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Abstract

Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In

humans short telomeres have been linked to morbidity and mortality. With the accumulation

of longitudinal datasets the focus shifts from investigating telomere length (TL) to exploring

TL change within individuals over time. Some studies indicate that the speed of telomere

attrition is predictive of future disease. The objectives of the present study were to 1) charac-

terize the change in bovine relative leukocyte TL (RLTL) across the lifetime in Holstein Frie-

sian dairy cattle, 2) estimate genetic parameters of RLTL over time and 3) investigate the

association of differences in individual RLTL profiles with productive lifespan. RLTL mea-

surements were analysed using Legendre polynomials in a random regression model to

describe TL profiles and genetic variance over age. The analyses were based on 1,328

repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic

Legendre polynomial was fitted to the fixed effect of age in months and to the random effect

of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along

the age trajectory were calculated and illustrated. At a population level, the relationship

between RLTL and age was described by a positive quadratic function. Individuals varied

significantly regarding the direction and amount of RLTL change over life. The heritability of

RLTL ranged from 0.36 to 0.47 (SE = 0.05–0.08) and remained statistically unchanged over

time. The genetic correlation of RLTL at birth with measurements later in life decreased with

the time interval between samplings from near unity to 0.69, indicating that TL later in life

might be regulated by different genes than TL early in life. Even though animals differed in

their RLTL profiles significantly, those differences were not correlated with productive life-

span (p = 0.954).

PLOS ONE | https://doi.org/10.1371/journal.pone.0192864 February 13, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Seeker LA, Ilska JJ, Psifidi A, Wilbourn

RV, Underwood SL, Fairlie J, et al. (2018)

Longitudinal changes in telomere length and

associated genetic parameters in dairy cattle

analysed using random regression models. PLoS

ONE 13(2): e0192864. https://doi.org/10.1371/

journal.pone.0192864

Editor: François Criscuolo, Centre National de la

Recherche Scientifique, FRANCE

Received: October 7, 2017

Accepted: January 31, 2018

Published: February 13, 2018

Copyright: © 2018 Seeker et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data can be

found on: https://github.com/LASeeker/

RandomRegressionAnalysisTelomeres.

Funding: The work was funded by a PhD

scholarship to the first author offered by Scotland’s

Rural College (http://www.sruc.ac.uk/) and the

Biotechnology and Biological Sciences Research

Council (BB/L007312/1 to GB; http://www.bbsrc.

ac.uk/), and the Rural & Environment Science &

https://doi.org/10.1371/journal.pone.0192864
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0192864&domain=pdf&date_stamp=2018-02-13
https://doi.org/10.1371/journal.pone.0192864
https://doi.org/10.1371/journal.pone.0192864
http://creativecommons.org/licenses/by/4.0/
https://github.com/LASeeker/RandomRegressionAnalysisTelomeres
https://github.com/LASeeker/RandomRegressionAnalysisTelomeres
http://www.sruc.ac.uk/
http://www.bbsrc.ac.uk/
http://www.bbsrc.ac.uk/


Introduction

Telomeres are located at the ends of linear chromosomes. They consist of non-coding nucleo-

tide tandem repeats (TTAGGG in vertebrates) and attached proteins of the shelterin complex

[1–3]. Since telomeres were first shown to shorten with the number of cell divisions in vitro

[4], they have been intensely studied in relation to ageing and lifespan in various species in

vivo [5–9]. Such studies have reported mixed results. While some observed a positive correla-

tion between telomere length and longevity [5,10–12], others found no relationship [13,14].

Many authors claimed that longitudinal studies were necessary to better understand telomere

dynamics within the individual, and to investigate the association of not only telomere length

but also change in telomere length with lifespan [10,15–17]. In longitudinal studies of Alpine

swifts and Seychelles warblers, faster telomere attrition, but not telomere length per se, was

associated with poorer survival [18,19]. In humans telomere length maintenance was associ-

ated with better survival than telomere length attrition in patients with cardiovascular disease

[20,21]. However, the relationship between telomere length attrition and survival has not been

investigated in a livestock species to date.

