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BACKGROUND: Dogs with dystrophin-deficient muscular dystrophy are valuable models of 

the equivalent human disease, Duchenne Muscular Dystrophy (DMD): unlike the mdx mouse, 
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these animals present a disease severity and progression that closely matches that found in 

human patients. Canine models are however less thoroughly characterised than the 

established mdx mouse in many aspects, including gene expression. Analysis of expression in 

muscle plays a key role in the study of DMD, allowing monitoring and assessment of disease 

progression, evaluation of novel biomarkers and gauging of therapeutic intervention efficacy. 

Appropriate normalization of expression data via carefully selected reference genes is 

consequently essential for accurate quantitative assessment. Unlike the expression profile of 

healthy skeletal muscle, the dystrophic muscle environment is highly dynamic: transcriptional 

profiles of dystrophic muscle might alter with age, disease progression, disease severity, 

genetic background and between muscle groups. 

OBJECTIVES: The aim of this work was to identify reference genes suitable for normalizing 

gene expression in healthy and dystrophic dogs under various comparative scenarios. 

METHODS: Using the delta-E50 MD canine model of DMD, we assessed a panel of candidate 

reference genes for stability of expression across healthy and dystrophic animals, at different 

ages and in different muscle groups.  

RESULTS: We show that the genes HPRT1, SDHA and RPL13a appear universally suitable for 

normalizing gene expression in healthy and dystrophic canine muscle, while other putative 

reference genes are exceptionally poor, and in the case of B2M, actively disease-correlated.  

CONCLUSIONS: Our findings suggest consistent cross-sample normalization is possible even 

throughout the dynamic progression of dystrophic pathology, and furthermore highlight the 

importance of empirical determination of suitable reference genes for neuromuscular 

diseases. 
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Introduction 

The fatal, X-linked, muscle-wasting disease Duchenne muscular dystrophy (DMD) affects 

roughly one in five thousand newborn boys [1], and is caused by insufficiency or absence of 

the muscle sarcolemma-associated structural protein dystrophin, a protein responsible for 

maintaining a physical link between the intracellular actin cytoskeleton and the extracellular 

muscle matrix environment. Loss of dystrophin weakens the sarcolemmal integrity of muscle 

fibres, leaving them sensitive to contraction-induced injury (especially eccentric contraction, 

where muscle fibres lengthen under tension) [2]. As muscle tissue is highly regenerative, the 

disease is typically characterised by continuous cycles of muscle degeneration and 

regeneration: regeneration that is sufficient to retain (albeit partially-compromised) muscle 

performance for the first few years of life. The ongoing process of muscle damage ultimately 

results in a persistent inflammatory state leading to progressive loss of muscle tissue and 

accumulation of fatty infiltrates and fibrotic scarring. DMD boys are thus often initially 

asymptomatic, displaying early signs of the disease between three and five years of age, losing 

ambulation between the ages of eight and fourteen and losing further muscle tissue 

thereafter. No cure for DMD presently exists, and while improved disease management (such 

as a programme of anti-inflammatory corticosteroid treatment) has led to significantly 

increased lifespans, DMD patients today typically die in their late twenties or early thirties 

from either cardiac or respiratory failure [3].  

Despite being an essentially monogenic condition, DMD varies considerably in severity and 

progression, a feature not shared by the dystrophin-deficient mdx mouse model. Dystrophin 

is an enormous gene with numerous splice variants: the varied site and nature of causative 

mutations influences the pathogenesis and also the choice of viable therapeutic approaches 
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[4-8]. The disease is further subject to influence from modifier genes, most of which remain 

poorly-characterised. Even on the comparatively consistent genetic backgrounds offered by 

mouse models, additional mutations in genes such as Annexin 6 substantially alter disease 

severity [9]. In human patients, mutations reducing expression of osteopontin [10, 11], or 

modulating signalling through TGFβ [12, 13] slow disease progression, and in dogs, muscle-

driven expression of the Notch ligand Jagged1 is associated with retained muscle function 

and increased longevity [14], as is downregulation of the phosphatidylinositol protein PITPNA 

[15]. It is likely that many thus-far undetected gene variants contribute to disease 

progression, and in more genetically outbred models (or indeed the enormous genetic 

diversity represented by the human population) such variability likely represents the norm.  

Within any given individual, the precise composition of muscle tissue varies considerably as 

the disease progresses, and indeed the cellular milieu present within a muscle may vary over 

even relatively small timescales in response to atypical muscle activity. Additionally, the 

extent of damage, rate of disease progression, and balance of fibrotic/adipogenic 

replacement differs considerably between muscle groups and with frequency of muscle use. 

In DMD patients, loss of ambulation invariably occurs before loss of upper limb mobility, and 

the diaphragm and intercostal muscles (muscle groups subject to essentially constant use and 

eccentric contraction) are among the most severely affected: these muscles show 

pronounced dystrophic pathology even in the otherwise relatively mildly-affected mdx 

mouse. In stark contrast, the extraocular muscles appear to be highly resistant to dystrophic 

pathology, retaining essentially unaltered function throughout the course of disease [16]. 

Taken together, this highlights the importance of ensuring that potential therapies are tested 

in more severely-affected, more genetically-diverse animal models such as the dog [17-19], 
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but also illustrates the challenges to performing direct individual-to-individual comparison of 

disease progression (and response to therapeutic intervention) in such models. 

 

Quantitative analysis of gene expression in dystrophic muscle: 

Measurement of gene expression in dystrophic muscle readily allows monitoring of disease 

progression and response to intervention, however such assessment is hampered by the 

innate variability described above. While semi-quantitative RT-PCR (and even nested RT-PCR) 

via gel densitometry is surprisingly commonplace in the DMD field, truly quantitative gene 

expression data is chiefly obtained via qPCR. The accuracy of this technique is critically-

dependent on good normalization: even with identical starting material, slight differences in 

the efficiency of RNA isolation or cDNA synthesis can significantly affect subsequent 

quantitation. Effective normalization requires appropriate reference genes, and indeed 

efforts to identify, validate and publicize such genes are becoming more common in a variety 

of disease states [20-24] and model organisms [25-30]. A review of the literature specifically 

within the DMD field however reveals a considerable number of candidates: selected 

examples in dystrophic dogs include GAPDH [31-33], RPS18 [34], HPRT1 [35, 36], 18S [37]; in 

humans, TBP and GUSB [13]; and in mice GAPDH [33, 38], ActB [39], 18S [40]. There appears 

to be minimal effort to apply reference genes consistently between studies (even varying 

from manuscript to manuscript within a research group), and data supporting the selection 

of the gene or genes used is rarely presented. Moreover, use of a single reference gene is 

common, despite MIQE guidelines [41]. Use of two or three such genes is, while demonstrably 

more expensive and time-consuming, nevertheless necessary for the generation of high-

quality data (especially in more genetically outbred models such as the dog) and is thus highly 

recommended [42]. Selection of such genes is by no means trivial even in reasonably 
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transcriptionally-static tissues, and becomes particularly challenging under conditions where 

a high degree of transcriptional plasticity might be expected (such as a progressive disease 

state). mRNA is typically subject to a higher rate of turnover than many proteins, and as a 

consequence even genes regarded as canonically ‘stable’ at the protein level (such as GAPDH 

or beta-actin) can vary significantly between samples, and indeed alter in expression over 

even relatively short timeframes [24, 43, 44]. This inherently dynamic behaviour of mRNA, 

combined with the progressive pathological changes associated with DMD, the differing 

severity dependent on muscle type and use, and the presence of modifier genes that worsen 

or ameliorate disease progression all potentially place severe restrictions on the studies that 

may be performed; such limitations make accurate comparisons of gene expression between 

individuals, between muscles, or over extended time periods, particularly difficult [45].  

