flask before polymerisation of the hydrogel at 37 °C. Tissue samples were then 
transferred to clearing buffer (4% sodium dodecyl sulphate (SDS), 200 mM Boric acid, pH 8.5) at 37 °C until clear 
(2–3 weeks).

Cleared tissue was washed in sodium borate buffer (SBB, 1 M boric acid, pH 8.5, 48 h) before incubation in 
primary antibodies diluted in SBB with 1% Triton-X100 (see Table 1 in supplementary material). Tissue was 
incubated in antibodies for 7–10 days, with 24 hour SBB washes between primary and secondary incubations. 
Secondary antibodies raised in goat or donkey against mouse, rabbit, goat, chicken or guinea pig were used, 
attached to either 488 nm, 546 nm or 647 nm fluorophores (AlexaFluor, Life Technologies, diluted 1:500 in SBB). 
Prior to imaging, tissue was incubated in 4′,6-diamidino-2-phenylindole (DAPI, 1:1000 in SBB), washed in SBB 
and placed in a refractive index matched solution (RIM14) for 24 hours.

Confocal imaging was performed on an Eclipse Ni-E Upright microscope with a Plan Apo 4× objective 
(numerical aperture [NA] 0.2, working distance [WD] 10 mm), a Plan Fluor DIC L N1 10× objective (NA 0.30, 
WD 4 mm) or Plan Apo VC DIC N2 20× objective (NA 0.75, WD 1 mm) using NIS Elements C software (Nikon). 
Images of whole samples were produced with multi-frame tiling (512 × 512 pixels/frame, with 15% overlap for 
stitching), using unidirectional scanning at 405 nm, 488 nm, 561 nm and 642 nm laser wavelengths. Laser inten-
sity was set at four points throughout the tissue depth, and was automatically interpolated between each point, to 
ensure the full intensity range was used throughout the z-stack. Images were converted to tiff format for registra-
tion and analysis. Fully compiled datasets show the histological microstructure of the brain for four specific cel-
lular subtypes in a single sample, at an in-plane resolution of 2.4 μm × 2.4 μm (Fig. 2A,B), which can be projected 
in 3D to show the detailed microstructure of the hippocampus (Suppl. Figure 1).

Image Processing.  Confocal images were aligned with the Registration plug-in for ImageJ using rigid regis-
tration to correct any slice-wise alignment errors during acquisition. Separate colour channels were individually 
processed in ImageJ to normalise contrast across the image stack (40 × 40 pixel block radius, standard deviation 
of 3) and enhance contrast-to-noise (CNR, gamma correction 2.0; examples shown in Fig. 2C,D). Manual analysis 
of regions of interest in multiple datasets were performed to confirm that there was no effect of contrast enhance-
ment on cell populations being analysed. Data from confocal image sets was only included where staining showed 
consistent distribution across a brain region and cell morphology, as well as a CNR > 4 to facilitate automated 
analysis. Images were made binary by applying a threshold at 2× noise, again validated by manual and automated 
analysis over multiple thresholds and tissue regions.

Registration.  To form a source volume for registration, the six B0 volumes were averaged, denoised using 
a 3D non-local means (PRINLM) filter and upsampled by a factor of 522 (Suppl. Figure 2). This upsampling 
factor represents a midpoint between the two modalities, which was within the capacity limit of the upsam-
pling method. Both denoising and upsampling processes take advantage of the pattern redundancy in image 
data, allowing a patch-based reconstruction that outperforms traditional interpolation23. As a corresponding 
target image for registration, confocal images were downsampled in-plane, using standard linear interpolation in 
Matlab (The Mathworks, Inc; Natick, MA), to match as closely as possible to the final resolution of the upsampled 
average B0 volume (25 × 25 µm).