Genetic studies on telomere length are rare outside the human literature. In humans it has

been shown that telomere length is a quantitative trait that is controlled by many different loci

[22–26]. Heritability estimates are available for humans, sand lizards and kakapos and range

from 0.39 to 0.82 in those species [27–33]. Outside those studies heritability estimates are miss-

ing from the literature. It has been shown in the above mentioned species that telomere length

is a heritable trait, but it is unclear if heritability estimates change over life or are relatively con-

stant. A changing impact of environmental effects on telomere length might change heritabil-

ity estimates over time. For animal breeders it is interesting to know which proportion of a

trait at any time is caused by genetic effects and therefore possible to influence with breeding.

In the livestock sector there is a growing interest in using telomere length as a biomarker for

health, productive lifespan and animal welfare [34,35]. However, longitudinal studies that inves-

tigate change in telomere length within individuals are largely missing from the livestock litera-

ture. In the present study we are interested in the rate and direction of telomere length change

and the relationship of different telomere length change profiles with productive lifespan. We

use random regression models which were initially developed to describe lactation curves in

dairy cattle [36,37] for the analysis of telomere length profiles. They allow the fitting of an over-

all fixed curve across time which describes the population trend, and individual random animal

curves (profiles) as deviations from the former. Random regression models take into account

the correlation among repeated measurements within an individual, which is usually greater

than the correlation of measurements between animals [38]. Over the last two decades random

regression models have been applied to many studies in genetics and evolutionary ecology

addressing the change of a broad range of traits over time. Examples of studied traits in genetics

include milk yield [39], milk fat and protein content [40], somatic cell count [41], body condi-

tion score [42,43], body energy [44] and carcass traits [45]. In evolutionary ecology studied

traits included fitness [46], body size [47], body weight in relation to faecal egg counts [48] and

antler size [49]. To our knowledge, only a single study has used random regression models for

the analysis of longitudinal telomere data so far [18]. However, the study was based on a rather

small dataset (373 samples of 204 individuals; more than half of the individuals were sampled

once only) and could not find a statistically significant difference in telomere length profiles.

The objectives of the present study were to 1) characterize the change in bovine relative leu-

kocyte telomere length (RLTL) across the lifetime in Holstein Friesian dairy cattle, 2) estimate

genetic parameters of RLTL over time and 3) investigate the association of differences in indi-

vidual RLTL profiles with productive lifespan.

Changes in telomere length with age in dairy cattle
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Materials and methods

Ethics statement

Blood sampling of Holstein Friesian cattle was approved by the Animal Experiments Commit-

tee (UK Home Office Project License Number: PPL 60/4278).

Data

Animals used in this study were Holstein Friesian dairy cattle of the Langhill herd that were

kept at the Crichton Royal Research Farm in Dumfries (Scotland, UK). All animals in this

herd belong to one of two distinct genetic lines (selected for high milk fat and protein yield vs.

control). Furthermore, cows are randomly allocated to two different diets that contain either a

high or low proportion of forage. These genetic lines and diets were set up over 30 years ago to

accommodate genetic and nutritional scientific studies [50].

We measured RLTL in 1,328 longitudinal samples of 308 female animals born between

2008 and 2014. Animals were approximately equally split between genetic lines and diets. All

animals were blood sampled once at birth and then at least once more during their lifetime.

On average, 4.3 samples were taken per animal. At the end of the study 244 out of 308 animals

were dead and had recorded productive lifespan measurements. Productive lifespan was

defined as the time between the animal’s birth and culling in days. Productive lifespan differs

from longevity measurements in humans and natural populations, because dairy cattle rarely

die of natural causes. However, we argue that productive lifespan is still biologically meaning-

ful, because animals are not culled randomly but usually for fertility or health reasons.

