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Lipopolysaccharide-induced alteration of mitochondrial
morphology induces a metabolic shift in microglia modulating
the inflammatory response in vitro and in vivo
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Accumulating evidence suggests that changes in the metabolic signature of microglia underlie

their response to inflammation. We sought to increase our knowledge of how pro-inflammatory

stimuli induce metabolic changes. Primary microglia exposed to lipopolysaccharide (LPS)-

expressed excessive fission leading to more fragmented mitochondria than tubular mitochondria.

LPS-mediated Toll-like receptor 4 (TLR4) activation also resulted in metabolic reprogramming

from oxidative phosphorylation to glycolysis. Blockade of mitochondrial fission by Mdivi-1, a

putative mitochondrial division inhibitor led to the reversal of the metabolic shift. Mdivi-1 treat-

ment also normalized the changes caused by LPS exposure, namely an increase in mitochondrial

reactive oxygen species production and mitochondrial membrane potential as well as accumula-

tion of key metabolic intermediate of TCA cycle succinate. Moreover, Mdivi-1 treatment sub-

stantially reduced LPS induced cytokine and chemokine production. Finally, we showed that

Mdivi-1 treatment attenuated expression of genes related to cytotoxic, repair, and immunomod-

ulatory microglia phenotypes in an in vivo neuroinflammation paradigm. Collectively, our data

show that the activation of microglia to a classically pro-inflammatory state is associated with a

switch to glycolysis that is mediated by mitochondrial fission, a process which may be a pharma-

cological target for immunomodulation.
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1 | INTRODUCTION

Microglia contribute to normal brain development, homeostasis, and

respond to pathological conditions by changing their phenotype from sur-

veillance to pro-inflammatory, repair, regenerative, and immunomodulatory

states (Greter, Lelios, & Croxford, 2015; Tay, Savage, Hui, Bisht, &

Tremblay, 2017). Studies of adult and neonatal injury and disease have

conclusively shown that changes in the phenotype of microglia play a role

in almost all forms of neuropathology (Solito & Sastre, 2012). Transcrip-

tome analysis of microglia exposed to inflammatory stimuli revealed
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transient upregulation of important and stimulus-specific metabolic path-

ways (Thion et al., 2018), strongly suggesting that energy metabolism is

modulated during brain inflammation. Microglia activation in response to

stimuli that includes pathogen associated proteins, such as lipopolysaccha-

ride (LPS), is a metabolically energy expensive event (Moss & Bates, 2001).

Mitochondria, which play a central role in energy metabolism, are

dynamic organelles that undergo biogenesis, fission, fusion, and mito-

phagy (autophagic degradation). The balance of these processes

allows the reorganization of mitochondrial components and the elimi-

nation of damaged material, thereby maintaining a healthy mitochon-

drial population (Pickles, Vigie, & Youle, 2018; Wai & Langer, 2016).

Recent studies have linked mitochondrial dynamics to energy demand,

suggesting changes in mitochondrial architecture as a mechanism for

bioenergetic adaptation to inflammation (Nasrallah & Horvath, 2014).

By favoring either elongated or fragmented structures, mitochondria

can regulate bioenergetic ability and thereby cell fate through meta-

bolic programming (Buck et al., 2016). Although mitochondrial mor-

phological changes are observed in response to alterations in

oxidative metabolism (Hackenbrock, 1966), little is known of its role

in microglia activation.

Microglia generate energy via both oxidative phosphorylation

(OXPHOS) and glycolysis (Orihuela, McPherson, & Harry, 2016).

OXPHOS occurs within the mitochondria and is more efficient for

ATP synthesis in comparison to glycolysis. However, the preferential

use of glycolysis over OXPHOS for ATP production enables activated

microglia to produce ATP at a faster rate (Schuster, Boley, Moller,

Stark, & Kaleta, 2015). Enhanced glycolysis supplies biosynthetic

intermediates for cell growth and rapid production intermediates for

cytokine production such as reactive oxygen species (ROS) thereby

enabling effector functions (Chang et al., 2013; Everts et al., 2014). In

macrophages or dendritic cells (DCs), pro-inflammatory stimuli cause

them to undergo a metabolic switch from OXPHOS to glycolysis, a

phenomenon similar to the Warburg effect (Kelly & O'Neill, 2015).

