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Animal movement is fundamental for ecosystem functioning and species survival, yet the 199 

effects of the anthropogenic footprint on animal movements have not been estimated across 200 

species. Using a unique GPS-tracking database of 803 individuals across 57 species, we 201 

found that mammalian movements in areas with a comparatively high human footprint 202 

were on average two-to-three times smaller than those in areas with a low human footprint. 203 

We attribute this reduction to both behavioral changes of individual animals and the 204 

exclusion of species with long-range movements from areas with higher human impact. 205 

Global loss of vagility alters a key ecological trait of animals that not only affects population 206 

persistence, but also ecosystem processes, such as predator-prey interactions, nutrient 207 

cycling, and disease transmission. 208 

With approximately 50-70% of the Earth’s land surface currently modified for human 209 

activities (1), patterns of biodiversity and ecosystem functions worldwide are changing (2). The 210 

expanding footprint of human activities is not only causing the loss of habitat and biodiversity, 211 

but also affects how animals move through fragmented and disturbed habitats. The extent to 212 

which animal movements are affected by anthropogenic changes in the structure and composition 213 

of landscapes and resource changes has only been explored in local geographic regions or within 214 

single species. Such studies typically report decreasing animal movements, for example due to 215 

habitat fragmentation, barrier effects or resource changes (3–6), with only a few studies reporting 216 

longer movements as a result of habitat loss or altered migration routes (7, 8). Here we conducted 217 

a global comparative study examining how the human footprint affects movements of terrestrial 218 

non-volant mammals using Global Positioning System (GPS) location data of 803 individuals 219 

from 57 mammal species (Fig. 1 and Table S2). Mean species’ mass ranged from 0.49 to 3940 kg 220 

and included herbivores, carnivores, and omnivores (n = 28, 11, and 18 species, respectively). 221 
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For each individual, we annotated locations with the Human Footprint Index (HFI), an index with 222 

a global extent that combines multiple proxies of human influence: the extent of built 223 

environments, crop land, pasture land, human population density, night-time lights, railways, 224 

roads and navigable waterways (9) (see Supplementary Methods for details). The HFI ranges 225 

from 0 (natural environments: e.g., the Brazilian Pantanal) to 50 (high-density built 226 

environments: e.g., New York City). 227 

In addition to the human footprint, we included other covariates that are known to 228 

influence mammalian movements. First, mammals generally move farther in environments with 229 

lower productivity, because individuals may need to cover a larger area to gather sufficient 230 

resources (10). To capture this effect, we annotated locations with the Normalized Difference 231 

Vegetation Index (NDVI), a well-established, satellite-derived measure of resource abundance 232 

for herbivores and carnivores alike (11). Second, an allometric scaling relationship shows that 233 

animals of greater body size usually move farther (12), and third, diet may influence movements 234 

due to differences in foraging costs and availability of resource types (13, 14). To capture these 235 

effects, we annotated the database with species averages for body size, and dietary guild (i.e., 236 

carnivore, herbivore or omnivore). 237 

 We then calculated displacements as the distance between subsequent GPS locations of 238 

each individual at nine time scales (15) ranging from one hour to ten days. For each individual at 239 

each time scale, we calculated the 0.5 and the 0.95 quantiles of displacement. The combination of 240 

different time scales and quantiles allowed us to examine the effect of the human footprint on 241 

both the median (0.5 quantile) and long-distance (0.95 quantile) movements for within-day 242 

movements (e.g., 1-hour time scale) up to longer time displacements of over one week (e.g., 10-243 

day time scale). We used linear mixed effects models that, in addition to all covariates (i.e., 244 
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NDVI, body mass, diet), also accounted for taxonomy and spatial autocorrelation (see 245 

Supplementary Methods for details).  246 

We found strong negative effects of the human footprint on median and long-distance 247 

displacements of terrestrial mammals (Fig. 2a and b, Fig. 3a and Supplementary Table S3). 248 

Displacements of individuals (across species) living in areas of high human footprint (HFI = 36) 249 

were up to three times shorter than displacements of individuals living in areas of low human 250 

footprint (HFI = 0). For example, median displacements over ten days were 3.3 km (± SE: 1.4 251 

km) in areas of high human footprint vs. 6.9 km (± SE: 1.3 km) in areas of low footprint (Fig. 2a, 252 

Table Supplementary Table S3). Likewise, the maximum displacement distances at the 10-day 253 

scale averaged 6.6 km (± SE: 1.4 km) in areas of high vs. 21.5 km (± SE: 1.4 km) in areas of low 254 

human footprint (Fig. 2a, Supplementary Table S3). The effect was significant on all temporal 255 

scales with more than eight hours between locations.  256 

The effect was not significant at shorter time scales (Fig. 3a, 1 - 4h), suggesting that the 257 

human footprint affects ranging behavior and area use over longer time scales, rather than 258 

altering individual travel speeds (i.e., individuals may travel at the same speed if measured across 259 

short time intervals, but have more tortuous movements in areas of higher human footprint and 260 

thus remain in the same locale if displacement is measured across longer time intervals). 261 

Reduction in movement may be due to an (1) individual-behavioral effect, where 262 

individuals alter their movements relative to the human footprint, or (2) a species-occurrence 263 

effect, where certain species that exhibit long-range movement simply do not occur in areas of  264 

high human footprint. To disentangle these two effects, we ran additional models where we 265 

separated the HFI into two components: (1) the individual-behavioral effect represented by the 266 

individual variability of HFI relative to the species mean (i.e., the individual HFI minus the 267 

species mean HFI), and (2) the species-occurrence effect as the mean HFI for each species.  268 
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Results from the two-component model indicate behavioral as well as species effects. We found a 269 

significant behavioral effect on median displacements and on long-distance displacements (0.95 270 

quantiles) at most timescales (from eight hours to ten days) (Supplementary Fig. 2a, 271 

Supplementary Table S4). The species-occurrence effect was significant only over longer 272 

timescales (128 and 256 hour periods or 5 and 10 days, respectively) (Supplementary Fig. 2b, 273 

Supplementary Table S4). However, we note that the estimate of the species-occurrence effect is 274 

conservative because our model incorporated taxonomy as a random effect. Some variability in 275 

the data may have been accounted for by the species-level random effect rather than the species-276 

level HFI (see Table S3).   277 

In addition to the human footprint effect, body mass, dietary guild, and resource 278 

availability were also related to movement distances. First, as expected from allometric scaling 279 

and established relationships of body size with home range size (14) and migration distance (16), 280 

larger species travelled farther than smaller species (Fig. 3c, Supplementary Table S3 and S4). 281 