To achieve spatial correspondence, the upsampled average B0 volume and downsampled 3D confocal image 
stack were aligned using a dense landmark-based registration scheme. Landmark identification was facilitated 
by the distinct 3D structure of the hippocampus (see Suppl. Figure 3) and 58 distinguishable coordinates from 
the left and right hemispheres at multiple rostro-caudal positions (approximately equating to Bregma positions: 
−1.1 mm, −1.3 mm, −1.7 mm, −2.1 mm and −2.7 mm) were included in the registration schema (based on 
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the atlas of Paxinos & Franklin, 2012; and the online mouse brain atlas http://www.mbl.org/atlas170/atlas170_
frame.html; Suppl. Table 1). For each MRI data set, multiple 2 mm slices from the brain sample were registered, 
utilising the majority of landmarks available. However, due to variation in contrast and sampling between MR 
and confocal images not all 58 positions were available for registration in each paired data set; only those land-
marks which could be accurately identified were used, from a minimum of three rostro-caudal positions. Across 
all samples, the average number of landmarks used was 33 ± 4 (±S.D; range 30–37). Once annotated, the MR 
volume was registered to the confocal stack using affine registration, minimising the distance between land-
marks (root mean squared distance, RMS, example shown in Suppl. Figure 4A). The RMS was then used as a 
measure of intra-sample registration error, with an average RMS distance between corresponding landmarks 
of 0.168 ± 0.031 mm (Supp. Table 2). These values were driven by slightly greater registration error at the lateral 
boarders of the hippocampus compared to the midline, therefore regions of interest (ROIs) for further analysis 
(described below) were selected from medial hippocampal regions to further minimise any potential confound-
ing effect of lateral registration error. RMS was also used to assess intra-investigator variation, assessed by placing 
landmarks five times in the same MR-confocal dataset, with a test-retest reliability of 0.9 (Cronbach’s alpha).

Analysis.  To standardise voxel selection for analysis, hippocampal masks from the Australian Mouse Brain 
Mapping Consortium (AMBMC, www.imaging.org.au/AMBMC) for the primary Cornu Ammonis (CA)1 
pyramidal layer and stratum radiatum (CA1sp and CA1sr, respectively), Dentate Gyrus (DG) granular and 
molecular layers (DGgl and DGml, respectively) were registered to each sample’s upsampled average B0 volume 
using an intensity-based affine and nonlinear registration based on b-spline deformation (IRTK)24. Hippocampal 
labels were simultaneously propagated via the average B0 onto the corresponding confocal image stacks, and the 
corresponding fractional anisotropy (example shown in Suppl. Figure 4B) and mean diffusivity maps, at their 
original resolutions.

Voxel-wise analysis of histological data was performed in ImageJ. For each voxel in the hippocampal ROIs, 
binarised data from each colour channel were separated and the area of staining for each confocal slice calculated 
using the Measure Tool. The area of staining was calculated as a percentage of the total 3-dimensional volume 
defined by each voxel and compared to the MRI-derived metrics from the corresponding voxel in the original 
dMRI space for each of the selected hippocampal sub-regions.

The CLARITY images were processed to generate the corresponding 3D structure tensor maps, consisting 
of the matrix of second-order spatial derivatives after Gaussian smoothing25. A smoothing factor of 5 μm was 
used to detect microstructure within each cell-specific light microscopy dataset. Within each imaging voxel, the 
dominant orientation was estimated as the minor eigenvector of the structure tensor. Each of these orientations 
was then expressed as the spherical harmonic representation of a delta function pointing along the corresponding 
orientation. Finally, fibre orientation distributions were computed within larger voxels by summing the corre-
sponding spherical harmonic coefficients over all voxels (at the original CLARITY resolution) contained within 
each voxel at the target MRI resolution. These were then displayed as orientation glyphs using the MRView appli-
cation (included as part of MRtrix3).