Microglia share many functions and characteristics with macrophages

(Butovsky & Weiner, 2018), but they are from a distinct non-

hematopoietic lineage, and whether a similar switch from OXPHOS to

glycolysis has not been explored in microglia.

We have previously found that both Toll-like receptor (TLR)-

induced inflammation and mitochondrial dysfunction are involved in

the development of neonatal brain injury (Hagberg, Mallard,

Rousset, & Thornton, 2014; Mottahedin et al., 2017). We have also

found that mitochondrial ROS production and inflammation are

increased after neonatal brain injury associated with altered Krebs

cycle and succinate accumulation in the mitochondria (Koning et al.,

2017). Activation of microglia results in an altered Krebs cycle, as a

result of metabolic switch promoting inflammatory gene expression

(Gimeno-Bayon, Lopez-Lopez, Rodriguez, & Mahy, 2014; Leaw et al.,

2017; Orihuela et al., 2016). Katoh et al. found that mitochondrial fis-

sion via the activation of dynamin-related protein 1 (DRP1) (by TLR4

stimulation) increases mitochondrial fission but they did not look in to

metabolism or cytokine production in microglia (Katoh et al., 2017).

Here, we add data on how TLR4 activation affects mitochondrial mor-

phology, energy metabolism, ROS, and cytokine production in micro-

glia. This knowledge is important given the many roles of microglia in

mediating host-defenses and how these processes can mediate injury

to the brain when activation is aberrant and prolonged. ROS signaling

has been demonstrated to result in damage to cell components; at the

same time, ROS production is essential for host defenses (Zhang

et al., 2012).

In this study, we investigated the link between mitochondrial archi-

tecture and metabolic reprogramming in primary microglia after

induction to a prototypical pro-inflammatory activation state via LPS-

mediated TLR4 activation. We also used the putative mitochondrial

fission inhibitor, Mdivi-1 (Cassidy-Stone et al., 2008) to modulate mito-

chondrial dynamics in vitro and in vivo. We found that pro-inflammatory

activation of microglia changes the mitochondrial dynamics including a

metabolic switch from OXPHOS to glycolysis and that Mdivi-1 reverses

these effects and the expected LPS-induced cytokine production and

ROS production in vitro. Furthermore, we investigated the effect of

Mdivi-1 in an in vivo paradigm of neuroinflammation and found that

Mdivi-1 reduced the expression of genes related to cytotoxic, repair, and

immunomodulatory microglia phenotypes.

2 | MATERIALS AND METHODS

2.1 | Animals of in vitro experiments

Pregnant C57BL/6 mice were sourced from Charles River Laboratories

International (Sulzfeld, Germany). C57BL/6J-Tg(CAG-Cox8/EGFP)49Rin

mice (Cox8/EGFP; RBRC02250) expressing endogenous green fluores-

cent protein (GFP) in cytochrome c oxidase, subunit VIIIa of mitochon-

dria (Shitara et al., 2001) were obtained from Riken bio resource center,

Japan. Animals were housed and bred at the Experimental Biomedicine

animal facility (University of Gothenburg, Gothenburg, Sweden) under

specific pathogen free conditions on a 12 hr light/dark 7 cycle with ad

libitum access to standard laboratory chow (B&K, Solna, Sweden) and

water. All experiments were approved by the local ethical committee

at University of Gothenburg (No: 203-2014 and 32-2016) and per-

formed according to the Guidelines for the care and use of Laboratory

Animals.

2.2 | Microglial cell culture

Primary cultures of purified microglia were created from 1 to 3-day-

old C57BL/6 or Cox8/EGFP mice of both sexes, as previously

described (Dean et al., 2010) with minor adaptations. Following

decapitation, the brain was isolated with the meninges removed and

washed in ice-cold Hanks buffered salt solution (HBSS; Sigma-Aldrich,

St Louis, MO) supplemented with 100 U/mL penicillin and 100 μg/mL

streptomycin (Sigma-Aldrich). Forebrains were dissociated by gentle

trituration in Dulbecco's modified Eagle's medium (DMEM; Sigma-

Aldrich) supplemented with 20% heat-inactivated fetal bovine serum

(FBS; Fischer Scientific, Goteborg, Sweden) and antibiotics. The cell

suspension was passed through a 70-μm cell sieve (Falcon, Corning),

plated in 75-cm2 flasks with vented caps (Sarstedt, Germany) at a den-

sity of two brains/flask and cultured undisturbed for 7 days with

HBSS/20% FBS/antibiotics. Medium was then replaced with

HBSS/10% FBS/antibiotics, and cells were cultured for a further

7 days. Microglia were selectively detached from the flasks by shaking
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(3 hr, 37�C, 250 rpm) on a rotary shaker, and the microglia cell sus-

