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Network theory is increasingly being used to study morphological modularity and integration. 
Anatomical network analysis (AnNA) is a framework for quantitatively characterizing the topological 
organization of anatomical structures and providing an operational way to compare structural 
integration and modularity. Here we apply AnNA for the first time to study the macroevolution of 
the musculoskeletal system of the head and neck in primates and their closest living relatives, paying 
special attention to the evolution of structures associated with facial and vocal communication. We 
show that well-defined left and right facial modules are plesiomorphic for primates, while anthropoids 
consistently have asymmetrical facial modules that include structures of both sides, a change likely 
related to the ability to display more complex, asymmetrical facial expressions. However, no clear 
trends in network organization were found regarding the evolution of structures related to speech. 
Remarkably, the increase in the number of head and neck muscles – and thus of musculoskeletal 
structures – in human evolution led to a decrease in network density and complexity in humans.

What transformations occurred in primate evolution to create our modern head and neck morphology and allow 
us to carry out complex functions such as breathing, speaking, chewing, swallowing and displaying complex facial 
expressions, while also retaining evolvability? Although there is increasing interest in this question among scientists 
and the broader public, it remains mainly unanswered; numerous papers and books focus specifically on it, but 
different biologists and anthropologists have differing views about how to answer it1. To address this question, two 
concepts are paramount: modularity and integration e.g.2–7. Ever since the publication of seminal works on these con-
cepts by Bateson8 and Olson & Miller9, the idea of an animal’s body as a set of nested parts within parts (modularity) 
that maintain a level of autonomy to change while still growing and adapting in coordinated ways (integration) 
continues to gain support as a central mechanism of evolution, e.g.10,11. These concepts are tightly linked to questions 
about complexity and evolvability (the ability to respond to selective pressure): modularity enables flexibility because 
the direction and magnitude of evolutionary change among and within parts can vary without sacrificing function, 
e.g.12–27. However, our knowledge of morphological modularity, integration, complexity and evolvability in the pri-
mate musculoskeletal system remains limited because of the difficulty of studying the myriad interactions among 
the body’s hard and soft-tissues. Moreover, most studies have concentrated on hard tissues, in no small part due to 
the challenge of obtaining soft tissue data and of managing and making sense of complex datasets. For instance, most 
primate modularity and integration studies focus on cranial bones and teeth (e.g.2,28–34). Furthermore, these studies 
focus mainly on quantitative skeletal traits (e.g. bone length, skull width), although functional and morphological 
changes in human evolution also involved the reorganization and evolution of traits that are clearly not amenable to 
these types of measurements (e.g. presence/absence of muscles, bones and articulations1). For these reasons, most 
works on primates refer to concepts such as “module” and “integration” in a rather undefined way without clearly 
explaining how to quantitatively study them, as stressed by Ross35.
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Anatomical network analysis (AnNA) of connectivity patterns (e.g. bone-bone and bone-muscle connections) 
provides an operational, quantitative tool to investigate and generate testable predictions about how morpholog-
ical organization has changed over primate and human evolution, and therefore about integration, modularity 
and evolvability, e.g.36–38. The use of network theory to study morphological modularity and integration, not 
only of musculoskeletal structures but also, for instance, of brain tissues, is becoming frequently common in 
biological studies and has been employed by researchers from many biological fields and working with various 
animal groups, e.g.39–43. AnNA uses topological organization and connectivity relationships (e.g., articulations 
and attachments) between anatomical structures and/or types of tissues (e.g., bones and muscles) in a way that 
can be complementary to that provided by morphometric analysis of size and shape. The head and neck of pri-
mates and their close relatives are an interesting target for AnNA because they exhibit considerable diversity in 
the number of muscles and their attachments, which accompanied dramatic functional changes concerning, for 
instance, the evolution of facial and vocal communication, including the origin of speech44,45. We analyzed the 
anatomical network organization of the musculoskeletal structures of the head and neck in 22 genera represent-
ing all major extant primate clades as well as three outgroups: the primate sister-group Dermoptera (colugos), 
their sister-group Scandentia (tree-shrews), and their sister-group Glires (rodents and lagomorphs), represented 
respectively by Cynocephalus, Tupaia, and Mus (see Methods below and SI1 and SI2).

