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Abbreviations: 

 

AIM              Automatic identification of markers 

AUC             Area under the curve 

ERH             Equine Referral Hospital 

RVC             Royal Veterinary College 

IMU              Inertial measurement unit 

CV             Coefficient of Variation 

s.d.                Standard Deviation 

Se                 Sensitivity 

Sp                 Specificity 

ROC             Receiver Operator Characteristics 

 

Summary 

Background: Agreement amongst experienced clinicians is poor when assessing presence and 

severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might 

be beneficial for assessment of horses with neurological diseases.  

Objectives: To assess diagnostic criteria using motion capture to measure variability of spatial gait-

characteristics and swing duration derived from ataxic and non-ataxic horses and to assess if 

variability increases with blindfolding.  

Study design: Cross-sectional.  

Methods: Twenty-one horses underwent measurements in a gait laboratory and live neurological 

grading by multiple raters. In the gait laboratory the horses were walked across a runway 

surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were 

walked normally and with a blindfold in at least 3 trials each. Displacements of reflective markers on 

head, fetlock, hoof, 4th lumbar vertebra, tuber coxae and sacrum derived from 3-4 consecutive 

strides were processed and descriptive statistics, receiver operator characteristics (ROC) to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

determine the diagnostic sensitivity, specificity and area under the curve (AUC) and correlation 

between median ataxia grade and gait parameters were determined.  

Results: For horses with a median ataxia grade ≥2, Coefficient of Variation for the location of 

maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. 

The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. 

Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof 

marker having an AUC of 0.89 with 82% sensitivity and 90% specificity.  

Main limitations: The low number of consecutive strides per horse obtained with motion capture 

could decrease diagnostic utility.  

Conclusions: Motion capture can objectively aid the assessment of horses with ataxia. Furthermore 

blindfolding increases variation of distal pelvic limb kinematics making it a useful clinical tool.  

 

Introduction 

Ataxia is often recognised clinically as an irregularly irregular gait [1] and ataxia can also be defined 

as an interruption in the phase-dependent cyclical relationship between body segments in both 

spatial and temporal domains [2]. Ataxia can be the result of pathological disorders affecting the 

general proprioceptive system, cerebellum or vestibular system [3]. In the horse, the diagnostic 

workup is based on a thorough clinical and systematic neurological examination with 

neuroanatomical localisation [4]. This is followed, when appropriate, by laboratory testing of blood 

and cerebrospinal fluid [5], diagnostic imaging [6] and electrophysiologic examinations [7,8]. The 

ataxic horse remains a challenge, especially when the clinical signs are mild to moderate and even 

experienced clinicians disagree on the subjective assessment of gait and assignment of ataxia 

severity grades as well as whether the gait of a horse is normal or ataxic [9]. Development of 

objective criteria is therefore imperative to support the subjective assessment of gait as well as for 

detecting changes in gait over time in order to assess disease progression and response to 

https://paperpile.com/c/VvIyZm/k86c
https://paperpile.com/c/VvIyZm/oLuI
https://paperpile.com/c/VvIyZm/Ymcv
https://paperpile.com/c/VvIyZm/ZD7M
https://paperpile.com/c/VvIyZm/9LkQ
https://paperpile.com/c/VvIyZm/jmiv
https://paperpile.com/c/VvIyZm/VvrT+cOp8
https://paperpile.com/c/VvIyZm/baFA
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treatments. There is little research into use of gait laboratories for diagnostic purposes in ataxic 

horses. Cross-correlation of hoof motion pattern [10] and fuzzy clustering of motion capture signals 

[11] have been applied to ataxic horses walking and trotting on a treadmill. These techniques allow 

for discrimination between groups, but they have not been used diagnostically. Furthermore, horses 

often need several training sessions on the treadmill before the motion pattern is reproducible [12], 

treadmill exercise tends to stabilise gait and, given that [13], more subtle determinants of ataxia 

might be missed. Consequently, treadmill use in the assessment of ataxia is problematic: instead, 

over-ground gait analysis, might be preferable. 