pension was collected and centrifuged (250g × 10 min). The media

were then removed, the pellet was suspended in DMEM/2% FBS/an-

tibiotics, and the number of cells were counted with an automated cell

counter (Scepter; Millipore) and seeded into Seahorse XFe96 or 24 cell

well plates (1 × 105 cells per well). The purity of microglia cells was

evaluated by immunocytochemical staining using antibodies against

ionized calcium binding adapter molecule 1 (Iba1; 1:1000; Wako Pure

Chemical Industries, Ltd., Richmond, VA) and 40 ,6-diamidino-

2-phenylindole (DAPI) (1:1000; Sigma–Aldrich) and was routinely

greater than 99%. All incubations were performed at 37� C in a

humidified atmosphere containing 5% CO2 and 95% air.

2.3 | Sample preparation for microscopy

Primary microglia cells cultured from Cox8/EGFP mice were used for

mitochondrial morphology analysis. Microglia cells were washed with

PBS and plated on precision cover glasses thickness No. 1.5H (tol.

±5 μm) in a 24-well plate, with 1 × 105 cells per well and left to adhere

overnight at 37�C in a cell culture incubator. Cells were fixed with 4%

paraformaldehyde in culture media for 10 min and then mounted in

ProLong Diamond antifade reagent (Life Technologies, Grand Island,

NY) according to the manufacturer's instructions.

2.4 | Live cell imaging

Primary microglia cells were seeded on MatTek (MatTek, Ashland,

MA) glass bottom culture dishes. Following cell adherence, cells were

exposed to DMSO alone (control) or LPS 100 ng/mL for 24 hr or cells

were pretreated with Mdivi-1 (25 μM; Sigma, St. Louis, MO) for 1 hr

followed by LPS (100 ng/mL) exposure for 24 hr. Cells were washed

gently three times with warm PBS. Furthermore, anti-bleaching live

cell visualization medium (DMEMgfp-2, Evrogen) was added to the

cells 30 min before imaging. Images were acquired with a Zeiss LSM

880 Airyscan super-resolution system with live cell capabilities and

fitted with a fast-ASmodule (Carl Zeiss, Oberkochen, Germany).

Microscopes were equipped with an environmental chamber that

maintained 37�C with humidified 5% CO2 gas during imaging.

2.5 | Super-resolution structured illumination
microscopy

Super-resolution structured illumination microscopy (SR-SIM) on a

Zeiss ELYRA PS.1 microscope (Carl Zeiss Microscopy, Germany) was

used to yield a twofold improvement in all spatial directions (Huang,

Bates, & Zhuang, 2009) beyond the classical Abbe-Rayleigh limit. GFP

was imaged using a Plan-Apochromat 100×/1.4 oil objective, an exci-

tation wavelength of 488 nm, and an emission wavelength range of

495–575 nm. The SR-SIM images were acquired as z-stacks with

three angles and five phases in each plane and the z-step between

planes was 3.30 nm. SR-SIM processing was performed using the

Zeiss Zen software package. 3D rendering was done using Volocity

6 (Perkin-Elmer), and figures were compiled using Photoshop CC soft-

ware (Adobe Systems, San Jose, CA).

2.6 | Mitochondrial morphology analysis

Primary microglia were treated with LPS, Mdivi-1, or DMSO as

described previously, and mitochondria were categorized based on

length: fragmented (<1 μm), tubular (1–3 μm), and elongated (>3 μm),

as described previously (Jahani-Asl et al., 2011). Over 20 cells were

analyzed in Control, LPS-treated, LPS plus Mdivi-1 in three indepen-

dent experiments. Volocity 6 was used for 3D rendering and to quan-

tify mitochondrial length, volume, and number.