We investigated whether there are major differences in the head and neck network organization of these 22 
genera, focusing particularly on three major questions concerning primate and human evolution. The first ques-
tion concerns the evolution of facial communication. Our recent AnNA study of the human head revealed that, 
in humans, bones and muscles of the middle and lower facial region are grouped into left and right facial muscu-
loskeletal modules, which are mainly functional complexes including structures with different phylogenetic and 
developmental origins33,46. Those results brought new light to the debate on the symmetry/asymmetry of facial 
expression in humans. Functional, anatomical and medical studies have shown that asymmetrical use of facial 
muscles in humans is required to display complex facial expressions, e.g.47,48. The discovery of such left and right 
facial (mid/lower face) modules by AnNA thus placed these functional, medical and anatomical observations in 
a novel quantitative context that may contribute to the understanding of our ability to asymmetrically contract 
or relax the facial muscles of the mid/lower face and to strike such complex facial expressions. The first question 
is, therefore: does this division into left and right orofacial muscle modules have a deeper evolutionary origin, 
or is it unique to humans, thus being potentially related to the finer type/greater number of facial expressions 
displayed by humans? The second question concerns the increase in the number of facial and laryngeal muscles 
in human evolution, which led to a greater total number of head muscles in humans than in great apes44,45. This 
trend contrasts with the trend towards a decrease in the number of skull bones in tetrapod evolution (Williston’s 
Law), which, surprisingly, has been shown to have led to an increase in the density of connections and thus of 
morphological network complexity in H. sapiens, e.g.33,36–38. In AnNA, density of connections (D) is often used 
as a proxy for the complexity of a morphological structure because the number of functional possibilities and 
potential functional outcomes increases with the number of connections among parts (for more details, see SI1). 
The second question is, therefore, whether such a negative correlation between the number of structures vs. the 
network density and complexity also applies to muscles and thus to musculoskeletal systems as a whole. That is, as 
the decrease in the number of skull bones was accompanied by an increase in the density of bone-bone connec-
tions (fewer bones - > increase of network density and complexity), is the increase in number of head muscles also 
accompanied by a decrease in the density of muscle-bone connections (more muscles and musculoskeletal struc-
tures in total– > decrease of network density and complexity)? The third, related question is: during the ape-human 
transitions, did the various changes presumably related to the evolution of speech – e.g., increase in number of 
laryngeal muscles, dropping of the larynx, and rearrangement of pharyngeal structures1 – involve major changes 
in musculoskeletal connectivity, modularity and integration? The present study can therefore contribute substan-
tially to a comprehensive understanding of the evolution of morphological modularity, integration and complex-
ity in the primate/human head and neck, and to biological and physical anthropology and evolutionary biology 
in general.

Results and Discussion
Before describing and discussing our results we provide here a very brief summary about which head muscle 
groups are present in humans - as the same muscle groups are also found in all the other taxa included in this 
paper - in order to allow those readers that might not have a deep knowledge about myology to follow the text 
and understand the figures more easily. The mandibular muscles are generally innervated by the Vth (trigeminal) 
nerve, and include the mastication muscles masseter, temporalis, lateral pterygoid, medial pterygoid, mylohyoid, 
and anterior belly of the digastric, the ear muscle tensor tympani and the tensor veli palatini that lies in the phar-
yngeal region. The hyoid muscles are innervated by the VIIth (facial) nerve and include the posterior belly of the 
digastric and the stylohyoid, which are suprahyoid structures, the ear muscle stapedius, and all the facial expres-
sion muscles (platysma, risorius, occipitalis, posterior auricular, external auricular muscles, zygomaticus major, 
zygomaticus minor, frontalis, anterior auricular, superior auricular, temporoparietalis, orbicularis oculi, depres-
sor supercilii, corrugator supercilii, levator labii superioris alaeque nasi, procerus, buccinatorius, levator labii 
superioris, nasalis, depressor septi nasi, levator anguli oris, orbicularis oris, depressor labii inferioris, depressor 
anguli oris, mentalis). The branchial muscles include the stylopharyngeus innervated by the IXth (glossopharyn-
geal) nerve - which forms part of the long constrictors of the pharynx - plus the neck muscles trapezius and ster-
nocleidomastoideus innervated by the XIth (accessorius) nerve, and the laryngeal (cricoarytenoideus posterior, 
thyroarytenoideus, vocalis, cricoarytenoideus lateralis, arytenoideus transversus and obliquus) and pharyngeal 
(superior, middle and inferior pharyngeal constrictors and cricothyroid, levator veli palatini, salpingopharyngeus, 
patalopharyngeus and musculus uvulae) muscles innervated by the Xth (vagus) nerve. The extraocular muscles 
(levator palpebrae superioris plus superior, inferior, medial and lateral recti and superior and inferior obliquii) are 
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innervated by nerves III (oculomotor), IV (trochlear) and VI (abducens) of the head. Lastly, the hypobranchial 
muscles (geniohyoid, genioglossus, part of intrinsic tongue muscles, hyoglossus, styloglossus, omohyoid, ster-
nohyoid, sternothyroid and thyrohyoid), which are derived from the anterior somites of the body and not from 
head mesoderm and are therefore intrusive elements of the head, are innervated by the XIIth (hypoglossal) nerve 
plus cervical spinal nerves. For a more detailed overview on all these muscle groups and their subgroups, as well 
as their functions, comparative anatomy, homologies and evolution, see Diogo & Wood book on the primate 
musculature49.