Statistics.  Of the 9 brains samples used in this study, 6 were used to optimise the 3D-BOND pipeline, while 
3 were processed through the entire pipeline. All data are presented as mean ± SEM unless otherwise stated. 
Grouped data were compared using a one-way ANOVA. Correlations between each diffusion metrics and the 6 
different types of cellular data were performed using Prism (GraphPad). Statistical significance was set at p < 0.05, 

Figure 2.  3D histological data from optically-clear tissue at macro- and microscale. CLARITY-processing 
combined with immunohistochemistry and confocal microscopy allowed whole brain imaging at cellular 
resolution. (A) GFAP-positive astrocytes (green), parvalbumin-positive interneurons (red) and tomato lectin-
positive blood vessels (white) with DAPI stained cell nuclei (blue) in a cerebral hemisphere from an adult mouse 
brain. (B) High magnification image of boxed region from (A) shows the resolution of the image. (C and D) 
Individual channels were separated to show regional differences in cellular distribution, (C) green channel - 
GFAP positive astrocytes are particularly dense within the hippocampus and white matter, (D) red channel 
- parvalbumin positive interneurons are predominantly found within the cortex and pyramidal layers of the 
hippocampaus. Scale bar: A,C and D = 1 mm, B = 100 μm.

http://www.mbl.org/atlas170/atlas170_frame.html
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and a false discovery rate (FDR) correction was performed using the Benjamini-Hochberg procedure to correct 
for comparisons of multiple diffusion metrics.

Results
Diffusion characteristics of the hippocampus.  The macrostructure of the hippocampus is alternate lay-
ers of cell dense and cell sparse regions, with complex layer-specific patterns of axon projections, dendritic arbori-
sation, vascular plexi and glia. High resolution ex vivo dMRI was performed to assess the diffusion characteristics 
of these hippocampal subregions (Fig. 3A–F), with a focus on the CA1 pyramidal layer (CA1sp) and dentate 
gyrus granular layer (DGgl) as two cell dense regions, and the CA1 stratum radiatum (CA1sr) and dentate gyrus 
molecular layer (DGml) as neighbouring cell sparse, projection heavy layers. Layering within the hippocampus 
could be seen on maps of mean diffusivity (Fig. 3A,C) and fractional anisotropy (Fig. 3B,D). Specific hippocampal 
layers were identified using the Australian Mouse Brain Mapping Consortium atlas (AMBMC, www.imaging.org.
au/AMBMC, Fig. 3G) and diffusion values within these layers were calculated and compared.

A significant difference in diffusion was seen between layers with the diffusion tensor imaging (DTI) met-
rics of mean diffusivity, radial diffusivity and parallel diffusivity. Mean diffusivity was highest in the DGgl 
(0.46 ± 0.012 × 10−3 mm2.s−1), significantly different from the CA1sp (0.39 ± 0.006 × 10−3 mm2.s−1, p < 0.0001) 
and DGml (0.42 ± 0.006 × 10−3 mm2.s−1, p < 0.01, Fig. 3H). Radial and parallel diffusion values were slightly dif-
ferent, but showed the same pattern and statistical significance (Fig. 3I,J). No statistically significant difference in 
fractional anisotropy was observed across the hippocampal layers with the current imaging paradigm (Fig. 3K), 
though fractional anisotropy was also generally higher in the DGgl compared to the CA1sp (DGgl 0.238 ± 0.016, 
CA1sp 0.196 ± 0.011). This data supports previous reports indicating the sensitivity of mean diffusivity (and other 
diffusivity measures) to local changes in microstructure. Mean apparent fibre density (AFD) was also measured 
as an alternative metric for assessing tissue microstructure to those obtained using DTI (Fig. 3L). This measure 
showed the highest mean AFD value in the CA1sp region of the hippocampus (0.32 ± 0.001) which was signifi-
cantly higher than both the DGgl (0.28 ± 0.06, p < 0.001) and DGml (0.28 ± 0.05, p < 0.01). The mean AFD in the 
CA1sr (0.31 ± 0.003) was also significantly higher than in the DGgl (p < 0.01).