2.7 | Measurement of oxygen consumption rate and
extracellular acidification rate

Real-time measurements of oxygen consumption rates (OCRs) and

extracellular acidification rates (ECARs), a measure of lactate produc-

tion, were performed on an XFe96 Seahorse extracellular flux analyser

(Seahorse Biosciences, North Billerica, MA). The optimal seeding den-

sity and test compound concentrations were empirically determined

before initiation of experiments. According to the methods described

in the XFe96 Extracellular Flux Analyzer User Manual (Seahorse

Bioscience), preliminary studies were run with carbonyl cyanide-4-(tri-

fluoromethoxy)phenylhydrazone (FCCP) to identify the optimal num-

ber of cells required to observe a sufficient shift in OCR and ECAR.

Once the cell number was decided, we determined the optimal work-

ing concentrations for each of the stimulating compounds used in the

mitochondrial function analysis (oligomycin, FCCP, and rotenone).

Cells were then plated into XFe96 cell culture plates (Seahorse Biosci-

ences, North Billerica, MA) at a density of 10,000/well in 80 μL of

DMEM (Sigma-Aldrich, St Louis, MO). Cells were allowed to adhere

overnight in a 37�C incubator with 5% CO2. Following cell adherence,

cells were exposed to a final concentration of Ultra-pure LPS 50 or

100 ng/mL (Escherichia coli 055: B5, Biological Laboratories, Campbell,

CA) or media alone (control) for 3, 6, or 24 hr. For mitochondrial fis-

sion blocking experiments, microglia cells were pretreated with Mdivi-

1 (25 μM) or DMSO for 1 hr before LPS exposure. Media (80 μL) was

removed followed by the addition of 200 μL XF base media (180 μL)

supplemented with 10 mM glucose, 5 mM pyruvate, and 2 mM gluta-

mine for OCR. For ECAR, only 2 mM glutamine was added following

incubation in a non-CO2 chamber for 1 hr.

The day before the experiment, 200 μL of XF calibration media

was added to the XF sensor cartridges and kept in a non-CO2 incuba-

tor for 24 hr. XF sensor cartridges were loaded with test compounds,

and OCR/ECAR measured. OCR was measured by sequential injec-

tions of oligomycin (1 μM final concentration, blocks ATP synthase to

assess respiration required for ATP turnover), FCCP (carbonyl cyanide

4-trifluoromethoxy-phenylhydrazone, 2 μM final concentration, a pro-

ton ionophore uncoupler inducing maximal respiration), and rotenone

plus antimycin A (1 μM final concentration of each, which completely

inhibits electron transport to measure non-mitochondrial respiration).

ECAR was measured under glucose-starved microglia. Basal gly-

colysis rate was determined by injecting glucose at a final concentra-

tion of 10 mM. For estimating glycolytic capacity, oligomycin was

injected at a final concentration of 5 μM. Finally, 2-deoxyglucose

(2-DG) was injected at a final concentration of 50 mM to measure the

non-glycolytic acidification. Each step had three cycles; each cycle
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consisted of 3 min mixing, 2 min incubation, and 3 min measurement.

All experiments were run in three replicates with 3–4 samples per rep-

licate. Cell counts were used to normalize OCR and ECAR.

2.8 | Multiplex cytokine assay

Bio-Plex Pro Mouse Cytokine Standard 23-Plex kit (Bio-Rad) was used

to measure the concentrations of cytokines/chemokines in microglia-

cultured media following the manufacturer's protocol. Microglia-

conditioned media was collected from microglia samples used in the

OCR and ECAR experiments explained above. Samples were normal-

ized to cell number (1 × 105; 1:10 in diluent buffer) and concentra-

tions of IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p40),

IL-12 (p70), IL-13, IL-17a, eotaxin, granulocyte colony-stimulating fac-

tor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-

CSF), interferon-gamma (IFN-γ), KC/chemokine (C-X-C motif ) ligand

1 (CXCL1), monocyte chemotactic protein-1 (MCP-1)/chemokine (C-C

motif ) ligand 2 (CCL2), macrophage inflammatory protein 1α (MIP-

1α)/CCL3, MIP-1β/CCL4, RANTES, and TNF-α were simultaneously

quantified on a Bio Plex 200 System (Bio-Rad, Sweden), and data pre-

sented as Log10 of cytokine concentrations (picograms per milliliter).