DNA was extracted from whole blood samples using DNeasy spin columns (QIAGEN) and

each sample had to pass internal quality control steps which were 1) yield and purity measured

on a NanoDrop ND-1000 spectrophotometer (Thermo Scientific) had to fulfil the minimum

requirements of: yield> 20 ng/μl, 260/280 ratio > 1.7 and 260/230 ratio >1.8 and 2) integrity

gel scores had to be between 1–2 [51]. RLTL was measured by qPCR using tel 1b (5’-CGG
TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT-3’) and tel 2b (5’-GGC
TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT-3’) primers [52] for the

telomere amplification and beta-2-microglobulin (B2M) primers (Primerdesign, accession

code NM_001009284) for the reference gene amplification [51]. An identical sample–the so-

called calibrator or golden sample–was repeated on every plate to correct for measurement

error that is associated with the qPCR plate. The number of cycles at which the qPCR amplifi-

cation curve crosses a set fluorescence threshold (the Cq value) was determined for each sam-

ple for telomere and B2M reactions. Raw Cq measurements were baseline corrected using the

software LinReg PCR [53]. The same software was used to calculate the reaction specific qPCR

efficiencies ETEL and EB2M that were in turn used in following formula [54] to calculate RLTL:

RLTL ¼
E

CqTELðCalibratorÞ � CqTELðSampleÞ
TEL

ECqB2MðCalibratorÞ � CqB2MðSampleÞ
B2M

ð1Þ

The Cq values corresponding with the calibrator sample were CqTEL(Calibrator) and CqB2M(Calibrator)

for the telomere and the B2M reaction respectively. Cq values of the individual samples were

CqTEL(Sample) and CqB2M(Sample).

Individual samples were measured on 25 qPCR plates in total which had 8 rows for each

reaction. RLTL data were logarithmically transformed to achieve normal distribution (Sha-

piro-Wilk normality test: W = 0.9985, p = 0.299). Because of the increasing scarcity of data

points after the age of 60 months, this age was used as the cut-off for data visualisation. The
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pedigree included 11,003 animals spread over 27 generations. The animals with RLTL mea-

surements were descendants of 40 sires and 241 dams.

Data analysis

The following random regression model was used for the analysis of longitudinal RLTL data:

Ytijk ¼ BirthYearj þ GeneticGroupj þ qPCRplateij þ qPCRrowij þ
Xn

k¼0
Pjktbk þ

Xn

k¼0
Pjktujk

þ etijk ð2Þ

where Ytijk = the ith RLTL measurement for animal j using a Legendre polynomial of the order

k. BirthYearj represents the fixed effect of the year in which animal j was born; GeneticGroupj

stands for the fixed effect of the genetic group of animal j; qPCR plate and qPCR row of a par-

ticular sample i of animal j was included as fixed effects (qPCRplateij and qPCRrowij); fixed

effects regression coefficients are represented bybk, while ujk stands for the kth order random

regression coefficients for the additive genetic effects of animal j; Pjkt represents the kth order

of Legendre polynomial fitted to the measurement i of animal j at the age t in months; the ran-

dom residual variance is etijk. Sampling intervals and age at sampling (after the initial record)

differed among individuals.

Model (2) included fixed effects that remained statistically significant (p<0.05) after back-

wards eliminating all tested non-significant effects (such as birth season, birth weight, weight

at sampling, body condition score, and feed group) and the genetic group of the animal. The

fixed and random regressions, both modelled with polynomial functions, described the aver-

age RTL change across age, and individual animal deviations from the average, respectively.

The latter pertained to the animal’s additive genetic effect. The animal’s permanent environ-

ment was also examined as a random factor but had a negligible effect (see S1 File).

We tested if the residual variance of different age groups differed significantly implying a

heterogeneous variance structure. We first considered four different age groups (0–12 months,

13–24 months, 25–40 months and older than 40 months) and then two different age groups

(younger and older than 2 months) but did not find a significant difference in residual vari-

ance between any age groups (see S1 File). Therefore, a homogeneous residual variance struc-

ture was assumed for the subsequent analysis.