Correlation between diffusion and cellular microstructure of the hippocampus.  While CLARITY 
has been shown to be compatible with immunohistochemistry13, only a very limited number of antibodies have 
been validated. We therefore established a comprehensive collection of neurodevelopmental and neuropatho-
logical cellular markers assessed in CLARITY-processed tissue (for details and examples see Suppl. Figure 5 and 
Suppl Table 3). For the implementation of the 3D-BOND pipeline, we focused on six well characterised antibod-
ies or stains that defined distinct features of the hippocampal microstructure (see Fig. 4A,B). DAPI staining of 
cell nuclei was used to assess cell density, neurofilament staining to show axons, and a subclass of large, arborized 
interneurons detected with antibodies against parvalbumin. GFAP (glial fibrillary acid protein) and Iba1 (ionized 

Figure 3.  MRI imaging & processing. Mean diffusivity (MD; A,C) and fractional anisotropy (FA; B,D) maps 
were calculated from 42-direction dMRI. Data was also visualised as RGB and line vector maps of diffusion 
directions (E,F). Diffusion metrics were calculated for two of the CA1 hippocampal layers (CA1sp and CA1sr) 
and two of the DG hippocampal layers (DGgl and DGml), illustrated in G. Variations in mean diffusivity (H), 
radial diffusion (I) parallel diffusion (J), fractional anisotropy (K), and apparent fibre density (L) were assessed, 
showing significant differences between the DGgl and other layers. *p < 0.05, **p < 0.01, ***p < 0.001.

http://www.imaging.org.au/AMBMC
http://www.imaging.org.au/AMBMC
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calcium binding adaptor molecule) were used as markers of astrocytes and microglia respectively and tomato 
lectin to show the vasculature (arterioles, venules and capillaries).

We correlated the density of staining of each microstructural element with the corresponding diffusion metric 
of each voxel within each hippocampal ROI (Table 1, Fig. 4C–F). Cell density showed a weak positive correlation 
with mean diffusivity (Fig. 4C), as well as with radial and parallel diffusivity (r2 = 0.21, 0.23 and 0.15 respec-
tively), though this was only statistically significant following post-hoc Bonferroni correction for mean and radial 
diffusivity (p = 0.023 and 0.018 respectively). There was no correlation between fractional anisotropy or mean 
apparent fibre density and cell density. Statistically significant positive correlations were also found between axon 
density within a voxel and mean, radial and parallel diffusivity (r2 = 0.32, p = 0.007; r2 = 0.40, p = 0.003; and 

Figure 4.  Differences in diffusion in hippocampal subregions. (A,B) Cellular imaging of the hippocampus 
shows regional variation in microstructure. Example voxels from each hippocampal region are outlined in 
(A), and showed at higher magnification in (B). DAPI (cell nuclei), PV (interneuron population) and GFAP 
(astrocytes) are differentially distributed within the CA1sp, CA1sr, DGgl and DGml cell layers. (C) Mean 
diffusivity correlates with DAPI staining area, reflective of cell density. (D) Mean diffusivity also correlates 
with axonal density. (E) Fractional anisotropy only correlates with astrocytes staining density, as shown with 
GFAP. (F) Axonal density, quantified from neurofilament staining area, negatively correlated with apparent fibre 
density in the hippocampal subregions examined.