  

Various tests, such as walking a horse with a blindfold, are perceived to exacerbate clinical 

neurological signs and to help localise the anatomical location of the lesion [9,14]. Blindfolding is 

based on Romberg’s test used in human medicine to assess the integration between vision, 

proprioception, vestibular and cerebellar systems [15]. In veterinary medicine, exacerbation of 

clinical signs after blindfolding is traditionally considered to be associated with vestibular ataxia 

[14,16]. Vision might have a feed forward effect on kinesthesia [17] and has recently been 

hypothesised to have a stabilising effect on postural control in horses [18] and spatial and temporal 

gait parameters in humans [19]. The influence of blindfolding on the gait of normal and ataxic horses 

has not previously been evaluated objectively. 

 

We therefore aimed to assess the diagnostic utility of over-ground motion capture for differentiation 

between horses with and without ataxia. We hypothesised 1) that the stride-to-stride variation in 

motion pattern of limbs and trunk is greater in ataxic horses compared with non-ataxic horses (as 

measured by displacement of the fetlock and hoof, duration of swing phase, maximum vertical and 

latero-medial displacement of the head, lumbar region and tubera coxae) and 2) that this higher 

https://paperpile.com/c/VvIyZm/CItF
https://paperpile.com/c/VvIyZm/gN4n
https://paperpile.com/c/VvIyZm/5fdF
https://paperpile.com/c/VvIyZm/g9Rz
https://paperpile.com/c/VvIyZm/baFA+vVok
https://paperpile.com/c/VvIyZm/fgLf
https://paperpile.com/c/VvIyZm/71Fo+vVok
https://paperpile.com/c/VvIyZm/8DzE
https://paperpile.com/c/VvIyZm/BcMT
https://paperpile.com/c/VvIyZm/W5N8
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variation can be used diagnostically and 3) that blindfolding increases variation of the motion cycle 

in ataxic horses compared to non-ataxic horses and 4) that objective determinants of gait as 

measured with motion capture correlate with the median neurological grade designated for a horse 

by up to 6 raters. 

  

Materials and Methods 

Rater agreement of clinical assessment of the horses in this study and results of post mortem 

examinations have recently been published [9]. Kinematics and inertial sensor data from 7 of the 

horses used in this paper have previously been published as part of validation studies [20,21]. 

 

Horses 

Horses were recruited from three sources: Group 1 included research horses with no known history 

of gait abnormalities that were purchased for an unrelated study of recurrent laryngeal neuropathy; 

Group 2 comprised horses referred to the Royal Veterinary College’s Equine Referral Hospital (ERH) 

for neurologic evaluation of gait deficits. Horses were recruited to Group 3 if a decision for 

euthanasia had been made in first opinion practice because of perceived moderate to severe ataxia. 

Horses were excluded from Group 3 if they were considered too ataxic to travel. None of the horses 

had signs or histories compatible with vestibular or cerebellar dysfunction. The horses were 

examined in order of presentation to the ERH and none of the horses showed signs consistent with 

cerebellar or vestibular ataxia. Four horses used in the rater agreement study [9] did not have gait 

laboratory data either due to concern over safety of the equipment or to practical and logistical 

constraints. Kinematic gait assessment was obtained within 24 hours of the live clinical assessment 

for all cases.  

https://paperpile.com/c/VvIyZm/baFA
https://paperpile.com/c/VvIyZm/2GiQ+dQ67
https://paperpile.com/c/VvIyZm/baFA
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Subjective assessment of ataxia 

The horses were assessed during a live neurological examination and graded for degree of ataxia 

using a modified Mayhew ataxia grading scale [9,22]. The assessment was performed simultaneously 

by at least 4 of the same 6 raters of whom two were internists (DipACVIM), two were surgeons 

(DipECVS or DipACVS) and two were residents (one medicine and one surgery). For details of the 

physical examination, results and grading scale see Olsen et al. [9]. The median of all raters’ ataxia 

grades was used as the final ataxia grade assigned to each horse [9]. 