Network parameters of head and neck bones-only networks.  AnNA allows the quantitative char-
acterization of broad patterns of structural integration and modularity regardless of changes in number, size, and 
shape of parts. We specifically compared the values of a set of six network parameters within the taxa analyzed: 
number of nodes (N), number of links or connections (K), density of connections (D), average clustering coef-
ficient (C), average shortest path length (L), and heterogeneity (H). Whereas N and K are useful for comparing 
the number of constitutive anatomical parts, parameters D, C, and L help to identify patterns of complexity and 
integration (reviewed in Rasskin-Gutman and Esteve-Altava38; see SI1 for more details). In short, higher values 
of D and C and lower values of L are characteristic of greater complexity and integration; higher values of H are 
characteristic of greater anisomerism. Our AnNA results show that the number of nodes (bones) ranges from 37 
in Homo to 41 in Lemur and lorises. This variation is primarily dependent on the presence or absence and fusion 
or separation of specific facial bones. For instance, Homo alone lacks a separated premaxilla, but like some other 
taxa it has fused mandibles. The number of skeletal connections in humans is among the lowest within primates 
(K = 72), with only Pan (K = 70) and Pongo (K = 69) exhibiting lower K, but the network density (D) and thus 
complexity (see above) of Homo is greater than that seen in any other taxon we studied. Most of the connections 
that contribute to the networks’ densities involve the temporal bone (squamosal in Mus), which articulates with 
many surrounding cranial bones. The clustering coefficient (C; i.e., the average of the sum of connections between 
all neighbors of each node with respect to the maximum number possible) also shows values that are nearly 
unique to each taxon and that do not seem to follow a phylogenetic trend, except that the Old World Monkeys 
(OWM, or cercopithecids) Macaca, Papio, and Colobus exhibit identical values of C. Worth noting is that Homo 
and Mus also exhibit identical clustering coefficient values. The average shortest path length (L; i.e., the average 
of the minimum distance between all nodes in the network in terms of connections, with each connection rep-
resenting 1 length unit) is similar among all taxa (roughly between 2.7 and 2.8) except for Gorilla and Tarsius 
(2.65), and Mus (2.3). This consistency of values is likely the result of the conserved number of cranial bones 
across these genera. The consistency of cranial elements also impacts the observed values of heterogeneity, the 
variability of which displays some apparent phylogenetic signal among our taxa. Further discussion regarding the 
links between number of skeletal structures and network density and complexity within primate evolution will be 
presented below (see also Tables SI1–3; Figs SI1–2).

Network parameters of head and neck muscle-bone networks.  Among all taxa, the number of 
nodes (bones + muscles) ranges from 141 in Saimiri to 161 in Tupaia and 175 in Mus. Importantly, Homo has 
the highest value for N (157) among all primates; i.e., despite the lower number of skeletal structures in humans 
(see Section above), the fact that humans have many more head and neck muscles than any other primate leads 
to a higher number of head and neck musculoskeletal structures overall. Interestingly, regarding network density 
(D) and thus complexity, the three taxa with the most musculoskeletal structures – Tupaia, Mus and Homo – are 
those with the lowest D (0.029). With respect to the clustering coefficient (C), there is a phylogenetic pattern in 
which anthropoids exhibit the highest values in general. An inverse, though much weaker, pattern is observed 
regarding the shortest path length (L), in which there is a tendency for anthropoids and Tarsius to exhibit lower 
values than do, e.g., lemuriforms and Mus. Finally, heterogeneity (H) of head and neck musculoskeletal networks 
displays less consistency than the other network parameters. Many of the musculoskeletal network parameters are 
similar among the most closely related taxa, as would be expected if the presence and arrangement of bones and 
muscles were phylogenetically constrained. New world monkeys (NWM) have the absolute fewest nodes, smallest 
numbers of connections, and shortest path lengths, but intermediate to high numbers of connections and values 
for density, clustering coefficient, and heterogeneity. Hominoids (apes + humans) display intermediate to low 
numbers of nodes, intermediate numbers of connections and density of connections, and among the shortest path 
lengths. Excluding the intermediate Hylobates, hominoids have some of the greatest clustering coefficient values, 
with Pan exhibiting the absolute greatest values. OWM have intermediate values for all parameters, except for the 
clustering coefficient in which they display some of the highest values, consistent with anthropoids in general. The 
non-primates Cynocephalus and Tupaia are intermediate in many cases, but regarding the density of connections 
Cynocephalus is toward the higher end of the spectrum, whereas Tupaia and Mus have the absolute lowest values 
together with Homo, as noted above, as will be discussed in the Sections below (see also Table SI1–1; Fig. SI1–1).