FA AFD MD RD PD

Cell density 0.01 0.02 0.21* 0.23* 0.15

Axons 0.04 0.27* 0.32* 0.40* 0.18*

Parvalbumin interneurons 0.01 0.05 0.04 0.03 0.04

Astrocytes 0.24* 0.17 0.09 0.01 0.18

Microglia 0.01 0.01 0.12 0.12 0.09

Blood vessels 0.16 0.13 0.17 0.08 0.21

Table 1.  Goodness-of-fit between DTI metrics and voxel cellular content in the hippocampus. Note: Values 
presented are R2, negative correlations are indicated in italics. * represents statistically significant correlation 
between features (p < 0.05 following FDR correction using Benjamini_hochberg procedure). Data included 
from voxels within the CA1sp, CA1s, DGgl and DGml layers of the hippocampus.
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r2 = 0.18, p = 0.038, example in Fig. 4D) as well as a negative correlation between axon density and mean apparent 
fibre density (r2 = 0.27, p = 0.013, Fig. 4F). As with cell density, there was no correlation between axonal density 
and fractional anisotropy. There was, however, a statistically significant positive correlation between fractional 
anisotropy and astrocyte density within hippocampal voxels (r2 = 0.24, p = 0.014, Fig. 4E). There was also a weak 
correlation with astrocyte density and parallel diffusion and with mean AFD (r2 = 0.18 and r2 = 0.17; not signifi-
cant following FDR correction), but not for mean or radial diffusivity. The density of parvalbumin interneurons 
did not correlate significantly with any measures on a voxel-by-voxel basis across the hippocampus. There was 
also no correlation between resting Iba1-positive microglia and diffusion metrics at a whole tissue level (Table 1). 
There was a weak negative correlation between blood vessel density and all diffusion metrics examined in this 
study, though this was not significant for any measure following FDR correction.

Local correlations between microstructure and diffusion.  Given the finding of a correlation between 
cell density and mean diffusivity, the CA1sp and DGgl were further analysed for secondary associations between 
cell composition and diffusivity. A clear separation between cell densities in the two layers could still be seen, with 
the correlation between mean diffusion and cell density remaining (Fig. 5A). Parvalbumin interneuron density 
and GFAP positive astrocytes also showed distinct patterns between these regions, though in the case of the 
interneurons this grouping did not correlate significantly with mean diffusivity. There was a clear difference in the 
area of the CA1sp and DGgl that contained GFAP positive astrocytes (Fig. 5C), and this correlated significantly 
with mean diffusivity (r2 = 0.32, p = 0.015).

Structure tensor analysis of histological tissue, in comparison with dMRI tensors.  In order 
to determine a histological correlate for the orientational data that can be calculated from dMRI using con-
strained spherical deconvolution (CSD)26, structure tensor analysis was performed on the 3D histological data 
sets. Distinct orientation density functions (ODFs) were observed with MRI and histological tissue imaging, 
which could be associated with different layers of the hippocampus and surrounding tissue. In the white matter 
of the corpus callosum there was a clear left-right alignment of ODFs in dMRI maps along the length of the 
corpus callosum (Fig. 6A,B). An equivalent alignment of the ODFs was observed with the structure tensor anal-
ysis of the neurofilament axon staining (Fig. 6D), GFAP-positive astrocytes (Fig. 6E) and, to a lesser extent, the 
lectin-stained blood vessels (Fig. 6G). The pyramidal layer of the hippocampus (Fig. 6B) has a largely isotropic 
orientation from dMRI maps, which was consistent with the structural tensor analysis in all cellular populations. 
However, in some voxels the dMRI ODFs can be seen to be influenced by the surrounding tissue, a partial volume 
contamination likely to be a function of the imaging resolution. In the stratum radiatum there was a distinct 
radial alignment of the ODFs in the dMRI, which was also reflected in the histological staining of axons, astro-
cytes and blood vessels (Fig. 4D,E,G). Medial-lateral alignment of fibres in the polymorphic layer (hilus) of the 
dentate gyrus could also be recognised in the structure tensor analysis of neurofilament staining, but was not 
visible with dMRI ODFs. The microstructure shown by Iba1 microglia staining and DAPI stained cell nuclei was 
predominately isotropic in all layers of the hippocampus.

Discussion
By performing voxel-wise analysis of histological data, registered to MR images using our 3D-BOND pipeline, 
we have been able to show local differences in diffusion characteristics that correlate with a number of cellular 
components of the brain microstructure.