  

Data acquisition and processing 

Hemispherical reflective markers with a diameter of 26 mm were placed on each horse at the poll, 

over the presumed centre of mass (CoM) [23] on both left and right side, left and right tuber coxae, 

left and right supraglenoidal tubercle, left and right thoracic and pelvic limbs over the latero-distal 

extremities of the metacarpal/tarsal II and IV just proximal to the metacarpo-/metatarso-phalangeal 

joint and hoof markers over the lateral and dorsal and distal hoof walls (marker placement is 

illustrated in Supplementary Item 1). Reflective markers with a diameter of 36 mm were placed on 

the skin over the dorsal spinous process of the withers at T13, over the 4th lumbar vertebra and one 

over the 1st dorsal spinous process of the sacrum. Horses were walked at their preferred speed by 

an experienced handler along a 20 m indoor runway 5 times for each condition. The conditions were 

1) walking normally without manipulation (normal walk); 2) walking wearing a blindfold (blindfold), 

and 3) walking with the head elevated. The order of walking condition was randomised (using 

random.org). A 12-camera, optical, motion-capture system (Qualisys Oqus 300 and 500 seriesa) was 

calibrated to collect 3D kinematic data covering an area of 6 m (length) x 2 m (width) x 2 m (height). 

Data were recorded at 240 Hz utilising commercial software (Qualisys Track Manager, version 2.3a). 

Each trial was pre-processed with labels and automatic identification of markers (AIM) followed by 

https://paperpile.com/c/VvIyZm/baFA+UXnj
https://paperpile.com/c/VvIyZm/baFA
https://paperpile.com/c/VvIyZm/70uD
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manual tracking and exported to tab-separated-values (tsv). The data was batch-processed using 

custom written MATLAB scripts (R2012ab) and segmented into strides based on displacement of the 

hoof relative to the centre of mass [24]. The parameters stride time, stance time and swing time 

were derived from the data stream [24]. To facilitate comparison between strides and horses, each 

stride was interpolated to 100 equidistant points [25]. The parameters calculated were maximal 

displacement, the displacement at 50% of swing phase and duration of swing phase. For each 

interpolated stride, parameters were calculated for each of the axes; X: cranio-caudal; Y: latero-

medial and Z: vertical. 

  

Data analysis 

The displacement and stride parameters were summarised by mean, s.d. and Coefficient of Variation 

(CV = s.d./mean) for each horse across each of the 3 axes. Statistical analysis was performed using R 

[26] with the packages ggplot2 for graphical data exploration and figures and pROC for calculation of 

sensitivity (Se), specificity (Sp) and area under the curve (AUC). Based on the median ataxia grade, 

the horses were assigned to a group of being normal or abnormal. The data were split multiple times 

with abnormal being a) grade 1 or greater; b) grade 2 or greater and c) grade 3 or greater. The 

results were calculated for the conditions walking normally and walking with a blindfold. In pilot 

experiments we discovered that when the horses were walking with their head elevated they had 

large variations in velocity (CV >15%) within each trial and this condition was therefore discarded 

from the study. In addition we compared results for normal walk and blindfold for thoracic limbs 

alone, pelvic limbs alone and thoracic and pelvic limbs together. Correlation between the median 

ordinal ataxia grade and continuous stride parameters was done using a Cumulative Link Model in R 

with the package Ordinal with a significance level set at p≤0.05. 

  

https://paperpile.com/c/VvIyZm/rgFO
https://paperpile.com/c/VvIyZm/rgFO
https://paperpile.com/c/VvIyZm/wsQj
https://paperpile.com/c/VvIyZm/9Lu8
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Results 

A total of 21 horses with a median age of 6 years (range 3 to 16 years) had kinematic analysis and 

neurological examination. Seven horses were assigned a median ataxia grade of 0, 3 had a median 

grade of 1, 6 had a median grade of 2 and five with a median grade of 3. Post mortem examination 

was performed on 13 of the 21 horses, however this number was too low to get sufficient power 

using pathology as a grouping factor for kinematic parameters. Detailed signalment for the horses, 

neurolocalisation and histopathology can be found in Supplementary Item 2.  