Anatomical modules of head and neck muscle-bones networks.  We recently published a paper 
focusing exclusively on the anatomical modules of the head bones-only networks of the taxa included in the pres-
ent study33. Therefore, in this Section we will focus instead on the modules of the muscle-bone (i.e. musculoskel-
etal) networks, which are, moreover, those that can be discussed in a more integrative, comprehensive functional 
and/or macroevolutionary context. Readers interested in knowing more details about all the skeletal modules of 
all taxa analyzed should refer to Tables SI1–26 to SI1–48. Excluding a few genera (detailed below), all taxa main-
tain some version of the following major musculoskeletal modules. One is the ‘neurocranial’ module (shown in 
dark green in Figs 1–3), which typically includes neurocranial bones and facial, masticatory and/or pharyngeal 
muscles. Two other modules are the right and left facial modules (shown in dark and light blue respectively), 
typically including facial bones and facial expression muscles. Another one is the ‘suprahyoid and tongue’ (shown 
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in orange) module that may include structures of other anatomical regions. A ‘true vocal fold movement’ module 
is often combined with a ‘laryngeal movement’ module (shown in yellow): as their names indicate, these modules 
include structures directly related to the movement of the true vocal folds (e.g. arytenoid cartilages and muscles 
moving them) and of the larynx (e.g. cricoid and/or thyroid cartilages and muscles moving them). Lastly, there 
are often ‘postcranial’ modules (often shown in light brown), which in a few taxa are separated into right and left 
postcranial modules (often shown in red and dark red, respectively). Although considerable variation exists in 
the constituent anatomy of each specific module (see Figs 1–3 and Tables SI1, 2 to SI1–24, as well as text below, for 
more details) the fact that some version of these modules is found in most taxa, including the non-primate ones, 
indicates that AnNA is in fact a robust method to study the modularity of musculoskeletal structures (Figs 1–3; 
Tables SI1, 2 to SI1–24.