Second, we found a negative relationship between resource availability and displacement 282 

distance such that movements were on average shorter in environments with higher resources 283 

(Fig. 3b, Supplementary Table S3 and S4). These results are consistent with reports of larger 284 

home range size (17) and longer migration distance (18) in mammals living in resource-poor 285 

environments. Finally, our analyses showed that carnivores travelled on average farther per unit 286 

time than herbivores and omnivores (Supplementary Table S3 and S4). These results concur with 287 

prior understanding that carnivores have larger home range sizes (14) because they need to find 288 

mobile prey and compensate for energy conversion loss through the food web. For all of these 289 

variables, effects were significant across time scales longer than eight hours for both median and 290 

long-distance displacements.  291 
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The reduction of mammalian movements in areas of high HFI likely stems from two non-292 

exclusive mechanisms; 1) movement barriers such as habitat change & fragmentation  (19, 20); 293 

and 2) reduced movement requirements due to enhanced resources (e.g., crops, supplemental 294 

feeding and water sources (5, 21)). Studies have shown both mechanisms at work with varying 295 

responses across populations or species (see Supplementary Table S5 for examples). In some 296 

cases, they act together on single individuals or populations – for example, red deer in Slovenia 297 

have smaller home ranges due to the enhancement of resources via supplemental feeding and the 298 

disturbance and fragmentation caused by the presence of roads (22).  299 

While these mechanisms can have differential effects on population densities (i.e., 300 

increases under supplementation (23) and decreases under fragmentation (24)) the consequences 301 

of reduced vagility affects ecosystems regardless of the underlying mechanisms and go far 302 

beyond the focal individuals themselves. Animal movements are essential for ecosystem 303 

functioning as they act as mobile links (25) and mediate key processes such as seed dispersal, 304 

food-web dynamics including herbivory and predator-prey interactions, and metapopulation- and 305 

disease dynamics (26). Single species or single site studies have shown the severe effects of 306 

reduced vagility on these processes (27, 28). The global nature of reduced vagility across 307 

mammalian species that we demonstrate here suggests consequences for ecosystem functioning 308 

worldwide. Future landscape management should include animal movements as a key 309 

conservation metric and aim towards maintaining landscape permeability. Ultimately, because of 310 

the critical role of animal movement for human-wildlife coexistence (29) and disease spread (30), 311 

effects of reduced vagility may go beyond ecosystem functioning and directly affect human well-312 

being. 313 

 314 

 315 
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Figures 316 

Fig. 1 Locations from the GPS tracking database and the Human Footprint Index. (A) GPS 317 

relocations of 803 individuals across 57 species plotted on the global map of the Human 318 

Footprint Index (HFI) spanning from 0 (low; yellow) to 50 (high; red). (B) Examples of the 319 

landscapes under different levels of HFI; 2 HFI (the Pantanal, Brazil), 20 HFI (Bernese Alps, 320 

Switzerland), 30 HFI (Freising, Germany), and 42 HFI (Albany, New York State, U.S.A.). (C) 321 

Species averages of 10-day long-distance displacement (0.95 quantiles of individual 322 

displacements).  323 

 324 

Fig. 2 Mammalian displacement in relation to the Human Footprint Index. (A) Median and 325 

(B) long-distance (0.95 quantile) displacements decline with increasing Human Footprint Index 326 

at the 10-day scale (n = 48 species and 624 individuals). Plots include a smoothing line from a 327 

locally weighted polynomial regression. A Human Footprint Index of 0 indicates areas of low 328 

human footprint, and a value of 40 represents areas of high human footprint.  329 

 330 

Fig. 3 Model coefficients (± CI) of linear mixed effects models predicting mammalian 331 

displacements using the (A) Human Footprint Index (HFI), (B) Normalized Difference 332 

Vegetation Index (NDVI), and (C) body mass. Models were run for the median (blue) and 333 

long-distance (0.95 quantiles; red) displacements of each individual calculated across different 334 

time scales. When the error bars cross the horizontal line the effect is not significant. See 335 

Supplementary Tables S3 for details.   336 

 337 

 338 
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Materials and Methods 
Displacement Data 
 
We compiled GPS location data for 57 mammalian species, comprising 7 339 376 
locations of 803 individuals from 1998 to 2015 (Fig. 1, Supplementary Table S1). The 
dataset included adult male and female individuals. Datasets were obtained from the 
online animal tracking database Movebank (https://www.movebank.org/), the Movebank 
Data Repository (Equus quagga (1, 2) and Loxodonta africana (3, 4)), or were 
contributed by co-authors directly (Table S2). For species that are inactive at night (e.g., 
primates sleeping overnight in trees) and where the GPS devices had been switched off to 
prolong battery life, we interpolated location data during the inactive phase (i.e., using the 
last recorded position) with the same sampling frequency as that employed for active 
periods to ensure an even sampling regime. 
 
We sub-sampled the location data with inter-location intervals at a geometric time scale 
from one hour to ~ ten days (i.e. 1, 2, 4, 8, 16, 32, 64, 128 and 256 hours) using the 
“SyncMove” R package (5). We started the sub-sampling algorithm from the first 
location recorded for each individual. For each of the nine time scales, we calculated the 
geodesic distance between the subsampled locations using the Spherical Law of Cosines 
using 6371 km as the mean radius of the Earth (6). This allowed a systematic 
investigation across time scales from within day movements to more long-term 
movements, and standardized the sampling regime across studies and individuals. 
Smaller time intervals were not available for most species and longer time intervals 
resulted in a significant loss in sample size. Sub-sampling precision was set to the inter-
location interval ± 4% (e.g., for the 1-hour scale resulting in inter-location intervals 
varying between 57 and 62 minutes). We then checked the data for outliers, specifically 
for maximum movement speeds that were unlikely for a terrestrial land mammal to 
achieve over a given time period (> 4 m s-1), and removed them (7). We calculated two 
response variables for each individual: the 0.5 quantile displacement distance and the 
0.95 quantile displacement distance, the former describing the median movement 
behavior of that individual, and the latter describing long-distance movements 
(Supplementary Figure S1). All values were log_10 transformed prior to analyses. 
 
Covariates 
 
We annotated each GPS location with NDVI and human footprint index (8) (HFI; 
Supplementary Table S2). NDVI data was extracted from MODIS Land Terra Vegetation 
Indices 500-m 16-day resolution (MOD13A1 V005 (9)) using the Movebank Env-DATA 
system (10) (environmental-data automated track annotation; http://www.movebank.org). 
We filtered the NDVI data to remove pixels with no data (-1), snow/ice (2) and clouds 
(3). We also included species body mass using the PanTHERIA database (11) (where 
individual mass information was unknown) and diet (i.e., carnivore, herbivore or 
omnivore) (Table S1). Body mass values were log_10 transformed and the NDVI values 
were scaled. We then calculated the mean NDVI and human footprint value for each 
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inter-location interval (i.e., the average value between each sequential pair of locations) 
and averaged these values for each individual. 
 