For normal walk, a head marker was added after collection of 3 horses so that 18 of 21 horses were 

wearing a head marker walking with a blindfold. The blindfold obstructed the head marker in the 

first 10 horses after which an additional head marker was added for the next 11 horses. The tuber 

coxae markers were less stable on the Automatic Identification of markers (AIM) model and there 

was no consistent trace of the RTC marker for 3 of 21 horses walking normally and with a blindfold. 

The mean and standard deviation for stride, stance and swing duration for both thoracic and pelvic 

limbs are listed in Table 1. A total of 2096 steps were included across the 21 horses for both 

conditions. For each horse a median of 51 steps for both pelvic and thoracic limbs across trials and 

for walking with and without a blindfold were analysed. Descriptive statistics for all data streams 

included in the study can be found in Supplementary Item 3. There was no statistically significant 

difference in either mean or s.d. for stride, stance or swing duration when the horses walked with a 

blindfold compared to normal walk (Table 1). Results of the diagnostic ROC analysis is summarised in 

Table 2. Included in the table are sensitivity, specificity and cut-offs for kinematic traces with an AUC 

greater than 0.7 for any of the ataxia grade groups. Mean values were not good discriminators 

between ataxic horses and non-ataxic horses. The location for maximum displacement in the vertical 

(Z) direction for markers on fetlock and dorsal hoof wall had better diagnostic yield compared to 

head and trunk mounted markers as well as CV of duration of swing phase when ataxic horses are 

compared to non-ataxic horses. Only location of maximum vertical displacement of the hoof marker 
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for the thoracic and pelvic limbs has an AUC >0.7 across all groupings for horses walking normally. 

For horses walking with a blindfold the AUC is >0.8 for the location of maximum vertical 

displacement and maximum displacement at 50% of swing phase for the dorsal hoof marker 

on the pelvic limbs with Se of 82% and Sp of 90% for detecting horses with a median ataxia 

grade ≥2 which is higher than walking without a blindfold where the Se is 73% and Sp is 

70%. In addition the marker on a pelvic limb metatarso-phalangeal joint (fetlock) had a 

greater AUC, Se and Sp than that on a thoracic limb, when walking with a blindfold. In 

general, both AUC, Se and Sp were greater for horses with an ataxia grade greater than or 

equal to 3 compared to those with a grade of 0, 1 and 2. There was a significant (p≤0.05) 

link between the ataxia grade and the CV and s.d. for all data features except for maximum 

vertical location during swing for the head-marker (Supplementary Item 4). 

  

Discussion 

Accurate assessment of equine neurological gait deficits is crucial for rider safety, for investigating 

effects of treatments such as surgery or physical therapy, for determining disease progression, 

making decisions for euthanasia and offering a prognosis. Here we investigate the potential for 

motion capture (kinematics) to differentiate between ataxic and non-ataxic horses. We used the 

median ataxia score for a group of raters as a reference standard to determine presence and 

severity of ataxia. We show that vertical displacement of the hoof and fetlock as well as swing 

duration have good diagnostic yield and that the pelvic limbs show more discriminatory capacity 

than the thoracic limbs. We also show that blindfolding increases the variation of vertical motion of 
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the distal limb for the ataxic horse compared to the non-ataxic horse; therefore our data support a 

stabilising effect of vision on posture and gait [18,19] in the so-called feed-forward hypothesis [27]. 

Our data also reveal that blindfolding exacerbates gait deficits associated with presumed general 

proprioceptive dysfunction. 

  

Strobach et al. [10] evaluated 17 ataxic and 17 non-ataxic horses walking on a treadmill and found 

no significant differences in stride duration or stride length between the two groups but reported 

significantly lower duty factor and decreased maximum of the vertical flight arch for the ataxic 

horses. Their study also looked at auto-, and cross-correlation analysis of hoof marker signals and 

found a significant, but narrow difference between normally coordinated horses and ataxic horses. 