Figure 1.  Musculoskeletal modules of non-anthropoid heads and necks identified using AnNA. For each taxon, 
as well as for the other taxa that were analyzed for the present work from the clade to which the taxon belongs, 
modules, color codes, and constituent anatomy are provided in SI1 Tables 4–7 and 11. Mus, 20 modules; 
Tupaia, 19 modules; Cynocephalus, 15 modules; Lemur, 15 modules; Tarsius, 16 modules. cart., cartilage; Corr. 
supercilii, Corrugator supercilii; Dep. supercilii, Depressor supercilii; Dig. anterior, Digastricus anterior; Gal. 
apo, Galea aponeurotica; Lev. ang. oris fac., Levator anguli oris facialis; Lev. lab. sup., Levator labii superioris; 
Lev. lab. sup. alq. nas., Levator labii superioris alaeque nasi; Orb. oculi, Orbicularis oculi; Orb. oris, Orbicularis 
oris; Plat. myo., Platysma myoides; Zygo. maj., Zygomaticus major. 
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Regarding the different clades analyzed, Mus (representing Glires, the sister-group of the other taxa analyzed) has a 
‘laryngeal and true vocal fold movement’ module, a large ‘neurocranium & facial, hyoid, pharyngeal and tongue mus-
cles’ module that is a mix of bones and muscles related to very different functions, as its name indicates, a ‘postcranial & 
infrahyoid muscles’ module that includes the sternum, clavicles, and various neck muscles, a ‘dorsal postcranial module’ 
including the vertebrae and the trapezius muscles, a ‘suprahyoid muscles’ module, and the pharyngeal and facial mus-
cles distributed among numerous other modules, including the ‘right and left facial’ modules (see Section above; Fig. 1; 
Tables SI1–3). Of all major modules of Mus, the only ones that are very similar in the tree-shrew Tupaia with respect to 
the specific structures that they include are the ‘laryngeal and true vocal fold movement’, the ‘postcranial & infrahyoid 
muscles’ and the ‘left facial’ and ‘right facial’ modules (Fig. 1; Tables SI1–4). In contrast, Tupaia is very similar to the 
dermopteran Cynocephalus, sharing with the latter taxon a very similar composition of not only these four modules but 
also the ‘suprahyoid, pharyngeal and tongue’ module, the ‘neurocranium & facial, masticatory and pharyngeal muscles’ 
module, and ‘mentalis’ module (Fig. 1; Tables SI1–5). This is, therefore, a case in which AnNA clearly seems to be recov-
ering a phylogenetic pattern, because in fact many of these Tupaia and Cynocephalus modules are also very similar in 
their composition to those of strepsirrhines such as Lemur (Fig. 1; Tables SI1–6). Moreover, Lemur, as well as all other 
strepsirrhines included in the analysis (Tables SI1–6 to SI1–9) also has some modules not seen in non-primate taxa, 
such as a ‘true vocal fold movement’ module that exclusively includes structures related to the movement of the vocal 
folds and that is shared with many other primate taxa; i.e., in these taxa these structures are not part of a larger ‘laryngeal 
and true vocal fold movement’ module (see Section above), as is the case in the non-primate taxa.

The presence of a separate module exclusively related to the movement of the vocal cords, which only occurs 
in primates, could well be related to their enhanced display of vocal communication. However, this module is not 
universally present as a separate module in primates, as we discuss below. This module is present in Tarsius (Fig. 1; 
Tables SI1–10), which in turn also has other modules that are not found in Lemur but are present in other primates, 
such as a module including both the supra- and infrahyoid, as well as tongue, muscles (‘supra-infrahyoid and tongue’ 
module), further supporting the idea that AnNA is recovering phylogenetic patterns, which may well represent 

Figure 2.  Musculoskeletal modules of monkey and non-African ape heads and necks identified using 
AnNA. For each taxon, as well as for the other taxa that were analyzed for the present work from the clade 
to which the taxon belongs, modules, color codes, and constituent anatomy are provided in SI1 Tables 12 
and 19–21. Callithrix, 12 modules; Macaca, 18 modules; Hylobates, 17 modules; Pongo, 12 modules. Dep. 
ang. oris., Depressor anguli oris; Dep. lab. inf., Depressor labii inferioris; Dep. sep. nasi, Depressor septi nasi; 
Sternohyo., Sternohyoideus; Sternothyro., Sternothyroideus; Zygomaticus min., Zygomaticus minor (for other 
abbreviations, see Fig. 1).
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synapomorphies (e.g., ‘true vocal fold movement’ module only present in primates, module including both supra 
and infrahyoid muscles only present in Tarsius + anthropoids, and so on). In fact, apart from this major difference 
between Tarsius and strepsirrhines such as Lemur, most other modules of these taxa are very similar in composi-
tion. The few exceptions concern small differences, such as the fact that in Tarsius the ‘postcranial module’ does not 
include the clavicles, and that the module including the sternum includes facial muscles as in Lemur but, contrary to 
Lemur, also includes the clavicles and mandible and does not include infrahyoid muscles.