2.9 | Succinate level measurement

Microglia cells were pretreated with vehicle (DMSO), Mdivi-1 (25 μM;

Sigma, St. Louis, MO) for 1 hr or dimethyl malonate (DMM; 10 mM;

Sigma, St. Louis, MO) for 3 hr before stimulation with LPS (100 ng/mL)

for 24 hr. Succinate Colorimetric Assay Kit (Sigma-Aldrich Inc., St Louis,

MO) was used to determine the succinate concentrations according to

the manufacturer's instructions. Microglia cells (1 × 105 cells per well)

were rapidly homogenized on ice in 100 μL of ice-cold succinate assay

buffer and centrifuged at 10,000g for 5 min to remove insoluble mate-

rial. Then, cell homogenates were added into a 96-well plate in duplicate

wells and mixed with reaction mix provided in with the kit, which results

in a colorimetric product proportional to the succinate present. The

resultant mixtures were further incubated at 37�C for 20 min. The suc-

cinate concentration was determined by the standard curve using spec-

troscopy at 450 nm wavelength.

2.10 | Measurement of mitochondrial ROS
production by live cell imaging

Mitochondrial superoxide generation was assessed in live cells using

MitoSOX (Molecular Probes), a fluorogenic dye that is taken up by mito-

chondria, where it is readily oxidized by superoxide (O2
−˙). MitoSOX Red

reagent is a novel fluorogenic dye specifically targeted to mitochondria in

live cells. Oxidation of MitoSOX Red reagent produces red fluorescence

by superoxide but not by other ROS or reactive nitrogen species-

generating systems. Primary microglia cells were seeded on MatTek

(MatTek, Ashland, MA) glass bottom culture dishes (1 × 105cells/dish)

and left to adhere overnight. Following treatments described above, live

microglia were incubated with 5 μM MitoSOX at 37�C for 10 min. Cells

were washed gently three times with warm PBS further anti-bleaching

live cell visualization medium (DMEMgfp−2) was added to the cells

30 min before imaging. Airyscan super-resolution microscopy on a LSM

880 (Carl Zeiss Microscopy, Germany) with an onboard incubator at 37�C

was used to acquire images using a 63× oil objective, an excitation wave-

length of 488 nm. Airyscan-processing was done using the Zeiss Zen soft-

ware package. MitoSox fluorescence was quantified using Volocity 6.

2.11 | Measurement of the mitochondrial membrane
potential by live cell imaging

JC-1 (Molecular Probes) is a cationic dye that exhibits mitochondrial

membrane potential-dependent accumulation in mitochondria, indi-

cated by a fluorescence emission shift from green (~525 nm) to red

(~590 nm). Mitochondrial depolarization is indicated by a decrease in

the red to green fluorescence intensity ratio. The potential sensitive

color shift is due to concentration dependent formation of red fluo-

rescent aggregates. Primary microglia cells were seeded, incubated,

and treated as above. Following LPS exposure, the media was

removed and cells were incubated with JC-1 (2 μM final concentra-

tion) at 37�C, 5% CO2 for 20 min. Cells were washed gently three

times with warm PBS, and further anti-bleaching live cell visualization

medium (DMEMgfp−2) was added to the cells 30 min before imaging.

Images were scanned using an oil immersion, 63×, and 1.3 NA objec-

tive. Samples were excited at wavelength of 488 nm and emission

wavelength of 547 and 617 nm. The confocal pinhole aperture was

set to 50, and the voltage to the photomultiplier tubes of each chan-

nel was maintained at equal values. Illumination was limited to periods

of image acquisition. Images were exactly in phase and represented

the amount of monomeric and J-aggregate JC-1 fluorescence.

2.12 | Effect of Midivi-1 in an in vivo model of
inflammation-mediated damage to the preterm brain

We used a well-characterized paradigm of systemic inflammation driven

neuroinflammation (Favrais et al., 2011; Krishnan et al., 2017; Van Steen-

winckel et al., 2018), which is known to have effects on brain development

and behavior consistent with those reported in infants and children born

preterm (Ball et al., 2017; Raju, Buist, Blaisdell, Moxey-Mims, & Saigal,

2017). Experimental protocols were approved by the institutional guide-

lines of the Institute National de la Santé et de la Recherche Scientifique

(Inserm) France. The treatmentswas carried out as per previously described

in full (Favrais et al., 2011), with a shortened protocol described below.