Determination of a set of reference genes suitable for normalizing gene expression between 

individuals, between muscle groups and between age groups would therefore be beneficial; 

a unified set of genes suitable for all these categories combined would (if possible) be 

especially useful. The delta-E50 MD dog model of DMD [46] offers a perfect test case for 

identification of such reference genes. 

 

Determination of reference genes: 

Identification of suitable reference genes for qPCR normalization is by necessity somewhat 

convoluted: effective validation of a candidate reference gene would classically require 

comparison with an existing validated reference gene, essentially presenting an infinite 

regression problem. Several different methodologies have been proposed to circumvent 

these difficulties, each assessing suitability of candidate genes by subtly different criteria, and 

each thus exhibiting unique strengths and weaknesses. We typically employ three of these 
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methods, namely geNorm [47], Normfinder [48] and Bestkeeper [49]: all three require a 

dataset comprising gene expression data for a representative number of samples, for all the 

candidate reference genes, and all three use Microsoft Excel (as an executable macro, an add-

in and a write-protected spreadsheet, respectively) thus all three are readily accessible. 

Moreover, each program determines suitable reference genes via different algorithms: genes 

identified as high-scoring by all three methodologies are therefore likely to be strong 

candidates. 

A detailed consideration of the strengths and weaknesses of the three packages is provided 

(supplementary information 1), however the essential details and merits (and relevant links 

to software) are summarised below. 

 

geNorm analysis uses an iterative pairwise approach, identifying the pair of genes with the 

greatest pairwise correlation. The method does not assess overall expression stability, thus is 

tolerant of noisy datasets (but relatively sensitive to outliers). As a pairwise approach, the 

software identifies a minimum of two suitable genes (single candidates with greater stability 

will be ignored). A Microsoft-office compatible copy of the original excel macro is available at 

http://ulozto.net/xsFueHSA/genorm-v3-zip. 

 

Bestkeeper analysis compares individual expression profiles for each reference gene to a 

geometric mean profile generated from all gene candidates; in essence ranking the extent to 

which individual genes reflect the behaviour of the dataset as a whole.  

The bestkeeper spreadsheet can be obtained from http://www.gene-

quantification.de/bestkeeper.html 

 

http://ulozto.net/xsFueHSA/genorm-v3-zip
http://www.gene-quantification.de/bestkeeper.html
http://www.gene-quantification.de/bestkeeper.html
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Normfinder analysis ranks individual gene candidates on overall expression stability, and can 

do so for the dataset as a whole, or within/between user-defined groups. Normfinder thus 

can identify suitable reference genes based on stability of expression alone: while this analysis 

thus handles noisy datasets poorly, it provides a valuable counterpart to the essentially 

pairwise methods of Bestkeeper and geNorm. 

The Normfinder plugin can be obtained from http://moma.dk/normfinder-software 

 

Study design: 

We present studies using a large sample set (81 muscle samples) obtained from the delta-E50 

MD dog model of DMD. Canine models offer several key advantages over mouse models: 

unlike the relatively mildly-affected mdx mouse model, dogs with dystrophin-deficient 

muscular dystrophy exhibit a pattern of disease progression far closer to that shown in human 

patients, with pronounced pathological muscle-wasting, progressive accumulation of fibrotic 

scarring and fatty infiltrates, and marked reduction in muscle performance [50]. Moreover, 

unlike the essentially maximally-inbred mouse model, delta-E50 MD dogs are maintained in 

a comparatively outbred state: female carriers are maintained in-house, but mated with 

externally-sourced stud males to generate healthy and dystrophic male progeny, reflecting 

the genetic diversity of the human population as a consequence. From a practical standpoint, 

the larger size of this animal model also readily permits repeated muscle biopsy from different 

sites within even a single muscle, thereby enabling within-animal studies and avoidance of 

accidental sampling of muscle tissue damaged by previous biopsy, a practicality that cannot 

be achieved in mice. 

http://moma.dk/normfinder-software


10 

 

The delta-E50 MD model also offers a further advantage: the mutation falls within a common 

human hotspot, and is readily amenable to antisense oligonucleotide-based or other exon-

skipping therapeutics, requiring only ‘skipping’ of exon 51 for reading frame restoration.  

Our final sample set is comprehensive, comprising both diseased and healthy tissues, multiple 

genetically diverse individuals, several different ages and muscle groups, and moreover, 

incorporating both elements of consistency (multiple samples of matching muscle and age) 

and elements of marked diversity (inclusion of multiple muscle groups, including mandibular 

and extraocular muscles that in dogs uniquely express the 2M and EO myosin heavy chains, 

respectively). We have combined this collection of samples with a relatively large panel of 

reference genes (ActB, UBC, 18S, SDHA, RPL13a, YWHAZ2, B2M and HPRT1 –see table 1) to 

generate a dataset for use in the three software algorithms described above. Analysing this 

dataset in several configurations allowed us to determine appropriate reference genes for 

normalizing expression under various specific constraints, revealing reference genes that 

scored highly under all conditions investigated.  

 

 

Methods 

Animal cohorts and tissue collection: 

Maintenance of the dystrophic delta-E50 MD dog colony and biopsy for the natural history 

study were conducted under Project Licence approval from the UK Home Office and following 

approval from the Royal Veterinary College Ethics and Welfare committee. 

Nine male dogs (5 dystrophic, 4 healthy) from the colony were used for study of age-related 

gene expression, with biopsy samples collected from the left vastus lateralis muscle under 
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general anaesthesia at three month intervals, up to a maximum age of eighteen months as 

part of a larger natural history disease characterisation. Where possible, dystrophic and 

healthy littermates were used for each time-point, with samples being collected as dogs of 

the appropriate age became available. Final coverage thus consists of: 3 months, N=8 (5:3 

DMD:WT); 6 months, N=7 (3:4); 9 months, N=5 (2:3); 12 months, N=4 (2:2); 15 months, N=4 

(1:3); 18 months, N=5 (2:3). One healthy dog from this cohort (G2) was subsequently 

euthanized at 18 months of age to provide a panel of muscle types, and D1 and D2, two 

additional dogs (dystrophic littermates) were added to provide a similar panel of dystrophic 

muscles (samples collected post-mortem following humane end-point euthanasia). As the 

ages of these latter dogs at euthanasia (14 and 17 months, respectively) were close to the 15 

and 18 month age brackets defined above, these samples were also included in several 

comparisons of age-related gene expression (see supplementary figure 1 for IDs, litter 

matching, genotypes, muscle groups and ages). Immediately following collection, muscle 

samples (approximately 1cm3) were mounted on cork blocks on a bed of OCT (Tissue-Tek) and 

snap frozen under liquid-nitrogen-cooled isopentane to preserve tissue morphology. 