Analyses 
 
Our final database (Supplementary Fig. 1) comprised nine median and nine 0.95 quantile 
movement distance values for each individual (one for each temporal scale), associated 
with nine mean values for body mass, NDVI, and the human footprint index. We only 
included individuals that had tracking data for a minimum of two months (~60 days) or 
50 displacements. We ran 18 linear mixed effects models, two for each time-scale, one 
with the 0.5 and the other with the 0.95 quantile displacement distances as the dependent 
variable, and body mass, NDVI, HFI, and diet as the predictor variables. We included 
species identity as a nested random effect to account for taxonomy (i.e., 
Order/Family/Genus/Species), and a Gaussian spatial autocorrelation structure (12) 
including the mean longitude and latitude for each individual. For each model, we 
checked the residuals for normality (i.e., Q-Q plots) and removed outliers (< 2% of total 
data points). All correlation coefficients among the predictor variables were |r| ≤ 0.55 and 
all variance inflation factors (VIFs) were ≤ 2, well below the common cut-off values of 
0.7 and 4, respectively (13, 14). All model predictions and associated standard errors 
were calculated using the “AICcmodavg” R package (15). All analyses were performed 
in R version 3.2.2 (16). 
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Fig. S1. 
Distributions of the median and 0.95 quantiles of the individual displacements used in the 
analyses. The y-axis represents the density distribution of median (0.5 quantile) and long-
distance (0.95 quantile) displacements of each individual. 
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Fig. S2 
Model coefficients (± CI) predicting mammalian displacements including (A) an individual-behavioral effect and (B) a species-
occurrence effect of the Human footprint index (HFI). The individual-behavioral HFI was calculated as the individual HFI minus 
the species mean HFI, and the species-occurrence HFI was calculated as the species mean HFI. Other covariates of the model included 
(C) Normalized Difference Vegetation Index (NDVI),  (D) body mass, and dietary guild (not shown). The models also included a 
nested random effect accounting for taxonomy, and a Gaussian spatial autocorrelation structure. Models were run for the median (i.e. -
0.5 quantiles; blue) and long-distance (i.e. 0.95 quantiles; red) displacements of each individual calculated across different time scales. 
When the error bars cross the horizontal line (at 0) the effect is not significant. See Methods and Supplementary Tables S4 for 
additional details.  
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Table S1. 
Data annotation summary 
 
Variable Unit Temporal 

Resolution 
Spatial 
Resolution 

Source Transformation 

Normalised 
Difference 
Vegetation 
Index (NDVI) 

Unitless 16 days 500 m MODIS Land 
Terra Vegetation 
Indices 500-m 16-
day (MOD13A1 
V005) 

Scaled 

Human 
Footprint 

Unitless 1993-2009 
mean 

1 km Global terrestrial 
Human Footprint 
maps for 1993 and 
2009 (8, 17)  

Log_10 

Body Mass Grams Not 
applicable. 

Not 
applicable. 

K. E. Jones et al., 
PanTHERIA: a 
species-level 
database of life 
history, ecology, 
and geography of 
extant and 
recently extinct 
mammals. 
Ecology. 90, 2648 
(2009). 

Log_10 

Diet Unitless, 
categorical 

Not 
applicable. 

Not 
applicable. 

K. E. Jones et al., 
PanTHERIA: a 
species-level 
database of life 
history, ecology, 
and geography of 
extant and 
recently extinct 
mammals. 
Ecology. 90, 2648 
(2009). 

Not applicable. 

  
 



 
 

2 
 

Table S2. 
Summary of species and number of individuals per species included in the analyses. 
 

Species No. 
Individuals 

Data  
Source Species No.  

Individuals 
Data  

Source 
Aepyceros melampus 20 Co-author Madoqua guentheri 15 Co-author 

Alces alces 46 Co-author Martes pennanti 13 Movebank 

Antilocapra americana 25 Co-author Myrmecophaga tridactyla 4 Co-author 

Beatragus hunteri 4 Co-author Odocoileus hemionus 25 Co-author 

Canis aureus 1 Movebank Odocoileus hemionus columbianus 14 Co-author 

Canis latrans 19 Movebank Odocoileus virginianus 30 Movebank 

Canis lupus 12 Co-author & 
Movebank 

Ovibos moschatus 14 Co-author 

Capreolus capreolus 94 Eurodeer & 
co-author 

Panthera leo 2 Movebank 

Cercocebus galeritus* 1 Co-author Panthera onca 4 Co-author 

Cerdocyon thous 10 Co-author Panthera pardus 4 Movebank 

Cervus elaphus 47 Co-author, 
Eurodeer & 
Movebank 

Papio anubis 4 Movebank 

Chlorocebus pygerythrus 12 Movebank Papio cynocephalus* 22 Co-author 
& 
Movebank 

Chrysocyon brachyurus 12 Movebank Procapra gutturosa 15 Co-author 

Connochaetes taurinus 3 Co-author Procyon lotor 9 Movebank 

Dasypus novemcinctus 1 Co-author Propithecus verreauxi* 28 Co-author 

Elephas maximus 2 Movebank Puma concolor 6 Co-author 

Equus grevyi 7 Movebank Rangifer tarandus 14 Co-author 

Equus hemionus 6 Co-author Saguinus geoffroyi* 3 Movebank 

Equus quagga 27 Co-author & 
Movebank 

Saiga tatarica 3 Co-author 

Eulemur rufifrons 4 Co-author Sus scrofa 26 Co-author 

Euphractus sexcinctus 7 Co-author Syncerus caffer 6 Movebank 

Felis silvestris 5 Movebank Tamandua mexicana 2 Movebank 

Giraffa camelopardalis 5 Co-author Tapirus terrestris 4 Co-author 

Gulo gulo 5 Co-author Tolypeutes matacus 5 Co-author 

Lepus europaeus 39 Movebank Trichosurus vulpecula* 29 Co-author 

Loxodonta africana 14 Co-author & 
Movebank  

Ursus americanus 21 Movebank 

Loxodonta africana cyclotis 23 Movebank Ursus arctos 13 Co-author 

Lynx lynx 6 Co-author Vulpes vulpes 5 Movebank 

Lynx rufus 6 Movebank    

* GPS devices turned off during inactive periods to save battery (e.g., primates sleeping overnight in trees) and 
location data was interpolated during the stationary phases (see Methods in main text). 
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Table S3. 
Model coefficients, r-squared and sample sizes of linear mixed effects models predicting the median and 0.95 quantiles of individual 
displacements from 1 to 256 hour time scales. Predictor variables included body mass, NDVI, diet and the human footprint index. The 
model also included a nested random effect accounting for the taxonomy, and a Gaussian spatial autocorrelation structure. We 
calculated the marginal r2 (variance explained by the fixed effects) and conditional r2 (variance explained by both fixed and random 
factors) values for each model using the “MuMIn” R package (18). Fixed effects included mass, NDVI, the human footprint index and 
diet. Random effects included taxonomy. *p<0.05, **p<0.01, ***p<0.001 
 