Similarly, within anthropoids, the major modules of NWM (the sister-group of other anthropoids) such as 
Callithrix (Fig. 2; Tables SI1–11) are broadly similar to those found in Tarsius, with two major differences directly 
related to the smaller number of modules found in NWM: 1) the ‘laryngeal movement’ module and ‘true vocal 
fold movement’ module are integrated into a single ‘laryngeal and true vocal fold module movement’ module, and 
the ‘left facial’ and ‘right facial’ modules are integrated into a single ‘main facial’ module. Interestingly, there is a 
lot of variation within the NWM: e.g., most modules of Saimiri (Tables SI1–12) are much more similar to those of 
Lemur than to those of Callithrix, but both Saimiri and Callithrix share the ‘main (left + right) facial’ module. As 
this ‘main facial’ module is also present in Pithecia (Tables SI1–14), it is likely that its presence is in fact plesiomor-
phic for NWM (at least of those included in our AnNA) and was secondary lost in Aotus. In fact, a similar ‘main 
facial’ module is also present in the OWM genera Colobus (Tables SI1–15), which is the sister-group of the other 
OWM included in the AnNA, and Cercopithecus (Tables SI1–16), which is the sister-group of Macaca + Papio. 
Therefore, the presence of a ‘main facial’ module could well be a synapomorphy of anthropoids that was second-
ary lost/changed in Aotus, in Macaca + Papio and in hominoids. Studies including more taxa are needed to test 
this hypothesis. In addition, more detailed studies on the facial expression displays of both OWM and NWM, 
ideally including FACS (Facial Action Coding System: see, e.g., Parr et al.50) and analysis of both captive and wild 
animals, are needed to investigate whether having separate left and right facial modules vs. a main facial module 
might be related to an increased or decreased ability to display complex facial expressions; see also Section below 
for further discussion on these facial modules.

Figure 3.  Musculoskeletal modules of African ape and human heads and necks identified using AnNA. For 
each taxon, modules, color codes, and constituent anatomy are provided in SI1, Tables 22–25. Gorilla, 17 
modules; P. troglodytes, 12 modules; P. paniscus, 11 modules; Homo, 11 modules. (for other abbreviations, see 
Figs 1 and 2).
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Regarding hominoids, Hylobates (Fig. 2; Tables SI1–19) has, interestingly, an increased number of modules 
composed almost exclusively of muscles of facial expression and excluding bony structures. While such a con-
figuration could indicate modularity of facial expression and thus greater finesse in facial displays, it may instead 
indicate reduced cooperation of facial movement and less coordinated facial expressions, as will also be further 
discussed below. Regarding not only the number but also the specific composition of each module, humans are 
much more similar to our closest living relatives (common chimps and bonobos) than to gorillas and orangs 
(Figs 2, 3; Tables SI1–20 to SI1–24), further supporting the idea that AnNA can be an effective tool to detect phy-
logenetic signals. The musculoskeletal modules of common chimps and bonobos are particularly similar to each 
other, as expected, but in common chimps there is a unique, peculiar module that includes the left scapula and 
omohyoideus (shown in brown in Fig. 3), and the left buccinatorius is not part of the left facial module (shown 
in dark green in Fig. 3). Interestingly, concerning these two features bonobos are similar to modern humans, 
indicating that bonobos are probably a better model for the human-chimp ancestor than common chimps are, 
regarding not only the presence/absence and overall configuration of their muscles51,52 but also the details of their 
head and neck modules.

Evolution of head and neck musculoskeletal modules and modularity.  So, what does our AnNA 
tell us about the three main questions raised in the first Section of this paper, and about the general patterns 
concerning the macroevolution of head and neck musculoskeletal modules and modularity in the taxa analyzed? 
Regarding the question of whether the presence of left and right facial modules is a unique human feature or a 
more ancestral trait, our AnNA results show that the presence of these two modules is clearly plesiomorphic for 
primates, as explained above and as shown in Figs 1–3. Most taxa analyzed by us, primate and otherwise, exhibit 
such left and right facial modules, the exceptions being the OWM Colobus and Cercopithecus and the NWM 
Pithecia, Saimiri and Callithrix, which display instead a ‘main facial’ module, as noted above. Also as explained 
above, the presence of such a ‘main facial’ module is clearly derived within primates and may be a synapomor-
phy of anthropoids. Importantly, a feature unique to anthropoids is that the right and left facial modules do 
not include only right and left structures, respectively. That is, in all anthropoids there is either a ‘main facial’ 
module with both left and right structures or separate left and right modules that are highly asymmetrical; i.e., 
the left module includes at least some right facial bones and/or muscles and/or the right module includes at least 
some left ones (Figs 2 and 3; Tables SI1–11 to SI1–24). In fact, the only exception among the 14 anthropoid taxa 
included in our AnNA is Aotus, which, like non-anthropoids, has left and right modules including only left and 
right structures. Therefore, the enhanced complexity of facial expressions, including asymmetrical use of struc-
tures of the two sides of the face for displaying highly complex expressions as reported in humans, is very likely 
related to such modular integration/asymmetry of the facial modules rather than to a better defined modular left 
vs right symmetry such as that seen in non-anthropoids (compare Fig. 1 with Figs 2, 3). It is important to note 
that we are not referring to an asymmetry of the left vs. right musculature per se, but instead to an asymmetry of 
the left and right facial network modules that include many of these muscles. That is, it is not the muscles them-
selves, but instead the network modules made by the contacts/fusions between them and/or by their attachments 
to bones that are asymmetrical.