Frozen tissues were used for histological serial cryosectioning (as part of a separate study), 

with interleaving (unmounted) sections collected for isolation of the RNA used in this study 

(50-100 8um sections per sample, ca. 40-100mg tissue). 

 

RNA isolation and cDNA synthesis: 

Frozen tissue sections were rapidly mixed with RNA-Bee reagent (Amsbio) and RNA extracted 

following the manufacturer’s instructions (with inclusion of an additional 1:1 chloroform 

extraction following phase separation, and inclusion of glycogen at 10ug.ml-1 during 

precipitation to maximise RNA yield). RNA purity was confirmed by nanodrop (ND1000), with 
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samples exhibiting significant guanidium carryover (260/230<1.7) further cleaned by a second 

isopropanol precipitation step. 

cDNA was prepared from RNA using the RTnanoscript2 kit (PrimerDesign) using random 9mer 

and oligodT priming, with 1.6ug of total RNA per 20ul reaction. Following synthesis, cDNA 

samples were diluted (1/20) to minimise PCR-inhibitory contributions from cDNA synthesis 

buffer components, giving a final cDNA concentration of approximately 4ng/ul (assuming 1:1 

conversion of RNA to cDNA). 

 

qPCR and analysis: 

qPCR reactions were performed in duplicate or triplicate with 2ul cDNA per well (approx 8ng), 

using PrecisionPLUS SYBR green mastermix (PrimerDesign) with primers to ActB, UBC, 18S, 

SDHA, RPL13a, YWHAZ2, B2M and HPRT1 (see table 1) taken from the geNorm Canis familiaris 

set (PrimerDesign), and primers to Myf5 and MEF2C designed using primer3 software 

(http://primer3.ut.ee/). PCR was conducted in a CFX384 light cycler (BioRad) with Cq values 

determined via regression.  

MEF2C Fwd: 5’-GCAAGCAAAATCTCCTCCCC-3’ 

MEF2C Rev: 5’-TGGGGTAGCCAATGACTGAG-3’ 

Myf5 Fwd: 5’-CGGCCTGCCTGAATGTAAC-3’ 

Myf5 Rev: 5’-AATCCAGGTTGCTCGGAGTT-3’ 

All primer pairs gave sharp, single amplicon products and single melt peaks: for additional 

details (cycling conditions, quality checks, melt curves) see supplementary info 2. 

Candidate reference genes were analysed using geNorm, NormFinder and Bestkeeper, using 

the Windows 7 operating system and Excel 2003 or 2010 (Microsoft). Bestkeeper analysis 

used raw Cq values, while for geNorm and NormFinder, values for each gene were linearized 
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by conversion to relative quantities (RQ). Analysis was performed on the dataset as a whole, 

or using subsets of data as described below. 

geNorm and Bestkeeper: 

RQ data (or raw Cq data, respectively) were entered into the geNorm/Bestkeeper excel 

macros in the following combinations: 

 Entire dataset (all dogs, all muscles, all ages)  

 Natural history samples (vastus lateralis muscles, all ages) 

 Natural history dystrophic samples (dystrophic vastus lateralis, all ages) 

 Natural history healthy samples (non-dystrophic vastus lateralis, all ages) 

 Dystrophic samples (all muscles, all ages, dystrophic only) 

 Healthy samples (all muscles, all ages, healthy only) 

 Muscle panel (all muscles, two ages) 

 Healthy muscle panel (all muscles, single age, healthy only) 

 Dystrophic muscle panel (all muscles, two ages, dystrophic only) 

Normfinder: 

As described above, the Normfinder algorithm can be used with datasets as a whole, but also 

offers the option of grouping data in a user-dependent fashion: allowing measurement of 

between-group and within-group variation for a potentially large number of grouping criteria.  

Our Normfinder analysis therefore used two approaches: ungrouped, assessing expression 

variation overall, using the entire (RQ) dataset or selected subsets exactly as described for 

geNorm and Bestkeeper (above), or grouped, looking at variation in expression over the entire 

dataset (or subsets as above), between specific, user-specified groups. Note: several samples 

were necessarily omitted under specific grouping criteria where groups of one sample would 

result (for example ‘by individual’) as groups must contain at least two samples. This latter 
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analysis can be particularly useful not only for identifying universally-suitable reference genes 

but also for isolating group-specific genes (such as a gene showing strong variation with age, 

or muscle type). Dataset elements and groupings were as follows: 

 Entire dataset 

o By age 

o By individual 

o By healthy/diseased 

o By litter 

 Dystrophic animals only 

o By age 

o By individual 

o By litter 

 Healthy animals only 

o By age 

o By individual 

o By litter 

 Natural history dogs only 

o By age 

o By individual 

o By healthy/diseased 

o By litter 

 Muscle panel 

o By age 

o By individual 
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o By healthy/diseased 

All other analyses (Spearman correlations, Mann-Whitney U tests) were carried out using 

GraphPad Prism 7.02. 

   

 

Results 

Cq determinations: 

Individual Cq values fell within a relatively consistent range for any given gene, with the 

greatest sample-to-sample variation observed in ActB and the least in 18S (see supplementary 

figure 2). With the exception of the abundantly-expressed 18S ribosomal RNA, the candidate 

genes examined covered a total Cq range of over 13 cycles, equivalent to differences in mRNA 

expression of around 4 orders of magnitude.  

 

GeNorm analysis:  

The iterative pairwise approach of the geNorm algorithm ranks genes by average expression 

stability (M), where lower scores represent higher stability. As shown (table 2, figure 1 and 

supplementary figure 3), RPL13a, HPRT1, 18S and SDHA were universally scored as the highest 

ranking genes (lowest expression stability value), and indeed RPL13a and HPRT1 were ranked 

as the highest scoring pair by the geNorm algorithm for all but one of the dataset 

combinations (the only exception provided by the dataset of healthy quadriceps samples 

alone, where RPL13a was paired with 18S instead, with HRPT1 falling to the next highest 

rank). The commonly accepted geNorm threshold for suitable reference gene stability is 

M<0.5 (bold gene names in table 2, dashed line in figure 1 and supplementary figure 3), thus 
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while 18S and SDHA fall just outside this threshold under several dataset combinations, 

RPL13a and HPRT1 are consistently ranked as suitable reference genes by the geNorm 

algorithm. Interestingly, by this metric, fully 6 of the 8 genes were ranked as suitable for our 

healthy muscle panel (figure 1b), though ActB (beta-actin) scored comparatively poorly under 

all dataset combinations, even those assessing healthy muscle alone. 