 

 

 
1h 2h 4h 8h 16h 32h 64h 128h 256h 

Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% 

Mass 0.096 0.288*** 0.138 0.268*** 0.105 0.297*** 0.126 0.288*** 0.195* 0.301*** 0.265*** 0.325*** 0.33*** 0.321*** 0.336*** 0.306** 0.423*** 0.403*** 

NDVI 0.004 -0.041* -0.019 -0.081*** -0.04 -0.078*** -0.067*** -0.086*** -0.056** -0.078*** -0.115*** -0.161*** -0.124*** -0.155*** -0.144*** -0.158*** -0.132*** -0.172*** 

HumanF -0.001 -0.002 -0.004 -0.004* -0.004 -0.003 -0.006*** -0.005** -0.01*** -0.009*** -0.009*** -0.01*** -0.009*** -0.011*** -0.009*** -0.011*** -0.009*** -0.014*** 

Diet (H) 0.225 -0.209 0.175 -0.172 -0.018 -0.363 -0.026 -0.431 -0.342 -0.497* -0.552* -0.598* -0.72** -0.527 -0.558* -0.342 -0.638* -0.46 

Diet (O) 0.185 -0.127 0.052 -0.066 -0.006 -0.186 0.073 -0.233 -0.123 -0.248 -0.307 -0.403 -0.494 -0.445 -0.45* -0.346 -0.492* -0.398 

r2 Marginal 0.034 0.286 0.045 0.255 0.016 0.346 0.022 0.35 0.228 0.415 0.349 0.443 0.406 0.347 0.391 0.28 0.459 0.381 

r2 Conditional 0.922 0.865 0.932 0.895 0.958 0.887 0.977 0.901 0.875 0.885 0.898 0.898 0.906 0.87 0.871 0.846 0.866 0.835 

Species 52 
531 

53 
606 

48 
601 

45 
544 

42 
525 

41 
526 

43 
590 

46 
598 

48 
624 Individuals 
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Table S4. 
Model coefficients, r-squared and sample sizes of linear mixed effects models predicting the median and 0.95 quantiles of individual 
displacements from 1 to 256 hour time scales. Predictor variables included body mass, NDVI, diet and the human footprint index, 
which was split into the individual-behavioral effect (Ind_HumanF: the individual HFI minus the species mean HFI) and species-
occurrence effect (Sp_HumanF: the species mean HFI). The model also included a nested random effect accounting for the taxonomy, 
and a Gaussian spatial autocorrelation structure. We calculated the marginal r2 (variance explained by the fixed effects) and 
conditional r2 (variance explained by both fixed and random factors) values for each model using the “MuMIn” R package(18). Fixed 
effects included mass, NDVI, the human footprint index and diet. Random effects included taxonomy. *p<0.05, **p<0.01, 
***p<0.001 
 
 

 
 
 
 

 
1h 2h 4h 8h 16h 32h 64h 128h 256h 

Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% Median 95% 

Mass 0.129 0.287*** 0.143 0.267*** 0.127*** 0.292 0.116 0.268*** 0.203* 0.301*** 0.254** 0.301*** 0.271** 0.236* 0.279** 0.218* 0.373*** 0.33*** 

NDVI 0.003 -0.041* -0.019 -0.08*** -0.041 -0.077*** -0.067*** -0.085*** -0.056* -0.078*** -0.115** -0.16*** -0.122** -0.152* -0.142** -0.154* -0.127*** -0.166*** 

Ind_HumanF -0.001 -0.002 -0.004 -0.004* -0.004* -0.003 -0.006** -0.005** -0.01*** -0.009*** -0.009*** -0.01*** -0.009*** -0.011*** -0.008*** -0.01*** -0.008*** -0.013*** 

Sp_HumanF 0.005 -0.002 -0.003 -0.004 0.001 -0.005 -0.008 -0.01 -0.008 -0.009 -0.011 -0.015 -0.022 -0.031 -0.025 -0.036* -0.031* -0.038* 

Diet (H) 0.206 -0.209 0.168 -0.172 -0.023 -0.36 -0.035 -0.421 -0.352 -0.497* -0.544* -0.571* -0.626* -0.46 -0.477 -0.304 -0.66** -0.42 

Diet (O) 0.169 -0.126 0.047 -0.066 -0.018 -0.185 0.068 -0.233 -0.131 -0.249 -0.301 -0.383 -0.424 -0.384 -0.381 -0.288 -0.499* -0.356 

r2 Marginal 0.037 0.282 0.045 0.252 0.016 0.342 0.023 0.345 0.222 0.407 0.343 0.433 0.394 0.367 0.406 0.323 0.528 0.428 

r2 Conditional 0.921 0.866 0.932 0.896 0.958 0.889 0.978 0.905 0.874 0.886 0.901 0.902 0.913 0.886 0.884 0.87 0.882 0.853 

Species 52 
531 

53 
606 

48 
601 

45 
544 

42 
525 

41 
526 

43 
590 

46 
598 

48 
624 Individuals 



 
 

1 
 

Table S5. 
Summary of the positive (+) and negative (-) effects of barriers and anthropogenic resources on individuals, populations and 
ecosystems using examples from the literature.  
 
 

Mechanism Impact Level of 
Impact 

Effect 
of 

impact 

Study 
Organism References 

Restricted 
Access to 
Natural 
Areas/Barriers 

Road barriers alter genetic structure 
between populations. 