The authors evaluated mean and s.d. but not the diagnostic capability of cross-correlation. Auto- and 

cross-correlation functions are heavily affected by velocity and require many sequential strides in a 

steady state so analysis of 3 sequential strides in the measurement frame in the gait laboratory is 

insufficient. Based on our data, it appears that vertical displacement and swing duration are of 

greater diagnostic value when assessing horses over-ground. Keegan et al. [11] compared 12 ataxic 

and 12 normally coordinated horses walking on a treadmill and reported a correct classification for 

100% of horses as ataxic or normal using fuzzy clustering (a form of cluster analysis) of the medio-

lateral and dorso-ventral displacement of a lumbar marker combined with vertical displacement of a 

fetlock marker. Keegan et al. [11] did not report diagnostic utility beyond the fuzzy clustering; for 

comparison, we did not detect diagnostically discriminatory results when assessing lumbar 

displacement of markers, but did get good AUC, sensitivity and specificity for fetlock displacement in 

the vertical direction. Both previously reported studies [10,11] were conducted on a treadmill, which 

might have altered certain characteristics of gait, especially at the walk [28,29]. 

 

https://paperpile.com/c/VvIyZm/BcMT+W5N8
https://paperpile.com/c/VvIyZm/yJZ3
https://paperpile.com/c/VvIyZm/gN4n+CItF
https://paperpile.com/c/VvIyZm/xZgo+Xh0k
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Medio-lateral (Y) excursion of the distal limb is often assessed clinically in the neurologic evaluation 

of gait, in particular, when evaluating possible ataxia. Indeed Ishihara et al. [30] found that ataxic 

horses had a significantly increased variation of the medio-lateral ground reaction force; in contrast, 

we did not find a significantly increased variation in the medio-lateral kinematic marker traces of the 

trunk during swing. We [21] and others [31] have previously shown a large inaccuracy when 

comparing medio-lateral displacement between inertial sensors and motion capture. The 

discrepancy is thought to be due to the low amplitude of the distal limb movement in the medio-

lateral direction. We did not analyse the medio-lateral displacement of the distal limb in the current 

work due to the inherent technical challenge of quantifying and distinguishing the medio-lateral 

movement of the limb independently from any lateral drift in the horses’ direction. The uncontrolled 

manifold hypothesis suggests that motor control stabilises the centre of mass though multi-joint 

synergies that limit variation of the displacement trajectory and the limbs not interfering with each 

other. This leads to complex feedback and feed-forward systems that stabilise the trajectory [32]. 

The medio-lateral excursion amplitude is low and the control mechanisms described above likely 

make the kinematic stride-to-stride variation during swing too large to be of diagnostic value. In 

smaller quadrupeds the neurologic examination includes hopping in the lateral direction which 

directly facilitates assessment of the proprioceptive pathways; this could be measured in future 

studies however it cannot be accomplished safely in the pelvic limbs of many horses. Future studies 

could assess the distal limb kinematics during pertubations such as medio-lateral manoeuvering 

including thoracic limb hopping and circling. Due to the challenges of standardising such 

measurements it is possible that clinical assessment might remain superior in assessing changes in 

medio-lateral motion, even though such assessment would remain subjective.  

Foss et al. [33] analysed the gait of 10 clinically normal and 9 dogs with cervical spondylomyelopathy 

(CSM) and found a significant difference in the stride duration of the thoracic limbs but not the 

pelvic limbs. In contrast, we did not find a difference in absolute swing time between ataxic and non-

ataxic horses; we did however find a diagnostically relevant increase in CV of swing time for horses 

https://paperpile.com/c/VvIyZm/fTMz
https://paperpile.com/c/VvIyZm/dQ67
https://paperpile.com/c/VvIyZm/oUI1
https://paperpile.com/c/VvIyZm/dNXB
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walking without a blindfold with an ataxia score greater than or equal to 2 compared to horses with 

an ataxia score of 0 and 1. This difference may be associated with the majority of CSM dogs having a 

C6-C7 lesion generating a two-engine gait [33] whereas this was not the case for the horses in this 

study.  

Ishihara et al. [30] performed kinetic (force-plate) analysis of gait for 12 normal horses, 12 horses 

with lameness and 12 horses with spinal ataxia. Using the mean lateral force peak and coefficient of 

variation of the lateral force peak the study obtained an AUC of 0.94 for horses with ataxia versus 

clinically normal horses. A combination of force plate data and kinematic data might be 

advantageous to further improve the diagnostic yield of data obtained in a gait laboratory but force 

plates are not widely available outside research environments. In the present study we utilise the 

“reference standard” motion capture for objective gait analysis and quantification of displacement. 