The geNorm algorithm also calculates the pairwise variation arising from inclusion of 

additional reference genes, in essence indicating whether the ‘best pair’ is sufficient, or 

whether better normalization can be obtained by use of 3 or more genes. In all cases, 

increasing number of reference genes to 3 or 4, lowered overall variation (supplementary 

figure 4), however values below 0.2 are considered acceptable [47], and the suggested pair 

of genes was sufficient to pass this threshold in every instance. 

 

Bestkeeper analysis: 

The Bestkeeper spreadsheet generates a large quantity of data, however the most useful 

output metric tends to be the coefficient of correlation (r): the extent of correlation between 

a given reference gene and the ‘bestkeeper’ (a composite derived from all candidate 

reference genes), where higher values represent greater correlation. In essence, this value 

reveals the individual gene that best reflects the behaviour of the dataset as a whole. As 

shown (table 3, figure 2, supplementary figure 5), HPRT1 and SDHA tended to rank highly 

under most combinations, with RPL13a also scoring highly (though usually of lower rank). In 

marked contrast to geNorm analysis, YWHAZ2 and B2M also tended to perform well. There is 

no established threshold Bestkeeper correlation value for ‘good’ reference genes (thresholds 

shown in table 3 are for comparative purposes only), however the data shows a tendency 

toward a sharp divide between low and high correlation (figure 2, supplementary figure 5): 
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poor candidates are very poor, while often 5 or more of the remaining genes score 

comparatively highly. 

As with geNorm, ActB was near-universally scored as the least suitable reference gene. Only 

UBC and 18S displayed comparably poor suitability. Also in agreement with geNorm analysis, 

when our healthy muscle panel was analysed alone (figure 2b), the majority of our candidate 

genes (all except ActB and 18S) showed high correlation with the ‘bestkeeper’ (r > 0.85). 

Normfinder analysis: 

Ungrouped analysis (table 4, figure 3 and supplementary figure 6), assessing overall 

expression stability in the entire dataset, or in subsets as for geNorm and Bestkeeper (above) 

revealed that SDHA and HRPT consistently scored highly (low stability value) under essentially 

all combinations examined, with YWHAZ2 also performing well (especially under dystrophic 

conditions alone). As with the geNorm and Bestkeeper analyses, ActB was again near-

universally ranked as the least appropriate candidate, however (similar to Bestkeeper, but in 

marked contrast to its ranking under geNorm), RPL13a here often ranked comparatively 

poorly (with the exception of the healthy muscle panel). As with Bestkeeper analysis, there is 

no conventional threshold value for Normfinder suitability, however regardless of absolute 

value, a stark difference was observed between ActB and essentially every other candidate 

gene: the ‘poor score’ for RPL13a was thus typically only marginally worse than the ‘high 

score’ for SDHA. An examination of absolute stability values also reiterates the transcriptional 

homogeneity of our healthy muscle panel suggested by geNorm and BestKeeper analysis: fully 

5 of our 8 candidate genes exhibited values below 0.2, something no single gene was able to 

achieve in the matching dystrophic muscle panel (figure 3b).   

Under grouped analysis (table 5, supplementary figure 7, supplementary table 1), a more 

mathematically-sophisticated comparison assessing both intergroup and intragroup 
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variation, a similar pattern was observed. Again SDHA and HPRT1 scored highly essentially 

regardless of grouping criteria, while RPL13a was less favoured. Normfinder grouped analysis 

additionally provides a ‘best pair’: a pair of genes that in combination outperform the highest 

scoring single candidate (note: these genes need not themselves be the highest scoring 

individually –a pair of genes that vary considerably, but in opposite directions, can combine 

to provide more accurate normalization). In almost every instance, SDHA or HPRT1 comprised 

one member of the ‘best pair’, further supporting the suitability of these reference genes. We 

note however that these genes were rarely suggested together: instead YWHAZ2 was near 

universally suggested as a partner. This gene also notably scored reasonably highly under all 

combinations and groupings save those of healthy dog samples alone. 

 

Further validation: 

HPRT1 and SDHA ranked highly under essentially all algorithms and conditions, both in 

pairwise variation and stability, while RPL13a showed marked pairwise correlation with 

HPRT1 and a tendency to score (if not necessarily rank) highly under most conditions, 

especially those assessing healthy muscle alone. Conversely, Bestkeeper analyses showed a 

marked tendency to score B2M (beta-2-microglobulin) highly while both geNorm and 

Normfinder algorithms suggested the reverse, especially when comparing both healthy and 

dystrophic samples (tables 2, 3 and 4): notably, while showing a high correlation with the 

‘bestkeeper’, B2M showed much lower correlation with other individual gene candidates. As 

geNorm assesses by pairwise comparison, and Normfinder by overall stability, the implication 

is that B2M exhibits low expression stability but also potent influence over the dataset as a 

whole: a hallmark of a strongly disease-associated gene. To confirm this hypothesis and 

validate our selected reference genes, B2M expression data for our natural history samples 
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were normalized using the geometric mean of SDHA, RPL13a and HPRT1 (in essence, using 

high-scoring reference genes to normalize potentially disease-associated genes). As shown in 

figure 4a, B2M expression is significantly enhanced in dystrophic muscle, by approximately 

two-fold when compared with healthy muscle. 

To further confirm the suitability of our nominated reference genes, we additionally 

measured (and normalized) expression of the myogenic transcription factors Myf5 and 

MEF2C –markers of actively regenerating muscle. As shown in figure 4b and c, both these 

genes were also strongly upregulated in dystrophic muscle, and to a similar extent as B2M. 

 

 

Discussion 

Canine models of muscular dystrophy are increasingly coming to represent a key translational 

element in the study of this disease, exhibiting disease severity and progression (and 

concomitant loss of muscle performance) in a manner that closely-mimics the human 

condition [17-19]. As measurement of gene expression is a major component of the 

investigative toolset, a panel of reference genes suitable for normalizing measured expression 

data in this animal model under a multitude of different conditions would be highly beneficial, 

and would moreover support the hypothesis that a similarly broadly-applicable set of genes 

might be found for human samples. The data presented here strongly suggest that HPRT1 and 

SDHA (and to a lesser extent, RPL13a) are suitable candidate reference genes for normalizing 

gene expression in both healthy and dystrophic canine muscle, being consistently ranked 

highly when comparing muscle samples taken at different ages (and thus in dystrophic 

muscle, stages of disease progression), between different individuals, and even between 
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different muscles (including selectively-spared muscle groups such as the extraocular 

muscles). It should be noted that ‘highest ranking’ need not necessarily imply ‘high scoring’: 

any panel of genes, even one comprised entirely of those known to be highly dysregulated in 

DMD, would be nevertheless ranked in order of expression stability by these software 

programs (effectively producing a ranking of ‘terrible stability’ to ‘poor stability’). Our data 

here shows however that not only are SDHA, HPRT1 and RPL13a near-consistently high-

ranking, they are also consistently high-scoring: being both the favoured genes from our 

candidate panel, and also empirically highly stable. 