Populations - Moose (Alces alces); desert bighorn 
sheep (Ovis canadensis nelsoni) 

Wilson et al. (19); 
Epps et al. (20) 

Altered animal abundance. Populations -/+ White-tailed antelope squirrel 
(Ammospermophilus leucurus), black-
tailed prairie dog (Cynomys 
ludovicianus), Merriam's kangaroo rat 
(Dipodomys merriami), kangaroo rat 
(Dipodomys microps), prairie vole 
(Microtus ochrogaster), California vole 
(Microtus californicus), house mouse 
(Mus musculus), woodrat (Notoma 
lepida), golden mouse (Ochrotomys 
nuttalli), long-tailed pocket mouse 
(Perognathus formosus), white-footed 
mouse (Peromyscus boylii), white-
footed mouse (Peromyscus leucopus), 
deer mouse (Peromyscus maniculatus), 
rat (Rattus rattus), eastern chipmunk 
(Tamias striatus), chacoan peccary 
(Catagonus wagneri), hedgehog 
(Erinaceus europaeus), brown hare 
(Lepus europaeus), American marten 
(Martes americana), badger (Meles 
meles), koala (Phascolarctos cinereus), 
white-lipped peccary (Tayassu pecari), 
collared peccary (Tayassu tajacu), red 
fox (Vulpes vulpes), Impala (Aepyceros 

Fahrig et al. (21) 
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melampus), moose (Alces alces), wolf 
(Canis lupus), eastern timber wolf 
(Canis lupus lycaon), black-backed 
jackal (Canis mesomelas), roe deer 
(Capreolus capreolus), elk (Cervus 
canadensis), wildebeest (Connochaetes 
taurinus), zebra (Equus quagga), 
giraffe (Giraffa camelopardalis), 
African elephant (Loxondonta 
africana), bobcat (Lynx rufus), 
Eurasian lynx (Lynx lynx), Iberian lynx 
(Lynx pardinus), mule deer 
(Odocoileus hemionus), Amur tiger 
(Panthera tigris altaica), warthog 
(Phacochoerus africanus), cougar 
(Puma concolor), woodland caribou 
(Rangifer tarandus caribou), bohor 
reedbuck(Redunca redunca) , boar (Sus 
scrofa), eland (Taurotragus oryx), 
brown bear (Ursus arctos) and grizzly 
bear (Ursus arctos horribilis). 

Decreased immigration and 
colonization success due to barriers. 

Populations - Animal simulation Fahrig (22) 

Reproduction, body mass and 
mobility impact susceptibility to 
roads. 

Individual  -/+ Woodland caribou (Rangifer tarandus), 
white-footed mouse (Peromyscus 
leucopus), eastern chipmunk (Tamias 
striatus), hedgehog (Erinaceus 
europaeus), bobcat (Lynx rufus), grey 
wolf (Canis lupus), cougar (Puma 
concolor), black bear (Ursus 
americanus), elk (Cervus elaphus), 
moose (Alces alces) and grizzly bear 
(Ursus arctos). 

Rytwinski et al. (23) 

Dirt tracks/firebreaks can increase 
seed dispersal. 

Ecosystem +  Wild boar (Sus scrofa), red deer 
(Cervus elaphus), fallow deer (Dama 
dama), red fox (Vulpes vulpes), 
Eurasian badger (Meles meles) and 

Suarez-Esteban et al. 
(24) 
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European hare (Lepus europaeus).  
Fragmentation and altered 
community composition.  

Individuals and 
populations 

- Mammal simulations Buchmann et al. (25) 

Tortuosity increases near roads and 
trails. 

Individuals - Wolf (Canis lupus) Whittington et al. 
(26) 

Small home range and increased 
overlap near hard boundaries (e.g., 
roads) and altered genetic 
composition.  

Individuals and 
populations 

- Coyote (Canis latrans) and bobcats 
(Lynx rufus). 

Riley et al. (27) 
  

Reduced population densities near 
infrastructure. 

Populations - Moose (Alces alces), coyote (Canis 
latrans), red fox (Vulpes vulpes), 
duiker (Cephalophus sp), elk (Cervus 
canadensis), blue wildebeest 
(Connochaetes taurinus), Emin's 
pouched rat (Cricetomys emini), link 
rat (Deomys ferrugineus), desert 
kangaroo rat (Dipodomys deserti), 
plains zebra (Equus quagga), red-
cheeked rope squirrel (Funisciurus 
leucogenys), shining thicket rat 
(Grammomys rutilans), African 
dormice (Graphiurus sp), African 
smoky mouse (Heimyscus fumosus), 
Peters' striped mouse (Hybomys 
univittatus), beaded wood mouse 
(Hylomyscus aeta), Allen's wood 
mouse (Hylomyscus alleni), European 
hare (Lepus europaeus), fire-bellied 
brush-furred rat (Lophuromys 
nudicaudus), African elephant 
(Loxodonta africana), forest elephant 
(Loxodonta africana cyclotis), bobcat 
(Lynx rufus), fawn-footed mosaic-
tailed rat (Melomys cervinipes), mule 
deer (Odocoileus hemionus), white-
tailed deer (Odocoileus virginianus), 
Tullberg's soft-furred mouse (Praomys 

Benitez-Lopez et al. 
(28)  
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tullbergi), reindeer (Rangifer 
tarandus), rat (Rattus spp), round-
tailed ground squirrel (Spermophilus 
tereticaudus), target rat (Stochomys 
longicaudatus), eland (Taurotragus 
spp), bohor reedbuck (Redunca 
redunca), giant white-tailed rat 
(Uromys caudimaculatus), brown bear 
(Ursus arctos) and black-backed jackal 
(Canis mesomelas). 

 Reduced population densities near 
infrastructure and restricted 
movements caused by infrastructure. 

Populations - Forest elephants (Loxodonta africana 
cyclotis). 

Blake et al. (29) 

 Reduced movements due to human 
settlements/roads and reduced flow 
of females between populations. 

Individuals and 
populations 

- Grizzly bears (Ursus arctos). Proctor et al. (30) 

Restricted 
Access AND 
Increased 
Resources  

Movements tied to artificial water 
sources and increased recursive 
movements due to fences, resulting in 
increased pressure on local resources. 

Individuals, 
populations and 

ecosystems 

- African elephant (Loxodonta africana). Loarie et al. (31) 

Smaller home ranges due to 
supplemental feeding and road 
barriers. 

Individuals and 
populations 

- Red deer (Cervus elaphus) Jerina et al. (32) 

Urban resources as an ecological 
trap: urban sink populations and 
urban islands impact population 
genetic structure/flow and increase in 
conflict with humans due to 
expanding population numbers.  

Individuals and 
populations 

- Wild boar (Sus scrofa) Stillfried et al.(33) 

Increased productivity/reproduction, 
altered migration timing and 
increased grazing pressure at winter 
sites due to supplemental feeding, 
and population declines due to habitat 
loss. 

Individual, 
population and 

ecosystem 

-/+ Mule deer (Odocoileus hemionus) DeVos et al. (34); 
Sandoval et al.(35); 
Peterson et al.(36) ;
Bishop et al. (37). 
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 Landscape elements (e.g., fruit trees) 
act as food supplements, allowing 
populations to persist in fragmented 
landscapes.  

Individuals and 
populations. 