The Akaike information criterion (AIC) was used to assess 1) if the introduction of the ran-

dom animal genetic effect improved the model fit compared to a model that only included fixed

effects; this would suggest that animals differ in their intercept (average RLTL across all mea-

surements); 2) if Legendre polynomials fitted to the random animal genetic effect improved the

model fit further, thereby suggesting that animals also differ in their slope (RLTL dynamics). A

difference of two units in AIC corresponds to an approximate significance of p<0.05. Within

the range of two units the simpler model was preferred over the more complicated [55–57]. In

the end, quadratic polynomials were fitted to both the overall fixed curve and the individual

random animal deviation.

All statistical analyses were conducted with the ASReml software version 4.1 [58].

Calculation of the fixed and random curves. The fixed curve that illustrates RLTL

dynamics at a population level was calculated as the sum of the products of the Legendre poly-

nomial order residuals for a given age and the corresponding fixed regression coefficients.

This was repeated across all ages in the trajectory. Random regression models allow the calcu-

lation of an individual profile of RLTL change over age for each animal as a deviation from the

population mean (fixed curve). The model output provides estimates (solutions) for each ani-

mal and each order of polynomial fitted in the model. The random curves were calculated

Changes in telomere length with age in dairy cattle
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simply by summing solutions for each animal and test month across all products of the nth

order polynomial with the nth order polynomial residual. The standard error was calculated in

parallel by using the standard errors associated with the solutions for the same calculation.

Eigenvalues were calculated to estimate the amount of variance between animals that is due to

1) the intercept and 2) the shape of individual curves. Eigenfunctions were calculated to ana-

lyse the direction of each effect.

Variance components and genetic parameters. The additive genetic variance (VA) for

each month was calculated using following formula [38]:

VA ¼ pKp0 ð3Þ

Where p is a 1 x k vector (k is the order of the fitted Legendre polynomial) containing the

residuals for each polynomial order for the given month, K is a matrix containing the REML

estimates of (co)variance components and p’ is the transposed p vector. The heritability of

RLTL and its standard error were calculated at birth and for each consecutive month. Also, the

genetic correlations of RLTL at birth with each following month were calculated. Detailed

information about those calculations can be found in S1 File.

Analysis of the association of RLTL dynamics with productive lifespan. Out of 308 ani-

mals 244 were dead by the end of the study and produced exact productive lifespan measure-

ments. To investigate if different RLTL profiles were associated with a difference in productive

lifespan, individual RLTL random curves (profiles) were clustered using the R library kmlShape

Fig 1. Fixed curve of logarithmically transformed relative leukocyte telomere (RLTL) data. Blue line: quadratic Legendre polynomial function

of age; black solid line: phenotypic RLTL measurements for each month.

https://doi.org/10.1371/journal.pone.0192864.g001
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[59] in five groups. We decided for five clusters to explore a difference in animals that maintain

their RLTL in contrast to those who early in life either mildly or moderately shorten or elongate

their RLTL, respectively. The association between productive lifespan and RLTL cluster was

investigated with a Cox proportional hazard analysis. This analysis allows fitting maximal

known survival times as right-censored data to account for animals that are still alive. For living

animals age in days at the first day of the present year was used for the calculation of the maxi-

mal known survival time. A Wald test was used to determine the significance of the relationship

between RLTL profiles and productive lifespan.

Results

Raw RLTL measures ranged from 0.693 to 1.727 with a mean of 1.082. The coefficient of varia-

tion was 0.162. The model that included the animal identity as a random effect fitted the data

significantly better than a model including only the fixed effects (delta AIC = 204.97) suggest-

ing that animals differed significantly in their average RLTL across time. Fitting animal iden-

tity with pedigree information further improved the model fit (delta AIC = 55.46). Fitting an

individual curve for each animal (using a quadratic Legendre polynomial) additionally

increased the model fit (delta AIC = 3.24), meaning that monthly RLTL dynamics also differ

among individual animals. A quadratic Legendre polynomial fitted marginally better than a

linear function (delta AIC = 2.07) and had the advantage that the same order of Legendre

Fig 2. Examples for three individual animal RLTL curves (blue lines) with standard error (black, dotted lines), expressed as deviation from

the fixed curve. Animals were chosen randomly to illustrate the variability between individual curves.

https://doi.org/10.1371/journal.pone.0192864.g002
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polynomial was fitted to the fixed and the random effect which facilitates interpretation of the

results.