 

 

Inertial Measurement Units (IMUs) are small affordable and portable sensors that enable collection 

of longer stride series without the constraints of a treadmill or gait laboratory. IMUs are compatible 

with motion capture and can obtain accurate and precise vertical and cranio-caudal displacement of 

sensors on the head, trunk and fetlocks [21,34–36] as well as stride time characteristics [20,37]. 

Recent attempts towards the use of hoof-mounted IMUs revealed unacceptably large measurement 

errors for displacement [31]. All parameters measured in this study can be translated to a portable 

IMU-based system and several IMU-based systems are available for objective assessment of 

lameness in horses [38–43]. Three-dimensional accelerometers mounted on the sternum have been 

described to assess ataxia after sedation with alpha2 adrenergic agonists [44–46]. Sedation leads to 

a subjective perception of ataxia [47] although the movement pattern after sedation is markedly 

different from movement patterns in horses with spinal (general proprioceptive) ataxia [10]. 

https://paperpile.com/c/VvIyZm/E4aE
https://paperpile.com/c/VvIyZm/fTMz
https://paperpile.com/c/VvIyZm/dQ67+Cy3W+D2pN+YY74
https://paperpile.com/c/VvIyZm/2GiQ+T5Fq
https://paperpile.com/c/VvIyZm/oUI1
https://paperpile.com/c/VvIyZm/QKIn+6vX3+2MNS+m3Pf+8Zea+MWaH
https://paperpile.com/c/VvIyZm/u9ph+IGhw+KB1m
https://paperpile.com/c/VvIyZm/wwUO
https://paperpile.com/c/VvIyZm/CItF
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Sedation-induced gait deficits resulted in more pronounced truncal sway, lower head carriage and 

tetraparesis compared to proprioceptive deficits where horses with low-grade ataxia and therefore 

the parameters developed by Lopez-Sanroman et al. [44,46] are, in our opinion, unlikely to be useful 

for the clinically ataxic horse. 

  

Coordination involves complex interaction of proprioceptive and motor pathways, and their control 

at the levels of the brain and spinal cord. Gait incoordination results from dysfunction of these 

interactions between touch, proprioceptive feedback and their integration with feed-forward 

information derived from vision [48]. Indeed people without neurological disease had significantly 

increased CV stride time and stride length when walking with their eyes closed and the difference in 

CV between eyes open and eyes closed is greater at slower walking speeds [19]. Here we show that 

variation of location of the maximum vertical displacement of the distal limb during swing phase, in 

particular coffin and fetlock joint, is greater in ataxic horses and normal horses and the variation 

increases when the horses are blindfolded. Further it is an indication of the feed-forward effect of 

the eyes and the proprioception tested in Romberg’s test in humans [49,50]. More research is 

needed into the effect of vision on the gait of quadrupeds to understand the role it plays in normal 

animals and in compensation for proprioceptive deficits. 

  

In our study there was a large variation in agreement between raters assessing ataxia grades [9]. 

Given that there is no reference standard that can designate a horse as normal or abnormal nor 

currently any reliable severity scale, we used the median grade of all raters as an approximation of 

each horse’s true ataxia grade. We considered whether histopathological assessment might be a 

better gold standard, but the classification of disease post mortem, is also subjective and likely 

misses functional deficits, or for practical reasons, might miss subtle or isolated lesions. Further, the 

https://paperpile.com/c/VvIyZm/KB1m+u9ph
https://paperpile.com/c/VvIyZm/07WT
https://paperpile.com/c/VvIyZm/W5N8
https://paperpile.com/c/VvIyZm/7DVj+LmTq
https://paperpile.com/c/VvIyZm/baFA
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relationship between histopathological changes and ataxia severity has not been determined, but it 

likely depends on multiple variables, many of which could not be controlled in a study of clinical 

cases. A higher case number would enable assessment of combination of multiple criteria from gait 

analysis that might improve diagnostic accuracy for objective assessment of ataxia. Such data 

analysis requires a training data set and another data set for application. A wider variation of 

neuroanatomical localisation would facilitate more knowledge of pelvic limb abnormalities and their 

presence and severity in horses with C1-T2 myelopathies compared to T3-L3 myelopathies that 

might not have obvious or measurable changes of gait of the thoracic limbs. 