+ Howler monkeys (Alouatta palliata 
mexicana) 

Asensio et al. (38) 

Increased 
Resources 
(Anthropogenic) 

Crop damage leading to human-
wildlife conflict. 

Individuals and 
populations 

- Wild boars (Sus scrofa); Red deer 
(Cervus elaphus). 

Honda et. al.(39); 
Barrios-Garcia et al. 
(40); Bleier et al. 
(41) 

 Increase in parasite load and diseases. Individual and 
population 

- Elk (Cervus canadensis); white-tailed 
deer (Odocoileus virginianus). 

Hines et al.(42); 
Miller et al. (43): 
Sorensen et al. (44) 

 Increase group size. Population + Arctic fox (Vulpes lagopus). Elmhagen et al.(45) 
 Increased survival rate, increased 

reproductive rate, improved winter 
condition, increased hunting, 
increased population growth rate and 
reduced density dependence, changed 
spatial genetic structure, reduced 
natural selection, increased 
aggression, increased stress, 
increased local browsing or grazing, 
changed plant species composition, 
invasion of non-native weed species, 
increased parasitism due to spatial 
aggregation and increased contact 
rates and reduced parasitism due to 
improved body condition.  

Individual, 
population and  

ecosystem 

-/+ European bison (Bison bonasus), wild 
boar (Sus scrofa), white-tailed deer 
(Odocoileus virginianus), elk (Cervus 
canadensis) and moose (Alces alces). 

Milner et al. (46) 

 Disruption of movement patterns, 
circadian rhythm, denning behavior, 
increased individual interactions, 
increase population size, culling, 
increase in diseases, human-animal 
conflict, alter natural foraging and 
trophic cascades. 

Individual, 
population and  

ecosystem 

-/+ Brown bears (Ursus arctos). Penteriani et al.(47) 

 Consumption of valuable tree 
species, altered social structure, space 

Individual, 
population and  

-/+ European bison (Bison bonasus); 
moose (Alces alces). 

Kowalczyk et 
al.(48); Mathisen et 
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use and parasites. ecosystem al. (49) 
 

 Sustain populations in resource poor 
areas and trophic cascades.  

Population and 
ecosystem 

-/+ Dingo (Canis lupus dingo). Newsome et al.(50, 
51) 

 Trophic cascades. Ecosystem - African wild dog (Lycaon pictus), 
yellow baboon (Papio cynocephalus), 
black-backed jackal (Canis 
mesomelas), bobcat (Lynx rufus), chilla 
fox (Pseudalopex griseus), coyote 
(Canis latrans), culpeo fox 
(Pseudalopex culpaeus), dhole (Cuon 
alpinus), common genet (Genetta 
genetta), Geoffroy’s cat (Oncifelis 
geoffroyii), golden jackal (Canis 
aureus), Indian fox (Vulpes 
bengalensis), pampas fox (Pseudalopex 
gymnocercus), red fox (Vulpes vulpes) 
and San Joaquin kit fox (Vulpes 
macrotis mutica),Arabian wolf (Canis 
lupus arabs), black bear (Ursus 
americanus), brown bear (Ursus 
arctos), cheetah (Acinonyx 
jubatus), dingo (Canis dingo), 
Ethiopian wolf (Canis simensis), 
Eurasian lynx (Lynx lynx), grey wolf 
(Canis lupus), Mexican grey 
wolf (Canis lupus baileyi), Iberian lynx 
(Lynx pardinus), Iberian wolf (Canis 
lupus signatus), jaguar (Panthera 
onca), leopard (Panthera pardus), lion 
(Panthera leo), polar bear (Ursus 
maritimus), puma (Puma concolor), 
snow leopard (Panthera uncia), spotted 
hyena (Crocuta crocuta), tiger 
(Panthera tigris); white-tailed deer 
(Odocoileus virginianus); moose (Alces 
alces). 

Newsome et al.(52); 
Cooper et al.(53); 
Gundersen et al. (54) 
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 Increase in stress hormones. Individual - Asiatic black bears (Ursus thibetanus). Malcolm et al. (55) 
 

 Animal-human conflict: death and 
monetary costs. 

Population - Brown bear (Ursus arctos). Kavčič et al. (56) 

 Reduced natural selection effects on 
juveniles. 

Individual and 
population 

+ Red deer (Cervus elaphus). Schmidt et al. (57) 

 Reduced and stable home range size 
due to resources. 

Individual + Racoon (Procyon lotor) ; Roe deer 
(Capreolus capreolus) ; Red deer 
(Cervus elaphus); Iberian lynx (Lynx 
pardinus). 

Prange et al.(58); 
Ossi et al.(59); 
Lopez-Bao et al. (60) 

 Reduce migration distance and time 
spent at summer grounds (less quality 
forage). 

Individual - Elk (Cervus canadensis). Jones et al. (61) 

 Smaller home range size, covered 
more distance, nocturnal activity and 
increase movement speeds. 

Individual + Wild boar (Sus scrofa). Podgorski et al. (62) 

 Anthropogenic food resources reduce 
home range size and increases home 
range overlap, with implications for 
rabies transmission between 
individuals. 
 

Individual and 
populations 

- Indian mongoose (Herpestes 
javanicus). 

Quinn et al. (63) 

 Food provisions impact movement 
behaviors, amplify pathogen invasion 
due to increased host aggregation and 
tolerance, but also reduces 
transmission if provisioned food 
decreases dietary exposure to 
parasites. 

Individuals and 
populations 

-/+ Elk (Cervus canadensis), long-tail 
macaque (Macaca fascicularis) , red 
fox (Vulpe vulpes), white-tailed deer 
(Odocoileus virginianus), common 
vampire bat (Desmodus rotundus) and 
flying fox (Pteropus giganteus). 

Becker et al.(64) 

 Anthropogenic resources reduce 
home range size and increases 
livestock kills by wildlife. 

Individuals - Spotted hyena (Crocuta crocuta). Kolowski et al. (65) 

 Anthropogenic food reduced core 
home rage size and increases 
population size. 

Individuals and 
populations 

+ Banded mongoose (Mungos mungo). Gilchrist et al. (66) 

 



 
 

1 
 

Reference and Notes 
 
1.  H. L. A. Bartlam-Brooks, P. S. A. Beck, G. Bohrer, S. Harris, Data from: In search 

of greener pastures: using satellite images to predict the effects of environmental 
change on zebra migration. Movebank data Repos. (2013). 

2.  H. L. A. Bartlam-Brooks, P. S. A. Beck, G. Bohrer, S. Harris, In search of greener 
pastures: Using satellite images to predict the effects of environmental change on 
zebra migration. J. Geophys. Res. Biogeosciences. 118, 1427–1437 (2013). 