Assessments of gene expression were made only in male animals as female

animals are not injured in this paradigm, mimicking the male predisposition

to injury observed inmale preterm born infants (Peacock,Marston,Marlow,

Calvert, & Greenough, 2012). Briefly, mice received twice a day from P1

to P2 and once on P3 a 5-μL intra-peritoneal (IP) injection of

10 μg/kg/injection recombinant mouse IL-1β in phosphate buffered saline

(PBS; R&D Systems, Minneapolis, MN), or PBS alone or P1–P3 pups were

co-injectedwith IL-1β and 3mg/kg/injection ofMdivi-1 (IP, 5 μL).

2.13 | Isolation and ex vivo microglia and gene
expression analysis

At P3, brains were collected for cell dissociation and CD11B+ cell sep-

aration using a magnetic coupled antibody anti-CD11B (Miltenyi,

MACS Technology) as previously described in detail (Krishnan et al.,
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2017; Schang et al., 2014; Shiow et al., 2017). Microglia are the pre-

dominant CD11B cell in this model of injury by more than 100-fold

compared with populations of either macrophage or neurtrophil

(Krishnan et al., 2017). Total RNA was extracted from the CD11B+

microglia cells with the RNeasy mini kit (Qiagen, France). RNA quality

and concentration were assessed by spectrophotometry (Nanodrop™,

Thermofisher Scientific, MA). Reverse transcription was achieved with

the iScript™ cDNA synthesis kit (Bio-Rad, France), and RT-qPCR was

performed in triplicate for each sample using SYBR Green Super-mix

(Bio-Rad) as previously described (Chhor et al., 2013). Primers were

designed using Primer3 plus software (see sequences in Supporting

Information Table S1). Specific mRNA levels were calculated after nor-

malization to Rpl13a mRNA (reference gene) based on previous refer-

ence gene suitability testing. The data are presented as relative mRNA

units with respect to the control group (expressed as fold over control

value).

2.14 | Statistics

All statistics are reported as mean ± SEM, performed using GraphPad

Prism 7.0 (GraphPad Software). Significance scores are * for p < 0.05,

** for p < 0.01, *** for p < 0.001, and **** p < 0.0001.

3 | RESULTS

3.1 | LPS exposure induces excessive mitochondrial
fragmentation in microglial cells

Mitochondrial morphology was examined in primary microglia cells

cultured from Cox8-EGFP mice exposed to 50 or 100 ng/mL LPS

using 3D SR-SIM microscopy. The number of fragmented mitochon-

dria was significantly increased in microglia cells stimulated with

100 ng/mL LPS for 24 hr (Figure 1c), and elongated and tubular mito-

chondria were decreased compared with untreated controls

(Figure 1g). These findings are in line with previous studies in BV2

cells (Park et al., 2013) and primary microglia but with a higher dose of

LPS (1 μg/mL) (Katoh et al., 2017). There was no change in the mor-

phology of cells stimulated with 50 ng/mL LPS for 24 hr (Figure 1b,g).

3.2 | LPS induces a switch from oxidative
phosphorylation (OXPHOS) to glycolysis (metabolic
reprogramming) in microglia cells

OCR and ECAR were measured in real time as measures of mitochon-

drial respiration and glycolysis for 50 ng/mL LPS (Figure 2a–c and i–k)

and 100 ng/LPS (Figure 2o–q and w–y), respectively (Wu et al.,

2007), with the Seahorse XFe96. Basal OCR and ATP-linked OCR was

significantly increased in microglia cells following exposure to

50 ng/mL LPS for 6–24 hr compared with controls (Figure 2d,e).

FCCP-induced maximal OCR and spare respiratory capacity (SRC)

decreased, whereas leak-driven OCR significantly increased with

exposure to 50 ng/mL of LPS (Figure 2f–h). The ECAR parameters

(glycolysis, glycolytic capacity and glycolytic reserve) were increased

following exposure to 50 ng/mL LPS for 6–24 hr compared with con-

trols (Figure 2l–n). These results show that a moderate dose of LPS

increases both OCR and glycolysis.