This finding in itself is somewhat surprising: the transcriptional environments represented by 

these different samples are likely to be highly diverse, and it was by no means guaranteed 

that any candidate genes would be suitable under all circumstances. Indeed, even if such a 

set of genes existed, it was a distinct possibility that these genes would, rather than being 

strong reference genes, instead simply be the ‘least poor’ at normalizing expression within 

these diverse environments (with distinct condition-specific combinations of reference genes 

being genuine strong candidates). As our data show however, this is not the case: the 

nominated reference genes are of comparable stability when analysed as specific categories 

(age, individual, disease) as they are when employed as an entire dataset. 

Interestingly, analysis of a panel of healthy muscles alone (multiple muscles from one healthy 

individual) yields markedly greater stability values for all candidate genes than any dystrophic 

or combined dataset, and greater values than a single healthy muscle type (vastus lateralis) 

over time. This finding highlights the stark differences in transcriptional activity between 

healthy and dystrophic muscle and further suggests that age plays a greater factor in 

transcriptional profile than muscle type: adult (healthy) muscle tissue appears 

transcriptionally highly conservative regardless of which muscle is examined. Even within 
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such a stable environment, however, SDHA, HRPT1 and RPL13a remained very high-scoring 

candidates. 

 

RPL13a codes for a protein component of the 60S ribosomal subunit, and thus might 

reasonably be expected to show high stability under resting conditions: protein synthesis 

being one of the few constant requirements of virtually all cells. Given the stark changes in 

cellular composition between healthy and dystrophic muscle, however, it is perhaps 

surprising that the translational demands of the tissue as a whole appear to remain 

consistent. One might also expect RPL13a to closely-mirror the expression of 18S ribosomal 

RNA (a common choice of reference gene [37, 40]): while the two are indeed scored closely 

under several conditions, this is not universal. Moreover, only the protein and the rRNA need 

strictly correlate: as an mRNA, RPL13a is subject to further amplification at the translation 

stage, while 18S ribosomal RNA is not. As our study shows (see Cq values, supplementary 

figure 2), while expression of RPL13a is the highest measured for all candidate mRNAs, it is 

still lower in absolute expression than 18S by almost 2 orders of magnitude.  

HPRT1 codes for hypoxanthine phosphoribosyltransferase 1, an enzyme involved in purine 

biosynthesis via the salvage pathway [51]. While such an important function readily suggests 

a housekeeping role, the implication that metabolic requirements for purines are similar 

between healthy and dystrophic muscle is an unexpected finding (the former being largely a 

post-mitotic tissue, the latter a highly dynamic regenerative environment). The authors note 

that this gene has been proposed as a suitable reference gene by others [35, 36].  

SDHA (succinate dehydrogenase subunit A) represents a more classical finding, being a 

ubiquitous mitochondrial enzyme component and thus also a gene strongly associated with 

mitochondria-rich skeletal muscle. Expression of this gene appears very stable, particularly 
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over time: all our quadriceps biopsy samples exhibit near-uniform expression regardless of 

disease, individual or age. This was unexpected: dystrophic muscle is subject to pathological 

wasting as disease progresses, thus the percentage of a given dystrophic sample that is 

functional muscle necessarily falls with age. It is however widely recognised that the more 

highly-oxidative fibres (i.e. type I) are selectively spared as disease progresses, with losses 

primarily incurred by the faster glycolytic fibres (2A and in particular, 2X) [52]. Our data here 

thus suggests not only that SDHA is a suitable reference gene, but also by implication that 

regardless of fibre loss, the oxidative capacity of dystrophic muscle (as measured by SDHA 

expression) does not significantly decrease over time in this model. 

 

The samples used to prepare our dataset were selected to offer relatively comprehensive 

coverage of potential variability, and thus included healthy and diseased tissue, tissues of 

different ages, taken from different individuals, and including multiple muscle groups. A 

number of caveats must nevertheless be acknowledged: the multiple muscle groups included, 

while extensive, were derived from only 3 individual animals (D1, D2 and G2), two of whom 

were dystrophic littermates. These samples comprise more than half our entire sample set, 

thus our ‘total’ dataset is inherently weighted toward these 3 individuals, and toward 

dystrophic muscle as a whole (though this latter is perhaps less contentious given the focus 

of this work). Similarly, our panel of age-matched healthy/dystrophic biopsy samples, 

assessing disease progression over time, are exclusively derived from a single muscle (the 

vastus lateralis) thus our analyses ostensibly identify reference genes suitable for normalizing 

expression over time in this muscle alone. Lastly, due to the relatively nascent nature of our 

delta-E50 MD dog colony, only 5 animals (3 healthy, 2 dystrophic) were of sufficient age to 

contribute to the full course of age-selected muscle samples: younger samples are thus over-
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represented (see supplementary figure 1). These limitations accepted, we nevertheless feel 

that our panel of samples provides a good coverage of the most likely sources of variation 

when analysing dystrophic/healthy muscle, and that our conclusions regarding the broad 

utility of our reference gene candidates are thus justified. 

 

A puzzling finding was the tendency of Normfinder analysis to rank RPL13a among the lowest 

scoring genes, while concomitantly nevertheless agreeing with Bestkeeper and geNorm as to 

the suitability of SDHA and HPRT1. Indeed, via the pairwise ranking of geNorm, RPL13a and 

HPRT1 were almost universally placed as the most closely-correlated pair. As shown in figure 

5, the 2 genes exhibit highly-correlated expression values for the dataset (Spearman’s rho 

correlation of 0.87, compared to 0.57 and 0.47 for HPRT1/SDHA and RPL13a/SDHA 

respectively), thus one might expect these 2 to be ranked similarly by all 3 software 

algorithms. As noted above however, our Normfinder analysis tended simply to single out 

ActB: this gene was near-consistently placed last, and by a considerable margin, with the 

other candidate genes tending to be relatively close-matched in stability (see figure 3 and 

supplementary figures 5 and 6). The Normfinder algorithm scores genes by individual stability 

of expression (rather than by pairwise comparison to other genes, or to a gestalt of all genes 

examined) thus unlike geNorm or Bestkeeper, stability and correlation are not intrinsically 

linked. Minor variations in overall expression stability could well account for the lower score 

of RPL13a despite its clear pairwise correlation with HPRT1, and we do not thus consider the 

poor Normfinder performance of this gene to be sufficient grounds for discarding it from our 

lead candidates. All 3 algorithms thus appear (with caveats) to reach near-uniform consensus 

regarding strong reference gene candidates, and furthermore all 3 methods also scored ActB 

(beta-actin) as the least suitable candidate under essentially all conditions. This gene 
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exhibited the widest range of Cq values (supplementary figure 2), and we have previously 

shown ActB to be an exceptionally poor reference gene in cultured differentiating myoblasts 

derived from healthy and dystrophic mice [27]. Our data here thus supports the hypothesis 

that ActB is a poor choice of reference gene for muscle-derived samples as a whole (though 

we also note this gene has been employed as a reference in mdx mice [39]). 