3.  J. Wall, G. Wittemyer, V. LeMay, I. Douglas-Hamilton, B. Klinkenberg, Data 
from: Elliptical Time-Density model to estimate wildlife utilization distributions. 
Movebank data Repos. (2014). 

4.  J. Wall, G. Wittemyer, V. LeMay, I. Douglas-Hamilton, B. Klinkenberg, Elliptical 
Time-Density model to estimate wildlife utilization distributions. Methods Ecol. 
Evol. 5, 780–790 (2014). 

5.  M. Rimmler, T. Mueller, SyncMove: Subsample Temporal Data to Synchronal 
Events and Compute the MCI. R package version 0.1-0 (2015), (available at 
http://cran.r-project.org/package=SyncMove). 

6.  F. Chambat, B. Valette, Mean radius, mass, and inertia for reference Earth models. 
Phys. Earth Planet. Inter. 124, 237–253 (2001). 

7.  K. Bjørneraas, B. Van Moorter, C. M. Rolandsen, I. Herfindal, Screening Global 
Positioning System Location Data for Errors Using Animal Movement 
Characteristics. J. Wildl. Manage. 74, 1361–1366 (2010). 

8.  O. Venter et al., Data from: Global terrestrial Human Footprint maps for 1993 and 
2009. Sci. Data (2016), , doi:doi:10.5061/dryad.052q5. 

9.  K. Didan, MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m 
SIN Grid V005. NASA EOSDIS Land Processes DAAC. 
https://doi.org/10.5067/MODIS/MOD13A1.006 (2015). 

10.  S. Dodge et al., The environmental-data automated track annotation (Env-DATA) 
system: linking animal tracks with environmental data. Mov. Ecol. 1, 1 (2013). 

11.  K. E. Jones et al., PanTHERIA: a species-level database of life history, ecology, 
and geography of extant and recently extinct mammals. Ecology. 90, 2648 (2009). 

12.  C. F. Dormann et al., Methods to account for spatial autocorrelation in the analysis 
of species distributional data: a review. Ecography (Cop.). 30, 609–628 (2007). 

13.  C. F. Dormann et al., Collinearity: a review of methods to deal with it and a 
simulation study evaluating their performance. Ecography (Cop.). 36, 27–46 
(2013). 

14.  A. F. Zuur, E. N. Ieno, C. S. Elphick, A protocol for data exploration to avoid 
common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010). 

15.  M. J. Mazerolle, AICcmodavg: Model selection and multimodel inference based 
on (Q)AIC(c). R package version 2.1-0.itle (2016), (available at https://cran.r-
project.org/package=AICcmodavg). 

16.  R. D. C. Team, R: A Language and Environment for Statistical Computing. 
Vienna, Austria, ISBN 3-900051-07-0. http://www (2012). 

17.  O. Venter et al., Sixteen years of change in the global terrestrial human footprint 
and implications for biodiversity conservation. Nat. Commun. 7 (2016). 

18.  K. Barton, MuMIn: Multi-Model Inference. R package version 1.15.6e (2016), 



 
 

2 
 

(available at http://cran.r-project.org/package=MuMIn). 
19.  R. E. Wilson, S. D. Farley, T. J. McDonough, S. L. Talbot, P. S. Barboza, A 

genetic discontinuity in moose (Alces alces). Conserv. Genet. 16, 791–800 (2015). 
20.  C. W. Epps et al., Highways block gene flow and cause a rapid decline in genetic 

diversity of desert bighorn sheep. Ecol. Lett. 8, 1029–1038 (2005). 
21.  L. Fahrig, T. Rytwinski, Effects of roads on animal abundance: an empirical 

review and synthesis. Ecol. Soc. 14 (2009). 
22.  L. Fahrig, Non-optimal animal movement in human-altered landscapes. Funct. 

Ecol. 21, 1003–1015 (2007). 
23.  T. Rytwinski, L. Fahrig, Do species life history traits explain population responses 

to roads? A meta-analysis. Biol. Conserv. 147, 87–98 (2012). 
24.  A. Suárez‐Esteban, M. Delibes, J. M. Fedriani, Barriers or corridors? The 

overlooked role of unpaved roads in endozoochorous seed dispersal. J. Appl. Ecol. 
50, 767–774 (2013). 

25.  C. M. Buchmann, F. M. Schurr, R. Nathan, F. Jeltsch, Habitat loss and 
fragmentation affecting mammal and bird communities—The role of interspecific 
competition and individual space use. Ecol. Inform. 14, 90–98 (2013). 

26.  J. Whittington, C. C. St Clair, G. Mercer, Path tortuosity and the permeability of 
roads and trails to wolf movement. Ecol. Soc. 9, 4 (2004). 

27.  S. P. D. Riley et al., FAST-TRACK: A southern California freeway is a physical 
and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006). 

28.  A. Benítez-López, R. Alkemade, P. A. Verweij, The impacts of roads and other 
infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 
143, 1307–1316 (2010). 

29.  S. Blake et al., Roadless Wilderness Area Determines Forest Elephant Movements 
in the Congo Basin. PLoS One. 3, e3546 (2008). 

30.  M. F. Proctor et al., Population fragmentation and inter-ecosystem movements of 
grizzly bears in western Canada and the northern United States. Wildl. Monogr. 
180, 1–46 (2012). 

31.  S. R. Loarie, R. J. Van Aarde, S. L. Pimm, Fences and artificial water affect 
African savannah elephant movement patterns. Biol. Conserv. 142, 3086–3098 
(2009). 

32.  K. Jerina, Roads and supplemental feeding affect home-range size of Slovenian red 
deer more than natural factors. J. Mammal. 93, 1139–1148 (2012). 

33.  M. Stillfried et al., Do cities represent sources, sinks or isolated islands for urban 
wild boar population structure? J. Appl. Ecol. (2016). 

34.  J. C. DeVos, M. R. Conover, N. E. Headrick, Mule deer conservation: issues and 
management strategies (Jack H. Berryman Institute Press, Utah State University, 
2003). 

35.  L. Sandoval, J. Holechek, J. Biggs, R. Valdez, D. VanLeeuwen, Elk and Mule 
Deer Diets in North-Central New Mexico. Rangel. Ecol. Manag. 58, 366–372 
(2005). 

36.  C. Peterson, T. A. Messmer, Effects of Winter-Feeding on Mule Deer in Northern 
Utah. J. Wildl. Manage. 71, 1440–1445 (2007). 