For voxel-wise analysis of diffusion MR and histological data, it is necessary to broaden the coverage of his-
tological analysis and increase the resolution of the MRI. Ex vivo MR imaging allows longer scan times and 
higher resolution brain imaging of sufficient signal-to-noise to facilitate 3D landmark registration and subre-
gion analysis of brain microstructure, and was therefore utilised in this study. Ex vivo MRI has the potential 
limitation of altered tissue structure and water diffusion due to the fixation process (or tissue degradation in the 
case of sub-standard fixation). However, recent work from Dyrby and colleagues shows that appropriate fixation 
protocols and rehydration procedures, such as those used here, allow stable, biologically relevant dMRI to be 
performed ex vivo27. Minor modifications were made from the study of Dyrby and colleagues, to adjust for the 
different size of the mouse brains (compared with pig), and processing times were keep consistent to allow com-
parison between samples, as fixation time and time in PBS has clearly been shown to affect tissue MRI signal and 
tissue size (de Guzman et al. 2016). Wu & Zhang28 have shown that good concordance is possible between high 
resolution in vivo and ex vivo dMRI within the hippocampus of mice. In choosing the resolution for diffusion 
MRI in this study, we aimed to use an imaging resolution that would facilitate i) delineation of tissue subregions, 
ii) registration to high resolution histology and iii) meaningful comparison with the in vivo and ex vivo imag-
ing currently used in the research field. In future, it will be necessary to compare multiple imaging parameters 
to determine how resolution affects the associations with microstructure (e.g. through partial volume effect), 
and therefore how generalizable are the relationships between histological features and diffusion metrics. The 
advanced imaging paradigms currently being prepared for both in vivo and ex vivo imaging28–30, will be advan-
tageous here. However, we also need to ensure that the lower resolution imaging possible in the majority of 
pre-clinical animal studies5,31,32 can be interpreted in the light of this work.

We chose the CLARITY technique13 for 3D microstructural light imaging of the brain as it is compatible 
with immunohistochemistry, unlike methods such as SeeDB12, Scale11 or modified-BABB9. The hydrogel mon-
omer used in the CLARITY protocol facilitates the maintenance of tissue structure and integrity through this 
clearing process. Cellular structure is consistent with standard immunohistochemistry and a variety of anti-
bodies prove useful for the detection of distinct cellular populations. Tissue deformation due to shrinkage and 
swelling is part of all histological tissue processing methods; in order to minimise both protein loss and tissue 
deformation with the CLARITY method we utilised a passive clearing process21. We report an RMS distance 
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between MRI and CLARITY landmarks of 0.17 ± 0.03 mm, an error that reflects both minor deformation of the 
CLARITY-processed tissue and accuracy of both the landmark placement and registration. This error is lower 
than previous values of 0.26 ± 0.14 mm28 and 0.59 ± 0.64 mm33 reported in other studies registering MRI to histo-
logical data. Selection of voxels for analysis from medial areas of the hippocampus minimised the effective RMS, 
as the registration error was greatest on the lateral margins.

Fractional anisotropy and mean diffusivity can be seen to differ throughout the hippocampus, with regional 
differences in radial and parallel diffusivity largely similar to mean diffusivity in this brain structure. Diffusivity 
is higher in DGgl than the CA1sp and DGml of the hippocampus, and correlates with cell and axonal density, 
and to a lesser degree blood vessel content of voxels. A regional variation in mean apparent fibre density was also 

Figure 5.  Secondary influences of microstructure on diffusion metrics in hippocampal subregions. When the 
two cell dense regions were examined for the way their cellular microstructure correlated with mean diffusivity, 
there was clear separation of data from the CA1sp region (pink dots) and the DGgl region (blue dots). This 
resulted in a statistically significant correlation between mean diffusivity and cell density (A) and astrocyte 
density (C), but not parvalbumin interneuron density (B).
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observed throughout the hippocampus that differed in pattern to the DTI metrics. This measure of tissue micro-
structure correlated with axon density, and to a lesser extent voxel astrocyte and blood vessel content.