  

Study limitations 

Whilst the Se and Sp is excellent in this study population, it should be acknowledged that, as with 

any test, a low disease prevalence would affect the positive and negative predictive values of the 

diagnostic test: as such it should be applied to a larger population and tested as a screening tool 

compared to the neurologic examination, and preferably spinal cord histopathology.   

We also recognise that use of our gait laboratory has an inherent disadvantage: although the walk-

way in our facility is 20 m long, the motion capture measurement area only spans 6 m, which limits 

the number of consecutive strides per trial. The use of IMUs could enable study of many more 

strides per trial and thereby improve diagnostic utility, decrease the standard deviation and increase 

the power of similar or future studies. Further, trials likely were conducted at slightly different 

walking velocities because we allowed the horses to walk at their preferred speed as we felt this was 

most clinically-relevant; however, this factor might have influenced results. A future study examining 

influence of walking speed on selected gait variables in ataxic horses would be helpful. 
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In conclusion, we provide evidence for good diagnostic yield of using a gait laboratory in horses with 

neurological gait deficits, through analysis of fetlock or hoof displacement. We also show a 

significant link between the median ataxia grade and gait parameters. If implemented into current 

motion capture or inertial sensor systems for routine gait analysis outside the gait laboratory, this 

could have a significant impact on the objective assessment of ataxia in horses and knowledge of 

disease progression change over time and effects of treatment, as well as in the training of 

veterinary practitioners and students. 
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Table legends 

Table 1: Descriptive data for stride time, stance and swing duration in ms. 

  

Table 2: Receiver Operator Characteristics displayed as sensitivity, specificity, Area Under the Curve (AUC) and cut-offs for 

coefficient of variation (%) for gait parameters derived from ataxic and non-ataxic horses when walking with and without a 

blindfold. The analysis was performed for thoracic limbs (TL), pelvic limbs (PL) and thoracic limbs with pelvic limbs (TL&PL). 

The data were analysed 1) for horses with an ataxia grade greater than or equal to 1 (n = 14) compared to those with grade 

0 (n = 7); 2) ataxia grade greater than or equal to two (n = 11) compared to those with grade 0 and 1 (n = 10) and finally 3) 

horses with ataxia grade greater than or equal to 3 (n = 5) compared to those with ataxia grades of 0,1 and 2 (n = 16). 

  

Supplementary Information 

Supplementary Item 1: Location of reflective markers.  

Supplementary Item 2: Horse signalment, neurological examination findings and spinal cord histopathology. 

Supplementary Item 3: Descriptive statistics. 
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Table 1: Descriptive data for stride time, stance and swing duration in ms 

 
  

 

Leg Condition Stride duration 
Mean (s.d.) 

Stance duration 
Mean (s.d) 

Swing duration 
Mean (s.d.) 

TL Normal 1236 (105) 820 (83) 416 (30) 

TL Blindfold 1217 (145) 803 (117) 415 (59) 

PL Normal 1239 (105) 808 (82) 432 (49) 

PL Blindfold 1223 (140) 802 (111) 421 (67) 

TL&PL Normal 1238 (105) 814 (83) 424 (37) 

TL&PL Blindfold 1220 (143) 802 (114) 418 (63) 

  TL: Thoracic limb, PL: Pelvic limb, TL&PL: Thoracic and Pelvic limbs, s.d.: Standard 

Deviation 
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Table 2: Receiver Operator Characteristics displayed as sensitivity, specificity, Area Under the Curve (AUC) and cut-offs for the descriptive statistics for gait parameters 

derived from ataxic and non-ataxic horses when walking without and with a blindfold. The analysis was split into thoracic limbs (TL), pelvic limbs (PL) and thoracic limbs with 

pelvic limbs (TLPL). The data were analysed 1) for horses with an ataxia grade greater than or equal to 1 (n = 14) compared to those with grade 0 (n = 7); 2) ataxia grade 

greater than or equal to two (n = 11) compared to those with grade 0 and 1 (n = 10) and finally 3) horses with ataxia grade greater than or equal to 3 (n = 5) compared to those 

with ataxia grades of 0,1 and 2 (n = 16). 