The fixed curve as described by the Legendre polynomial captured the expected initial

decline of RLTL in early life and a relative stability of RLTL later in life (Fig 1). The curve also

illustrates a slight increase of RLTL in later life.

Examples of individual animal RLTL curves are shown in Fig 2. These curves illustrate the

change in RLTL with age. The intercept, amount and direction of individual RLTL profiles

varied considerably and significantly among the animals in the study (Fig 2). The calculation

of eigenvalues revealed that the majority of the difference between individual animal profiles is

explained by differences in the intercept (94.7%) while 5.3% are due to different shapes of the

curves. Eigenfunctions are shown in S1 File.

Monthly heritability estimates for RLTL ranged from 0.356 to 0.470 (SE = 0.045–0.104)

and were slightly higher between 20 and 50 months of age than in the beginning of life or at

older ages. Considering the SE, heritability estimates remained relatively stable over life

(Fig 3).

The genetic correlation between RLTL measurements at birth and at different stages of the

animals’ lives are shown in Fig 4. As expected, correlations were very high between RLTL at

birth and neighbouring ages but decreased as the interval between the two measurements

increased. The minimum correlation was 0.693.

Fig 3. Heritability estimate of RLTL by month of age; standard errors in dotted lines (SE = 0.045–0.078).

https://doi.org/10.1371/journal.pone.0192864.g003
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Analysis of the association of RLTL dynamics with productive lifespan

Productive lifespan ranged from 17 to 2,823 days (mean = 1,477 days, sd = 76.97 days). To test

the association between RLTL profiles (intercept and shape) and productive lifespan, RLTL

profiles were clustered into groups depending on the similarity of their RLTL change pattern.

Five clusters were formed to capture no telomere change and mild and moderate changes in

both directions early in life (attrition vs. elongation). Animals differed more in their intercept

than in their direction and amount of change. Of all animals 32% shortened their RLTL

slightly in early life, while 29% did not show obvious RLTL change at all (red curve and green

curves respectively in Fig 5). Mild elongation early in life was observed in 22% (blue curve in

Fig 5). More obvious attrition and elongation early in life was observed in 12% and 5% of the

animals, respectively (cyan and pink curves in Fig 5).

The Cox proportional hazard analysis revealed that there was no significant relationship

between RLTL profile cluster and productive lifespan (p = 0.97) which is visualised in Fig 6.

Discussion

This is the first study exploring individual RLTL profiles of farm animals across time and the

largest longitudinal telomere study outside the human literature so far. Our results suggest that

individual cattle differ in their RLTL dynamics over life. Although most of the difference

between animals is explained by a different average RLTL (intercept) (94.7%), a small

Fig 4. Genetic correlation of RLTL measurements at birth with measurements in later life. standard errors in dotted lines (maximal

SE = 0.087).

https://doi.org/10.1371/journal.pone.0192864.g004

Changes in telomere length with age in dairy cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0192864 February 13, 2018 8 / 15

https://doi.org/10.1371/journal.pone.0192864.g004
https://doi.org/10.1371/journal.pone.0192864


proportion is due to different shapes of RLTL profiles (5.3%). This is an important observation

that justifies the further investigation of differences in telomere profiles in association with

traits of interest such as health, fertility and mortality. The only other study we are aware of

that used random regression models for the analysis of longitudinal telomere data did not

report a significant difference in telomere dynamics among Seychelles warblers [18], which

might have been due to the relatively small sample size of that study.