The positive correlation between mean diffusivity and cell density was not expected given current microstruc-
tural models. However, a high apparent diffusion coefficient (ADC) has previously been reported in the CA1sp 
and DGgl of the hippocampus and it has been shown to decrease with cellular loss due to injury34. There are a 
number of possible interpretations for this data, which need to be specifically studied in the future, however, the 
reproducibility of this finding across a number of registered voxels and in multiple tissue samples suggests posi-
tive correlation can exist between mean diffusivity and cell density in some brain regions.

When comparing the CA1sp and DGgl for secondary factors that may modulate diffusivity within these areas, 
a correlation between cell density was still observed. The size of the cells and their apparent density, as shown 
with DAPI staining, within the CA1sp region and the DGgl are very different, explaining the strength of this 
correlation. This finding needs to be further explored with additional b-values and microstructural features, and 
local and general patterns of microstructure and diffusivity will need to be determined. Our bespoke pipeline 
3D-BOND will prove invaluable for this assessment, enabling accurate correlation of MR images acquired with 
an extended range of b-values and more complex microstructural analysis performed over a wider range of brain 
regions.

The highest correlation between diffusivity and tissue microstructure was found for mean and radial diffusivity 
and mean apparent fibre density, correlating with the axonal content in the voxel. This is also a counter-intuitive 
correlation, as usually areas with high axonal density (e.g. white matter tracts) are associated with low mean dif-
fusivity and high apparent fibre density. It is not clear at this stage what may be driving this correlation, although 
it may be related to the fact that axonal density is relatively low in the regions of the hippocampus studied here. 
Of note, the positive correlation between mean diffusivity and neurofilament staining is not just a function of 
cell density within the hippocampal layers, as DAPI and NF do no correlate directly on a voxel-by-voxel basis. 
Possibly of greater importance is the correlation between dMRI ODFs and those calculated from structure tensor 
analysis of the neurofilament staining. Alignment between diffusion tensors and structure tensors has previously 
been shown in a small region of the human hippocampus35. In this study, there is clear alignment between ori-
entation of axons and dMRI ODFs in the white matter and stratum radiatum, highlighting the sensitivity of such 
methods to variations in microstructural tissue organisation, and specifically to neurofilament arrangement. This 
suggests that such metrics may prove informative to studies of developmental or pathological variation in brain 
microstructure over other, rotationally-invariant, diffusion metrics.

Blood vessels are typically considered to be evenly distributed through the brain and to have flow in multiple 
directions within each voxel at the microstructural level; additionally the signal from large vessels is attenuated at 
very low b-values (~20 s/mm2 36). As a result, the contribution of water movement in blood vessels is not generally 
considered in dMRI models36,37. The negative correlation between diffusivity and vascular density (~R2 = 0.19) 
did not retain statistical significance following FDR comparison. Further work will be required to determine if 
this lack of statistical significant relationship is maintained at different resolutions, b-values or in perfused tissue. 
While some directionality was observed with structural tensor analysis of the vasculature network, it is likely that 
these conform to the underlying microstructural elements, such as axon pathways, rather than conferring signifi-
cant orientation on the tissue in their own right38. Altered vascular density is observed in a number of neurologi-
cal disorders, e.g. stroke, and 3D-BOND maybe useful in further exploring regional variation in normal vascular 
density, and the sensitivity of dMRI to local changes in the vasculature. In the case of the microvasculature, it 
will be necessary to also perform dMRI in vivo rather than just ex vivo, as patent, flowing vascular networks will 

Figure 6.  Directionality of microstructure aligns with dMRI. (A) Orientation density functions (ODFs) were 
calculated from dMRI data, and were overlaid on the fractional anisotropy image of the brain. dMRI data was 
aligned with 3D-histology from CLARITY processed tissue. ODFs were compared in the hippocampus between 
MRI (B), cell density (C), axon staining (D), astrocytes (E), microglia (F) and blood vessels (G). Similar 
alignment of ODFs was seen in the white matter (WM) when dMRI was compared with astrocyte and axon 
staining, while alignment in the stratum radiatum (SR) was similar comparing dMRI, astrocytes and blood 
vessels.
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have a different effect on diffusion signal at certain b-values37 than that suggested by the microstructure alone, 
and neuronal activity has been implicated in inducing diffusion changes where hemodynamic changes may be a 
contributing factor39.