 

Beyond simple identification of suitable reference genes (and concomitantly, poor reference 

genes), an advantage of using such a broad sample set is the potential to identify condition-

specific gene regulation. While the pairwise correlation algorithm of geNorm is less useful in 

this respect (as genes are never considered in isolation), the individual gene stability 

assessment of Normfinder (and the facility for user-determined grouping) is potentially very 

powerful. Our analysis allowed us to single out B2M (beta-2-microglobulin) as a candidate 

gene likely to exhibit disease-specific changes in expression, and further (by normalizing with 

our high scoring reference genes) allowed us to confirm that this gene is upregulated by 

approximately 2-fold in dystrophic muscle, thus illustrating the power of our approach. While 

such a DMD-specific upregulation has not to our knowledge been previously reported (though 

B2M has been noted to be a poor scoring reference gene in the muscle of mdx mice, along 

with ActB [38]), this finding is perhaps not entirely surprising: B2M is (in humans and mice) 

canonically relatively poorly-expressed in muscle, but highly expressed in immune lineages 

[53, 54], thus the persistent inflammatory state characteristic of dystrophic muscle may well 

lead to a marked enhancement of B2M gene expression.  

To further confirm the validity of our selected reference genes, we measured expression of 

the basic helix-loop-helix (bHLH) myogenic factor Myf5 and the myocyte enhancer factor 

MEF2C in our natural history muscle samples. While both of these genes are expressed in 
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healthy muscle (MEF2C is constitutively expressed by myonuclei, and Myf5 is found in the 

satellite cell population and in muscle spindles [55, 56]), these transcription factors are 

strongly induced during myogenesis and would thus be expected to be significantly 

upregulated in muscle undergoing active regeneration. As expected, both these genes (after 

normalization) exhibit highly significant dystrophy-associated increases in expression, to an 

extent comparable with B2M. 

 

We thus present the encouraging finding that, for the purposes of normalizing gene 

expression in dystrophic and healthy dog muscle - regardless of muscle type, individual or 

age- the genes SDHA, HPRT1 and RPL13a appear universally suitable, and that several other 

candidate genes are not only unsuitable, but even actively disease-associated. Our work thus 

also illustrates the importance of empirically determining suitable reference genes for 

quantitative analysis, and addresses the limitations and advantages of the various software 

algorithms a researcher might employ toward this end. 

While this discovery should prove of considerable benefit to further studies of this animal 

model in particular, we cannot at present confirm whether these findings extend to other 

canine models such as the GRMD dog. The fact that these genes are high scoring under such 

varied conditions would tend to support this assertion, however: we deem it unlikely that 

expression differences between two breeds of Canis familiaris would surpass that between 

young healthy muscle and aged dystrophic muscle.    

A wider revelation of this work is that such broadly-applicable reference gene candidates exist 

at all (and can be empirically determined). While we stress that our data should not be taken 

to imply that HPRT1, RPL13a and SDHA are appropriate for human samples, our data 

nevertheless support the hypothesis that a similar trio of genes might be found for 
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normalizing gene expression in biopsy samples taken from human patients. Such studies are 

beyond the scope of our current investigations (requiring access to a similarly broad collection 

of patient muscle samples and a concomitant suitable panel of human-specific candidate 

genes), but our work here suggests such an effort might well yield success. A standard panel 

of reference genes suitable for quantitative analyses in human samples (regardless of disease 

state, age or individual genetic background) would potentially permit independent studies 

and trials to be quantitatively compared, and would thus be of considerable benefit to the 

field. 
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Tables 
 

Gene Name Full name 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 
18S 18S ribosomal RNA 

RPL13a Ribosomal protein L13 

SDHA Succinate dehydrogenase subunit A 

YWHAZ2 Tyrosine 3-Monooxygenase/Tryptophan 5-
Monooxygenase Activation Protein, Zeta 

B2M Beta 2 Microglobulin 

UBC Ubiquitin C 

ActB Beta Actin 

 
Table 1: candidate reference gene names/full names 
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All 

samples 
Dystrophic Healthy 

Natural 
History  

(all) 

Natural 
history 

(dystrophic) 

Natural 
history 

(healthy) 

Muscle 
Panel 
(all) 

Muscle 
Panel 

(dystrophic) 

Muscle 
Panel 

(healthy) 

Most 
stable 
(Best 
Pair) 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

RPL13a 
+ 18S 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

HPRT + 
RPL13a 

 SDHA SDHA SDHA 18S 18S HPRT SDHA SDHA UBC 

 18S 18S 18S SDHA UBC SDHA 18S 18S SDHA 

 UBC YWHAZ2 B2M UBC SDHA UBC YWHAZ2 YWHAZ2 YWHAZ2 

 YWHAZ2 B2M UBC B2M B2M B2M UBC B2M 18S 

 B2M UBC YWHAZ2 YWHAZ2 YWHAZ2 YWHAZ2 B2M UBC ActB 

Least 
stable 

ActB ActB ActB ActB ActB ActB ActB ActB UBC 

 
Table 2: geNorm rankings 
geNorm results for the entire dataset or subsets (as indicated), ranked from highest scoring 
pair (top) to least stable candidate (bottom). Bold: score < 0.5 (threshold for suitability); 
italics: score > 0.75 (exceptionally poor candidates) 
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Table 3: Bestkeeper rankings 
Bestkeeper results for the entire dataset or subsets (as indicated), ranked (top to bottom) by 
Pearson correlation (r) to the ‘bestkeeper’. Bold: r >= 0.75; italics: r < 0.4  
 
 
  

 
All 

samples 
Dystrophic Healthy 

Natural 
History 

(all) 

Natural 
history 

(dystrophic) 

Natural 
history 

(healthy) 

Muscle 
Panel 
(all) 

Muscle 
Panel 

(dystrophic) 

Muscle 
Panel 

(healthy) 

Most 
stable 

B2M B2M B2M SDHA SDHA B2M B2M HPRT RPL13a 

 SDHA HPRT SDHA HPRT B2M SDHA YWHAZ2 B2M HPRT 
 YWHAZ2 SDHA YWHAZ2 B2M HPRT HPRT HPRT RPL13a SDHA 
 HPRT YWHAZ2 UBC YWHAZ2 UBC YWHAZ2 RPL13a YWHAZ2 B2M 
 RPL13a RPL13a HPRT UBC YWHAZ2 UBC SDHA SDHA YWHAZ2 
 UBC 18S ActB RPL13a 18S RPL13a 18S 18S UBC 
 18S ActB RPL13a 18S RPL13a ActB ActB ActB 18S 