Exposure to 100 ng/mL of LPS for 6 hr resulted in an increase in

basal OCR, ATP-linked OCR, and leak-linked OCR compared with con-

trols (Figure 2r,s). In contrast, there was a significant decrease in basal

OCR and ATP linked OCR at 24 hr after 100 ng/mL LPS (Figure 2r,s,u).

FIGURE 1 Lipopolysaccharide (LPS) induces dose-dependent mitochondrial fragmentation. Super-resolution microscopy reveals excessive

mitochondrial fragmentation (a) control, (b) 50 ng/mL LPS exposure for 24 hr, (c) 100 ng/mL LPS exposure for 24 hr, (d–f ) shows a higher
magnification of the image in the white square in the upper panel. (g) Graphs showing results from an analysis of mitochondria morphology in
primary microglia cells treated with LPS for 24 hr. The data are for at least 12 cells per condition in three independent experiments. Bar graphs
expressed as mean ± SEM. ***p ≤ 0.001; Student's t test calculating the difference between control and LPS treated groups [Color figure can be
viewed at wileyonlinelibrary.com]
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FCCP-induced maximal OCR and SRC significantly decreased at 24 hr

100 ng/mL LPS (Figure 2t,u). Glycolytic parameters increased with

100 ng/mL LPS exposure for 3–24 hr compared with controls

(Figure 2w–y). The overall decrease in OCR and increase in ECAR

parameters with 100 ng/mL LPS for 24 hr indicates a metabolic switch

from OXPHOS to glycolysis.

3.3 | Mdivi-1 treatment blocks LPS-induced
mitochondrial fragmentation and ROS production

Many conserved GTPase proteins are involved in mitochondrial fusion

and fission dynamics such as mitofusins (MFN1 and MFN2) and domi-

nant optic atrophy 1 (OPA1) are needed for the fusion of mitochon-

drial outer and inner membranes (Song, Ghochani, McCaffery, Frey, &

Chan, 2009). DRP1 and mitochondrial fission 1 protein (FIS1) are the

main mitochondrial fission mediators (Frezza et al., 2006). We used

the mitochondrial fission inhibitor Mdivi-1 (Ruiz, Alberdi, & Matute,

2018) as the high (100 ng/mL) dose of LPS induced an increase in

fragmented mitochondria (Figure 3b). We examined the effect of

pharmacologically blocking mitochondrial fission in LPS-exposed

microglia cells cultured from Cox8/EGFP mice by pretreatment with

25 μM Mdivi-1 for 1 hr followed by incubation with LPS (100 ng/mL)

for 24 hr. Results revealed that LPS-induced excessive mitochondrial

fragmentation was significantly inhibited by Mdivi-1 pretreatment and

normalized mitochondrial morphology (Figure 3c). Mdivi-1 treatment

before LPS exposure reduced the number of fragmented mitochondria

and increased the number of tubular and elongated mitochondria to

control levels (Figure 3d).

3.4 | Mdivi-1 treatment normalized OCR and ECAR
in the microglia cells

Because Mdivi-1 restored mitochondrial morphology, we interrogated

its effect on cellular respiration and ECAR-dependent glycolysis and

glycolytic capacity (Figure 4a,b,h,i). Mdivi-1 pretreatment in cells

exposed to LPS (100 ng/mL for 6 hr) exhibited a decrease in the level

FIGURE 2 LPS dependent metabolic shift. Low dose of LPS (50 ng/mL) induces an increase in mitochondrial respiration and glycolysis: 50 ng/mL