Numerous studies have predicted that astrocytes can contribute to dMRI metrics40–42, a position supported by 
the voxel-wise data produced in this study. Fractional anisotropy positively correlated with GFAP density across 
the hippocampus, a measure that included both the cell body and processes of the astrocytes. Interestingly, the 
CA1sr, which has the highest fractional anisotropy value measured in this study, also shows a clear radial align-
ment of the tissue that can be identified in ODF maps of the dMRI and astrocyte staining, with astrocyte processes 
contributing to the radial alignment (as well as axon alignment). Astrocytes proliferate, change morphology and 
GFAP production with injury, and it is likely that for this cellular population (and many of the others discussed 
here), it is not just the density of cells within a voxel that is important, but also the orientation of major cellular 
structures. Budde et al.40, showed the significant contribution of astrocytes to tensor-based tractography follow-
ing closed-cortical injury in mice using structure tensor analysis of 2D-histology, highlighting the importance 
of considering alignment of the cellular microstructure in addition to the overall tissue content. The capacity to 
perform structure tensor analysis in 3D, which is facilitated by the 3D-BOND pipeline, will be key to advances 
in this area. In the hippocampus and white matter the majority of astrocytes express GFAP at rest, other markers 
that show both the astrocyte cell body and processes, such as Glutamine synthase and ALDH1L1, will need to be 
utilised in other brain regions.

Generalisability of hippocampal diffusion and limitations of this study.  While this study provides 
evidence of association between diffusion metrics in the hippocampus and specific cell populations, it is impor-
tant to note that these are not necessarily generalizable to the in vivo brain; the local tissue features of the hip-
pocampus are sufficiently different from other brain regions to suggest that these findings should not be directly 
applied to other tissue without further experimentation. Likewise, the correlations are likely to change with differ-
ent resolution and b-value for dMRI. The acquisition parameters of the present study were chosen to be broadly 
consistent with the standard in the field of ex vivo mouse brain imaging, so that the data could be as meaningful 
to other researcher as possible. However, more work with this method and different acquisition parameters will 
be required before we have a clear conception of the biological correlates underpinning dMRI. In the meantime, 
3D-BOND has provided significant information for the interpretation of hippocampal injury, where changes in 
astrocyte and neuronal density are commonly seen in disease43.

Bridging the gap in scale between macroscopic (e.g. MRI) and microscopic (histological) data through reg-
istration of large-scale 3D datasets, we present a robust technique for comparing neuroimaging modalities and 
tissue microstructure on a voxel-by-voxel basis. This method allows the validation of acquisition parameters (e.g. 
the relationship between b-values or diffusion times and tissue-dependent diffusion) or analytical models (e.g. 
DTI compared with multi-shell analysis models, such as NODDI44 or multi-tissue CSD45) or the sensitivity of 
novel imaging techniques, such as ultrasound-based super-resolution vascular imaging46. As well as validation of 
existing techniques, combined investigations in the future will allow development of disease-specific biomarkers, 
new acquisition parameters and analytical models. 3D-BOND can also be used in models of brain injury and 
development to determine the specificity and sensitivity of neuroimaging metrics to changes within the brain. 
We have already shown correlations between mean diffusivity and a number of cellular elements within the hip-
pocampus, as well as orientation alignment between diffusion ODFs and cell-specific microstructure. 3D-BOND 
has the potential to measure injury and treatment effect sizes detectable with dMRI and other neuroimaging 
techniques and to inform the search for biomarkers of clinical assessment and neuroprotective drug trials.
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