 

        Ataxia grade ≥ 1 Ataxia grade ≥ 2 Ataxia grade ≥ 3 

 
Walk 

 
Limbs 

 
Marker 

 
Data feature 

Direction 
+statistic 

 
AUC 

 
Se 

 
Sp 

 
cut-

off 

 
AUC 

 
Se 

 
Sp 

 
cut-off 

 
AUC 

 
Se 

 
Sp 

 
cut-off 

Normal Walk 

TL Hoof Max Displacement Z, SD 0.75 71.4 71.4 0.8 0.82 63.6 90.0 0.9 0.86 80 93.8 1.2 

TL Fetlock Max Displacement Z, SD 0.87 64.3 100 1.2 0.71 63.6 80.0 1.2 0.84 100 75.0 1.2 

PL Hoof Duration of swing X, CV 0.69 42.9 100 0.0 0.78 54.5 100 0.0 0.86 100 68.8 0.0 

PL 
Hoof Displacement at 50% 

of Swing 
Z, SD 0.76 71.4 71.4 0.7 0.73 72.7 70.0 0.8 0.94 80.0 100 1.1 

PL Fetlock Max Displacement Z, CV 0.61 64.3 71.4 0.1 0.69 72.7 70.0 0.1 0.95 80.0 100 0.1 

TLPL Fetlock Max Displacement Z, SD 0.71 64.3 85.7 1.9 0.72 72.7 80.0 1.9 0.88 100 75.0 1.9 

TLPL Head Max Displacement Z, CV 0.73 57.1 100 0.8 0.74 81.8 75.0 0.7 0.64 60.0 78.6 0.9 

Walk with 

blindfold 

TL Hoof Max Displacement Z, SD 0.70 42.9 100 1.6 0.81 54.5 100 1.6 0.65 60.0 81.2 1.6 

TL Fetlock Max Displacement Z, SD 0.84 78.6 85.7 1.5 0.79 63.6 90.0 1.7 0.56 60.0 75.0 1.8 

PL Hoof Duration of swing X, CV 0.64 0.43 0.86 0.1 0.68 36.4 100 0.1 0.41 60.0 56.2 0.1 

PL 
Hoof Displacement at 50% 

of Swing 
Z, SD 0.83 85.7 71.4 1.0 0.89 81.8 90.0 1.2 0.89 100 75.0 1.2 
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PL Fetlock Max Displacement Z, CV 0.80 78.6 85.7 0.1 0.76 81.8 80.0 0.1 0.74 100 62.5 0.1 

TLPL Fetlock Max Displacement Z, SD 0.78 50.0 100 2.6 0.83 63.4 100 2.6 0.94 100 87.5 2.6 

TLPL Head Max Displacement Z, CV 0.78 66.7 100 6.4 0.79 100 50.0 8.0 0.68 75.0 71.4 0.9 

 AUC: Area Under the Curve, Se: Sensitivity, Sp: Specificity, cut-off: Cut-off value optimised to highest simultaneous sensitivity and specificity, CV: 

Coefficient of variation, proportion, SD: Standard deviation. TL: Thoracic limbs, PL: Pelvic limbs, TL&PL: Thoracic and Pelvic limbs. RTC: Right tuber 

coxae. Ataxia was assigned on a 0-4 scale as described in Olsen et al (2014).  Max Location:  The normalised time point where maximal 

displacement occurred during swing phase. *: Ordinal regression using cumulative link and the model ataxia grade ~ data feature. Bolded text: 

Diagnostically relevant and consistent across groupings. Z: Vertical, X: Cranio-caudal, Y: Latero-medial. Maximum displacement. 

 

 