Least 
stable 

ActB UBC 18S ActB ActB 18S UBC UBC ActB 
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All 
samples 

Dystrophic Healthy 
Natural 
History  

(all) 

Natural 
history 

(dystrophic) 

Natural 
history 

(healthy) 

Muscle 
Panel 
(all) 

Muscle 
Panel 

(dystrophic) 

Muscle 
Panel 

(healthy) 

Most 
stable 

SDHA SDHA SDHA SDHA SDHA SDHA SDHA YWHAZ2 RPL13a 

 HPRT YWHAZ2 HPRT HPRT YWHAZ2 HPRT HPRT 18S SDHA 
 YWHAZ2 HPRT B2M YWHAZ2 HPRT B2M YWHAZ2 SDHA UBC 

 RPL13a 18S UBC UBC B2M RPL13a RPL13a HPRT YWHAZ2 

 18S B2M RPL13a 18S UBC UBC 18S B2M HPRT 

 UBC RPL13a YWHAZ2 RPL13a 18S YWHAZ2 B2M RPL13a 18S 

 B2M UBC 18S B2M RPL13a 18S UBC UBC ActB 
Least 
stable 

ActB ActB ActB ActB ActB ActB ActB ActB B2M 

 
Table 4: Normfinder rankings (ungrouped) 
Normfinder results for the entire ungrouped dataset or subsets (as indicated), ranked (top to 
bottom) from highest scoring (lowest stability value) to lowest scoring. Bold: stability <0.5; 
italics: stability > 1.0 
 
 

 All Samples Dystrophic Healthy 
 Age Animal Disease Litter Age Animal Litter Age Animal Litter 

Best 
pair 

SDHA 

 + 
YWHAZ2 

SDHA 

 + 
YWHAZ2 

SDHA 

 + 
YWHAZ2 

HPRT 

 +  
YWHAZ2 

SDHA 

 + 
YWHAZ2 

SDHA 

 + 
YWHAZ2 

HPRT 

 +  
YWHAZ2 

SDHA  
+  

B2M 

SDHA  
+  

B2M 

SDHA  
+  

B2M 

Most 
stable 

SDHA SDHA HPRT SDHA SDHA SDHA SDHA SDHA B2M B2M 

 HPRT HPRT 18S HPRT YWHAZ2 YWHAZ2 YWHAZ2 B2M SDHA SDHA 

 B2M YWHAZ2 RPL13a UBC B2M HPRT HPRT HPRT HPRT HPRT 

 YWHAZ2 18S SDHA YWHAZ2 HPRT B2M B2M UBC 18S 18S 

 18S B2M UBC 18S UBC 18S UBC YWHAZ2 UBC RPL13a 

 RPL13a RPL13a YWHAZ2 RPL13a RPL13a RPL13a 18S RPL13a RPL13a UBC 

 UBC UBC ActB B2M 18S UBC RPL13a 18S YWHAZ2 YWHAZ2 

Least 
stable 

ActB ActB B2M ActB ActB ActB ActB ActB ActB ActB 

 
Table 5: Normfinder rankings (grouped) 
Normfinder results for the entire dataset or healthy/diseased subsets grouped by different 
criteria (as indicated: top row; datasets, second row; criterion), ranked from highest scoring 
(lowest stability value) to lowest scoring. Grouped analysis also suggests the best pair of genes 
for normalization (third row), (not necessarily the highest scoring individually). Bold: stability 
<0.4; italics: stability > 0.8 
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Figure Legends 
 
Figure 1:  geNorm analysis 
Representative outputs of the geNorm algorithm. geNorm ranking (left to right: least stable 
to most stable) for the entire dataset (a); or for our healthy muscle panel only (b). Dashed 
line indicates accepted threshold for use as a reference gene (M<0.5). 
 
Figure 2: BestKeeper analysis 
Representative outputs of the BestKeeper algorithm. Coefficient of correlation values for the 
reference gene candidates are shown for the entire dataset (a) or healthy muscle panel (b) 
samples, ranked (left to right) from least stable to most stable. 
 
Figure 3: Normfinder analysis (ungrouped) 
Representative outputs of the Normfinder algorithm. Stability values (left to right: least stable 
to most stable) for the reference gene candidates are shown for the entire dataset (a) or for 
our healthy muscle panel (b). 
 
Figure 4: Dystrophy-associated gene expression 
Expression data for (a) B2M, (b) Myf5 and (c) MEF2C in cDNA prepared from Vastus lateralis 
muscle samples, normalized using the geometric mean of SDHA, RPL13a and HPRT1. Data 
shown as individual samples (●), and means +/- SEM. N=13:9 (healthy:DMD).  **: P<0.005; 
***:P<0.001,****:P<0.0001, (Mann-Whitney U test). 
 
Figure 5: Correlation in relative gene expression of high scoring candidates 
Correlation between HPRT1, SDHA and RPL13a for all muscle samples in our dataset 
(Spearman’s rho). HPRT1 and RPL13a are very strongly correlated. 
 
  



36 

 

Figures 
 

 
Figure 1 
 
 



37 

 

 
Figure 2 
 

 
Figure 3 



38 

 

 
Figure 4 



39 

 

 
Figure 5 
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Supplementary Material:  
Supplementary information 1: 
Strengths and weaknesses of reference gene assessment software packages: 
 
geNorm: geNorm analysis employs an iterative pairwise approach, assessing all genes for 
pairwise variation in expression across the dataset, discarding the lowest scoring, then 
repeating the analysis until only a pair of genes remains. The resulting scores are presented 
as a ranked list of expression stability. In essence, this method determines which two genes 
show the most closely shared pattern of variation, and how closely the other candidate genes 
mirror this variation. As such, this method is relatively tolerant of ‘noisy’ datasets: the extent 
of variation between individual samples is less important than the extent to which any given 
genes share this variation. This method is not without caveats, however: pairwise scoring is 
highly sensitive, and omission or inclusion of a single outlying sample can ‘reshuffle’ the 
scoring entirely. Perhaps counter-intuitively, consistently noisy datasets are handled well, 
while relatively stable expression datasets with scant outliers must be handled with caution. 
In addition, the geNorm scoring necessarily assumes that the variation observed is due solely 
to differences in RNA extraction/cDNA synthesis rather than genuine differences in gene 
expression, and thus places the onus on the operator to employ a panel of candidate genes 
sufficiently diverse as to show no significant functional overlap: two genes associated with 
muscle repair would be expected to score highly via geNorm simply because both genes are 
subject to similar transcriptional regulation.  
The geNorm software (as originally released) is no longer freely available, instead having been 
integrated into the commercial qBase software package 
(http://www.biogazelle.com/qbaseplus), however a Microsoft-office compatible copy of the 
original excel macro is available at http://ulozto.net/xsFueHSA/genorm-v3-zip. 
 