At a population level RLTL shortened in the beginning of life. The fixed curve calculated in

the present study suggests an average RLTL increase later in life. However, this is probably due

to the symmetry of a quadratic function and might not reflect biological changes. Therefore,

we argue that at a population level telomeres shorten in the beginning of life and remain rela-

tively stable thereafter. Some previous longitudinal studies in baboons and birds support these

results, though they did not use random regression models for their analyses [60,61][60,61]. A

study in humans found that the early life telomere attrition was followed by a plateau with no

telomere change and by a second decline in telomere length as adults grew older [62][62]. It is

possible that our study did not include animals that were old enough to show that second

decline.

In the present study we report the first heritability estimates for telomere length across all

species that were calculated using random regression models. Random regression model esti-

mates do not only inform about the proportion of the variance that is due to additive genetic

effects, they also demonstrate how this proportion might change over time. It is known that

telomere length is affected by many different genes [22–26]. Epigenetic changes to the genome

can alter the translation of genes with ageing [63,64]. If regulatory genes for RLTL were

Fig 5. Individual RLTL profiles (grey) and five cluster curves. Of all animals 31% shortened their RLTL slightly in early life (red

curve), 30% maintained their RLTL over life (green curve), 22% showed mild elongation in early life (blue curve), 12% more obvious

elongation (pink curve) and 4% more obvious telomere attrition (cyan curve).

https://doi.org/10.1371/journal.pone.0192864.g005
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activated or silenced in an unbalanced manner with ageing, heritability estimates for RLTL

might change considerably. However, in the present study we show that heritability estimates

for bovine RLTL are not only relatively high (0.36 to 0.47; SE = 0.05–0.10) they are also relatively

stable (Fig 3). This means that RLTL at all ages could be influenced by breeding programmes.

Heritability of telomere length estimated with relatively simpler models has been reported

before in humans (0.39–0.82) [27–31], sand lizards (0.52) [32] and kakapos (0.42–0.77)[33].

Within an animal, the genetic correlation between consecutive RLTL measurements decreased

as the time interval between measurements increased. This suggests that RLTL might be under

different genetic control at different life stages. As mentioned before, epigenetic changes during

ageing [63,64] might inhibit or promote genes that play a role in telomere maintenance. Also, telo-

meres have been reported to have regulatory functions themselves that act on genes in their close

proximity and even in further distance [65–67]. For example, long telomeres form bulky struc-

tures that can inhibit transcription of genes in their neighbourhood. When telomeres shorten

they unfold and enable the expression of those genes. This is known as telomere positioning effect

[65]. Also, shelterin can act as transcription factors and thus regulate gene expression [68].

Not much is known about telomere length and its association with productive lifespan in

cattle so far. In cross-sectional studies bovine telomere length declines with age and during the

lactation period [35,69,70]. A single study found that animals with shorter telomeres were

more likely to be culled within the next year [35]. In the present study we did not find a signifi-

cant relationship between telomere dynamics and productive lifespan in cattle. Dairy cattle

Fig 6. Survival probability of different RLTL profile cluster groups. Colours correspond to colours in Fig 5.

https://doi.org/10.1371/journal.pone.0192864.g006
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rarely live until their physiological end of life but are usually culled for fertility, productivity or

health reasons. In the introduction we argued that productive lifespan was still biologically

meaningful, because animals are not randomly selected for culling. However, the relationship

between productive lifespan and RLTL might be different than these relationships in humans

or natural animal populations. Also, a relationship between RLTL and productive lifespan in

dairy cattle might be there if RLTL change was examined in a different way. RLTL dynamics

might be too pulsatile to be exactly described by random regression models. Future studies are

required to investigate the best way to analyse longitudinal datasets that include more than

two RLTL measurements per animal. While current results did not show a significant correla-

tion between RLTL and productive life at phenotypic level, a further study examining genetic

correlation between the two traits is of high interest as it may provide a different result.
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