The only facial feature we identified that might distinguish humans from other taxa is that in humans 3/4 of all 
muscles of facial expression (75%, i.e. 36/48) are part of these left and right asymmetrical modules (Fig. 3; Tables 
SI1–24). In contrast, in chimps almost a third of the facial muscles (30%; i.e., 12/44 in common chimps) are part 
of an unspecialized, bilateral module that also includes inner ear, masticatory and pharyngeal muscles (shown 
in dark green in Fig. 3); only 66% (29/44) and 68% (30/44) of the facial muscles are included in the left and right 
facial modules in common chimps and bonobos, respectively (Fig. 3; Tables SI1–22, SI1–23). This is particularly 
interesting because concerning both the anatomy and the networks of the brain, humans are also more asym-
metrical than chimps and other primates53. In Pongo, the percentage of muscles included in these left and right 
asymmetrical facial modules is even smaller: only 59% (24/46). Therefore, it seems that there is a trend towards 
more integration within these two asymmetrical facial modules during primate and human evolutionary history, 
as predicted by Lieberman1 for the head as a whole. That is, more facial structures are included in fewer modules. 
An emblematic example of this trend is Hylobates: the facial muscles of these lesser apes, which by no means dis-
play more facial expressions or more complex ones than great apes and or humans do54–59, are dispersed among 
eight modules (Fig. 2; Tables SI1–19), and the left and right facial modules include only 60% (28/46) of the facial 
muscles, a percentage similar to that found in orangutans. The exception among apes is Gorilla, in which 81% 
(36/44) of the facial muscles are included in the right and left facial modules, a percentage even higher than that 
of humans, which have the second highest percentage among all primate and non-primate taxa analyzed (Fig. 3; 
Tables SI1–21). One can clearly see a general trend towards an increase in percentage in the lineage leading to 
great apes; e.g., in the OWM Macaca the percentage is 72% (33/46) and in the NWM Callithrix it is 63% (24/38) 
(Fig. 2), while in Tarsius it is 52% (22/42), in Lemur 54% (24/44), in Cynocephalus 66% (28/42), in Tupaia 54% 
(25/46) and in Mus only 31% (Fig. 1; Tables SI1–3 to SI1–18). Mus is an illustrative example because its facial 
muscles are distributed among seven modules having 16, 2, 8, 7, 7, 2 and 2 facial muscles apiece. That is, in Mus 
the left and right facial modules contain only 14 of the 44 (i.e. 31%) facial muscles. Moreover, the facial muscles 
in the left and right facial modules are not exclusively grouped with each other, as these modules also include 
non-facial muscles such as the temporalis and masseter. Therefore, the facial modules of Mus are both very small 
and unspecialized (Fig. 1; Tables SI1–3).

Regarding the question of whether there was a clear change in the whole network organization, connectivity 
and/or modularity in human evolutionary history related to the evolution of speech, the answer seems to be 
negative. At first sight, when one compares humans with chimps, there is a clear difference in the sense that 
humans have two separate, specialized bilateral modules exclusively related to the movements of the larynx (i.e. 
of cricoid-thyroid cartilages, shown in yellow in Fig. 1) and of the true vocal folds, respectively (i.e. including only 
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the arytenoid cartilages and the muscles attaching to them: see Tables SI1–22 to SI1–24). However, this example 
illustrates the importance of including more taxa and having a broader phylogenetic context. Many other taxa 
analyzed also have separate ‘laryngeal movement’ and ‘true vocal fold movement’ modules (see above and Tables 
SI1–3 to SI1–24), so it is difficult to argue that the presence of these two modules in humans was crucial for the 
acquisition of speech. Instead, this example seems to show how even major changes in function, including those 
that involved substantial changes in anatomy – e.g., production of speech and the associated descent of the larynx 
and changes in the pharynx1 – can occur without profound changes to the network organization and modularity 
of the whole system. That is, a certain network organization might be plastic enough to accommodate such func-
tional and anatomical modifications without being substantially modified.