37.  C. J. Bishop, G. C. White, D. J. Freddy, B. E. Watkins, T. R. Stephenson, Effect of 
Enhanced Nutrition on Mule Deer Population Rate of Change. Wildl. Monogr., 1–



 
 

3 
 

28 (2009). 
38.  N. Asensio, V. Arroyo‐Rodríguez, J. C. Dunn, J. Cristóbal‐Azkarate, Conservation 

value of landscape supplementation for howler monkeys living in forest patches. 
Biotropica. 41, 768–773 (2009). 

39.  T. Honda, M. Sugita, Environmental factors affecting damage by wild boars (Sus 
scrofa) to rice fields in Yamanashi Prefecture, central Japan. Mammal Study. 32, 
173–176 (2007). 

40.  M. N. Barrios-Garcia, S. A. Ballari, Impact of wild boar (Sus scrofa) in its 
introduced and native range: a review. Biol. Invasions. 14, 2283–2300 (2012). 

41.  N. Bleier, R. Lehoczki, D. Újváry, L. Szemethy, S. Csányi, Relationships between 
wild ungulates density and crop damage in Hungary. Acta Theriol. (Warsz). 57, 
351–359 (2012). 

42.  A. M. Hines, V. O. Ezenwa, P. Cross, J. D. Rogerson, Effects of supplemental 
feeding on gastrointestinal parasite infection in elk (Cervus elaphus): Preliminary 
observations. Vet. Parasitol. 148, 350–355 (2007). 

43.  R. Miller, J. B. Kaneene, S. D. Fitzgerald, S. M. Schmitt, Evaluation of the 
influence of supplemental feeding of white-tailed deer (Odocoileus virginianus) on 
the prevalence of bovine tuberculosis in the Michigan wild deer population. J. 
Wildl. Dis. 39, 84–95 (2003). 

44.  A. Sorensen, F. M. van Beest, R. K. Brook, Impacts of wildlife baiting and 
supplemental feeding on infectious disease transmission risk: a synthesis of 
knowledge. Prev. Vet. Med. 113, 356–363 (2014). 

45.  B. Elmhagen, P. Hersteinsson, K. Norén, E. R. Unnsteinsdottir, A. Angerbjörn, 
From breeding pairs to fox towns: the social organisation of arctic fox populations 
with stable and fluctuating availability of food. Polar Biol. 37, 111–122 (2014). 

46.  J. M. Milner, F. M. Van Beest, K. T. Schmidt, R. K. Brook, T. Storaas, To feed or 
not to feed? Evidence of the intended and unintended effects of feeding wild 
ungulates. J. Wildl. Manage. 78, 1322–1334 (2014). 

47.  V. Penteriani et al., Consequences of brown bear viewing tourism: A review. Biol. 
Conserv. 206, 169–180 (2017). 

48.  R. Kowalczyk et al., Influence of management practices on large herbivore diet—
Case of European bison in Białowieża Primeval Forest (Poland). For. Ecol. 
Manage. 261, 821–828 (2011). 

49.  K. M. Mathisen, J. M. Milner, F. M. van Beest, C. Skarpe, Long-term effects of 
supplementary feeding of moose on browsing impact at a landscape scale. For. 
Ecol. Manage. 314, 104–111 (2014). 

50.  T. M. Newsome, G.-A. Ballard, C. R. Dickman, P. J. S. Fleming, C. Howden, 
Anthropogenic Resource Subsidies Determine Space Use by Australian Arid Zone 
Dingoes: An Improved Resource Selection Modelling Approach. PLoS One. 8, 
e63931 (2013). 

51.  T. M. Newsome et al., Human-resource subsidies alter the dietary preferences of a 
mammalian top predator. Oecologia. 175, 139–150 (2014). 

52.  T. M. Newsome et al., The ecological effects of providing resource subsidies to 
predators. Glob. Ecol. Biogeogr. 24, 1–11 (2015). 

53.  S. M. Cooper, M. K. Owens, R. M. Cooper, T. F. Ginnett, Effect of supplemental 
feeding on spatial distribution and browse utilization by white-tailed deer in semi-



 
 

4 
 

arid rangeland. J. Arid Environ. 66, 716–726 (2006). 
54.  H. Gundersen, H. P. Andreassen, T. Storaas, Supplemental feeding of migratory 

moose Alces alces: forest damage at two spatial scales. Wildlife Biol. 10, 213–223 
(2004). 

55.  K. D. Malcolm et al., Increased stress in Asiatic black bears relates to food 
limitation, crop raiding, and foraging beyond nature reserve boundaries in China. 
Glob. Ecol. Conserv. 2, 267–276 (2014). 

56.  I. Kavčič et al., Fast food bears: brown bear diet in a human-dominated landscape 
with intensive supplemental feeding. Wildlife Biol. 21, 1–8 (2015). 

57.  K. T. Schmidt, H. Hoi, Supplemental feeding reduces natural selection in juvenile 
red deer. Ecography (Cop.). 25, 265–272 (2002). 

58.  S. Prange, S. D. Gehrt, E. P. Wiggers, Influences of anthropogenic resources on 
raccoon (Procyon lotor) movements and spatial distribution. J. Mammal. 85, 483–
490 (2004). 

59.  F. Ossi et al., Plastic response by a small cervid to supplemental feeding in winter 
across a wide environmental gradient. Ecosphere. 8, e01629–n/a (2017). 

60.  J. V López-Bao, F. Palomares, A. Rodríguez, M. Delibes, Effects of food 
supplementation on home-range size, reproductive success, productivity and 
recruitment in a small population of Iberian lynx. Anim. Conserv. 13, 35–42 
(2010). 

61.  J. D. Jones et al., Supplemental feeding alters migration of a temperate ungulate. 
Ecol. Appl. 24, 1769–1779 (2014). 

62.  T. Podgórski et al., Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) 
under contrasting conditions of human pressure: primeval forest and metropolitan 
area. J. Mammal. 94, 109–119 (2013). 

63.  J. H. Quinn, D. A. Whisson, The effects of anthropogenic food on the spatial 
behaviour of small Indian mongooses (Herpestes javanicus) in a subtropical 
rainforest. J. Zool. 267, 339–350 (2005). 

64.  D. J. Becker, D. G. Streicker, S. Altizer, Linking anthropogenic resources to 
wildlife–pathogen dynamics: a review and meta‐analysis. Ecol. Lett. 18, 483–495 
(2015). 

65.  J. M. Kolowski, K. E. Holekamp, Effects of an open refuse pit on space use 
patterns of spotted hyenas. Afr. J. Ecol. 46, 341–349 (2008). 

66.  J. S. Gilchrist, E. Otali, The effects of refuse-feeding on home-range use, group 
size, and intergroup encounters in the banded mongoose. Can. J. Zool. 80, 1795–
1802 (2002). 

 