Bestkeeper: the Bestkeeper method adopts a different correlation-based approach, instead 
taking the individual Cq values for each sample, for all candidate reference genes, and 
generating the geometric mean: the bestkeeper value. The bestkeeper dataset thus 
represents the consensus change in expression, between samples, for the dataset as a whole. 
By comparing the correlation of individual candidate genes with this bestkeeper, the 
individual genes that best reflect the behaviour of the entire dataset can be determined. As 
with geNorm, this approach assumes the panel of candidate genes do not share 
transcriptional regulation, but as the ‘bestkeeper’ values are derived from multiple genes, the 
method is less sensitive to individual sample outliers. Instead, this method potentially exhibits 
sensitivity to individual poorly-stable genes (rather than individual samples), favouring the 
use of a reasonably large panel of candidate reference genes (at least 5-6, ideally more). 
The bestkeeper spreadsheet can be obtained from http://www.gene-
quantification.de/bestkeeper.html 
 
Normfinder: the Normfinder algorithm ranks candidate genes based on expression stability 
(lowest overall variation in expression), and can do so both for the dataset as a whole (overall 
stability) or as a function of user-specified sample groups, measuring expression stability both 
within groups and between groups for each gene: a gene that shows minimal overall variation 
may nevertheless exhibit distinct group-specific variation. Normfinder thus can identify 
suitable reference genes based on stability of expression alone: while this analysis thus 

http://www.biogazelle.com/qbaseplus
http://ulozto.net/xsFueHSA/genorm-v3-zip
http://www.gene-quantification.de/bestkeeper.html
http://www.gene-quantification.de/bestkeeper.html
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favours less noisy datasets, it eliminates pairwise/correlation-based scoring and is thus 
inherently less sensitive to addition or removal of specific genes, relaxing the requirement for 
truly independently-regulated candidates. As such, it offers a valuable counterpart to the 
strictly correlation-based approaches of geNorm and Bestkeeper. Moreover, the algorithm’s 
facility for group-based analysis is particularly powerful when combined with large datasets 
capable of being grouped by multiple criteria.  
The Normfinder plugin can be obtained from http://moma.dk/normfinder-software 

 
Supplementary information 2: 
 

Supplementary info 2.doc
 

 

Supplementary Figures: 
 
 

 
Supplementary figure 1: Animals/muscles used in this study 
Left hand schematic: Animal IDs and ages at biopsy collection. Filled segments indicate muscle 
samples: Dystrophic samples in dark grey, healthy in light grey. Littermates are indicated by 
matching letters. D1 and D2 (lower box: cross-hatched segments) were not enrolled on the 
natural history study, but were euthanized at 14 and 17 months of age respectively.  
Right hand boxes: muscle tissues taken. All natural history samples were from vastus lateralis 
muscle only. Muscles taken post-mortem from D1, D2 and G2 are listed respectively.  
 
 

http://moma.dk/normfinder-software
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Supplementary figure 2: Cq distribution and coverage 
Mean Cq values for every sample, for every gene (as indicated). Lower Cq values indicate 
higher expression. Dots: sample Cq values; Boxes: 25th/75th percentiles; Whiskers: minimum 
and maximum values. 
 

 
Supplementary figure 3: geNorm analysis (pairwise rankings) 
geNorm results for the entire dataset (top left) or paired subsets; healthy and dystrophic (all), 
or dystrophic/healthy alone, paired with subdivision by all samples, natural history samples 
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or muscle panel samples as indicated, individually ranked left to right from least stable to 
most stable. Dashed line indicates accepted threshold for use as a reference gene. 
 
 

 
Supplementary figure 4: geNorm analysis (pairwise variation) 
geNorm results for the entire dataset or paired subsets (as indicated) showing change in 
pairwise variation as number of reference genes increase. In all cases increasing number of 
genes to three or four (second/third colums) lowers variation, but the best pair passes the 
threshold of V<0.2 in every instance. 
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Supplementary figure 5: Bestkeeper analysis (coefficient of correlation) 
Bestkeeper results for the entire dataset or paired subsets (as indicated), ranked left to right 
from lowest correlation to the ‘bestkeeper’ to highest correlation.  
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Supplementary figure 6: Normfinder analysis (ungrouped) 
Normfinder results for the entire ungrouped dataset or paired subsets (as indicated), ranked 
left to right from least stable to most stable.  
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Supplementary figure 7: Normfinder analysis (grouped) 
Normfinder results for the entire dataset or subsets grouped by different paired criteria (as 
indicated), ranked left to right from least stable to most stable. The best pair of genes 
suggested for each instance is indicated (boxes). 
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 Natural History Natural History (Dystrophic) Natural History (Healthy) Muscle panel 
 Age Animal Disease Litter Age Animal Litter Age Animal Litter Age Disease Animal 

Best 
pair 

HPRT 

 +  
YWHAZ

2 

SDHA 

 + 
YWHAZ

2 

SDHA 

 +  
HPRT 

SDHA 

 + 
YWHAZ

2 

SDHA 

 + 
YWHAZ

2 

HPRT 

 + 
YWHAZ

2 

SDHA 

 +  
YWHAZ

2 

SDHA  
+  

B2M 

SDHA  
+  

B2M 

SDHA  
+  

B2M 

18S 
+  

RPL13a 

UBC 

 +  
RPL13a 

SDHA 

 +  
YWHAZ

2 

Most 
stabl
e 

SDHA SDHA SDHA SDHA SDHA SDHA SDHA SDHA B2M B2M SDHA ActB SDHA 

 
HPRT HPRT HPRT HPRT 

YWHAZ
2 

YWHAZ
2 

YWHAZ
2 

B2M SDHA SDHA B2M SDHA HPRT 

 YWHAZ
2 

YWHAZ
2 

YWHAZ
2 

UBC HPRT HPRT HPRT HPRT HPRT HPRT HPRT HPRT RPL13a 

 
B2M 18S RPL13a 

YWHAZ
2 

UBC B2M B2M 
YWHAZ

2 
RPL13a 18S RPL13a RPL13a 18S 

 
18S B2M 18S B2M B2M UBC UBC UBC 18S RPL13a 

YWHAZ
2 

UBC YWHAZ2 

 UBC RPL13a UBC 18S RPL13a 18S 18S RPL13a UBC UBC 18S 18S UBC 

 RPL13a UBC B2M RPL13a 18S RPL13a RPL13a 18S 
YWHAZ

2 
YWHAZ

2 
UBC 

YWHAZ
2 

B2M 

Least 
stabl
e 

ActB ActB ActB ActB ActB ActB ActB ActB ActB ActB ActB B2M ActB 

 
Supplementary table 1: Extended Normfinder analysis (grouped) 
Normfinder results for the natural history samples (further analysed by dystrophic/healthy alone) or for our panel of muscles, grouped by 
different criteria (as indicated: top row; datasets, second row; criterion), ranked from highest scoring (lowest stability value) to lowest scoring. 
Grouped analysis also suggests the best pair of genes for normalization (third row), (not necessarily the highest scoring individually). Bold: 
stability <0.4; italics: stability > 0.8 
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