Lastly, we raised the following question above: as the decrease in number of skull bones was accompanied 
by an increase in density of bone-bone connections in tetrapod and human evolution (fewer bones - > increase 
of network density and complexity), is the increase in number of head muscles also accompanied by a decrease 
in the density of muscle-bone connections in human evolution (more muscles and musculoskeletal structures in 
total– > decrease of network density and complexity)? The answer is clearly positive. As explained above, humans 
have the fewest skeletal elements (N = 37) of all 22 taxa analyzed, and accordingly they have higher skeletal net-
work density (D) and thus network complexity (D = 0.108) (Tables SI1–25). Despite having fewer skeletal ele-
ments, the total number of muscles + bones (N = 157) is higher than any other primate taxon because humans 
have many more head and neck muscles in total than any other primate (Table SI1–1). Accordingly, humans have 
the lowest musculoskeletal network density and complexity among primates (D = 0.029) (Table SI1–1). In fact, 
this negative link between the number of structures and the network density and complexity seems to apply not 
only to the skeletal and musculoskeletal structures of humans, but also to the other taxa analyzed. For instance, 
the two (non-primate) taxa that rank among the top three with humans in number of musculoskeletal struc-
tures, Mus (N = 175) and Tupaia (N = 161), also rank among the bottom three with humans in network density 
(D = 0.029 as in humans) (Table SI1–1). On the other extreme, the taxon with the fewest musculoskeletal struc-
tures (Saimiri, N = 141) is the one with the highest network density and complexity (D = 0.035) (Table SI1–1).

Therefore, a take-home message is that an operational, quantitative study of the evolution of primate and 
human modularity does not support the idea that humans are more complex than other primates, at least with 
respect to network organization and network density. In fact, the present study provides an example of explicitly 
quantitative works that contradict a priori expectations; e.g., that the evolution of speech would be related to a 
major re-organization of the topological and connectivity patterns of the head and neck structures (see above). 
The use of new quantitative methods, including network theory, should thus complement that of more traditional 
methods to study modularity, integration and complexity, such as morphometrics, to provide a more compre-
hensive understanding of what makes us humans, and of the evolution of uniquely human traits related to facial 
and vocal communication such as the ability to speak and to display exceptionally complex facial expressions. 
Therefore, we hope that this work will pave the way for future studies on the musculoskeletal network organi-
zation within specific primate subgroups and comparisons with other mammals and tetrapods, as well as how 
AnNA can be complemented with such more traditional methods of investigating integration and modularity to 
reach a more integrative knowledge about the evolution of heads and necks.

Methods
The detailed description of the specific methods used for the AnNA is too long to be provided in the main text, 
so it is given in the first Section of SI1. The skeletal data used to code the matrices of the 22 taxa included in the 
present study were compiled from a dataset provided in a previous paper33 that was modified and expanded by 
BV and AP to exclude the nasal conchae and to include structures from the hyoid and laryngeal apparatuses 
(see SI2). The muscle data and muscle-bone connectivity data coded in those matrices were provided in Diogo 
& Wood’s44,49 publications, which were based on original dissections and an extensive review of the literature. 
Multiple specimens of each taxon are therefore represented in this dataset, and the most common configuration 
reported for each taxon was coded in the network matrices. As explained in detail in Diogo & Wood44,49, con-
cerning sample size and the issue of anatomical variability, two points should be stressed. The first point is that 
the number of non-human primates, including apes, dissected by Diogo & Wood44,49 is actually very large even 
by the standards of comparative anatomical studies of animals that are more easily available for dissections. The 
second point is that the sample size included in their datasets refers to the specimens dissected by them plus the 
total number of specimens reported in the numerous publications by other authors that they reviewed. That is, 
when we code the presence of a certain muscle and/or its attachment to a certain bone in a taxon X, this is because 
these traits are present in ≥than 50% of the dissected specimens of that taxon, considering all the information 
available. For instance, regarding the presence/absence of certain muscles, we consider information obtained 
from dissections of more than 20 hylobatid specimens, 19 orangutans, 25 gorillas, 38 common chimps and 11 
bonobos in total, just within apes (for more details, see Diogo & Wood44,49). So, in this specific example, for a 
certain muscle the total sample size, just for apes, is 123 specimens. As for most of these specimens there is infor-
mation about both sides of the body, we have information, just for apes, for >200 cases, about whether a certain 
muscle is present or not on one side of the body. Such a total sample size is therefore very high when compared to 
other anatomical studies, and particularly to studies based on soft tissue characters, and these numbers therefore 
show that the coding of the matrices for the 22 taxa very likely does reflect the most common condition found in 
each of those taxa.

Data availability.  All data generated or analyzed during this study are included in this published article (and 
its supplementary information files).
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