LPS treatment shows an increase in basal OCR, ATP-linked OCR (d, e), whereas FCCP-linked maximal OCR (f ) and spare respiratory capacity
(g) decreased from 3 to 24 hr. Leak-driven OCR was also increased from 6 to 24 hr. Glycolytic parameters, based on ECAR, tended to increase from
3 to 24 hr (i–n). Whereas a high dose (100 ng/mL) of LPS induces a time-dependent metabolic shift. 100 ng/mL LPS treatment for 6 hr shows an
increase in basal OCR, ATP-linked OCR, whereas LPS treatment for 24 hr resulted in a decrease of basal and ATP-linked OCR (r, s). FCCP-linked
maximal OCR (t) and spare respiratory capacity (u) decreased from 6 to 24 hr. Leak-driven OCR was increased at 6 hr (v). OCR and ECAR measured
for 3, 6, and 24 hr are expressed in bar graph format as the mean ± SEM n = 9. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; Student's t-test calculating the
difference between control and LPS treated groups. LPS = lipopolysaccharide; OCR = oxygen consumption rate; FCCP = carbonyl cyanide-
4-(trifluoromethoxy)phenylhydrazone; ECAR = extracellular acidification rate [Color figure can be viewed at wileyonlinelibrary.com]

6 NAIR ET AL.

http://wileyonlinelibrary.com


of basal respiration and ATP-linked OCR to control levels compared

with LPS treated cells (Figure 4c,d). Conversely, Mdivi-1 treatment in

cells exposed to 100 ng LPS for 24 hr led to an increase in basal and

ATP-linked OCR compared with non-treated LPS exposed cells

(Figure 4c,d). Mdivi-1 treatment also increased FCCP-induced maximal

OCR at 24 hr and leak-driven OCR compared with LPS exposed cells

at both time points (Figure 4e,f ). Administration of Mdivi-1 in combi-

nation with LPS normalized the spare respiratory capacity (Figure 4g).

ECAR measurements showed that glycolysis and glycolytic capacity

was significantly reduced to control levels in Mdivi-1 treated cells at

6 and 24 hr 100 ng/mL LPS exposure (Figure 4h–k) compared with

LPS exposed cells.

3.5 | Mdivi-1 reduces the LPS induced release of
cytokines and chemokines

To show how LPS activation was inducing an inflammatory reaction in

the primary microglia and to test whether this was effected by Mdivi-

1, we measured cytokine and chemokine response in microglia condi-

tioned media after treatment with of LPS and or Mdivi-1 (Supporting

Information Figures S1 and S2). As expected both doses of LPS led to

a significant upregulation of essentially all cytokines and chemokines

compared with controls. In general, there was much higher cytokine

production in microglia exposed to 100 ng-24 hr LPS conditioned

media compared with 50 ng-24 hr LPS. We next determined if block-

age of mitochondrial fission also modulated LPS-induced expression

of cytokine and chemokine mediators. Mdivi-1 significantly reduced

the pro-inflammatory cytokines (IL-1α, IL-6, TNF-α, IL-12(p40)), che-

mokines (G-CSF, CCL5, RANTES), and anti-inflammatory cytokines

(IL-10, IL-13) and the chemokines (monocyte chemotactic protein

1 (MCP-1 β), in response to 100 ng/mL of LPS for 24 hr. The LPS-

induced production of IL-2, IL-5, and MIP1 α were not significantly

reduced by Mdivi-1 (Figure 5).

3.6 | Mdivi-1 suppresses LPS-induced succinate
production

Succinate is a well-established pro-inflammatory metabolite that is

known to accumulate during LPS-induced macrophage activation

(Mills et al., 2016), but the role of succinate during microglia activation

needs further investigation. We found that LPS (100 ng/mL) resulted

in a significant increase of succinate (Figure 6a) accompanying the

expression of pro/anti-inflammatory cytokines and chemokines.

Mdivi-1 pretreatment (Figure 6a) or blocking succinate production by

succinate dehydrogenase inhibitor (DMM, 10 mM) (Figure 6b) normal-

ized succinate production. These results were further strengthened by

FIGURE 3 Pharmacologic blockade of DRP1 by Mdivi-1 re-established mitochondrial morphology. Mdivi-1 pretreatment (25 μm) for 1 hr

followed by LPS (100 ng/mL) exposure for 24 hr resulted in a decrease of fragmented mitochondria and an increase in tubular and elongated
mitochondria (d). (a) Control cells treated with vehicle (DMSO), (b) LPS (100 ng/mL) exposure for 24 hr, (c) LPS (100 ng/mL) + Mdivi-1. Bar
graphs expressed as mean ± SEM. The data are for at least 12 cells per condition in three independent experiments. **p ≤ 0.01; ***p ≤ 0.001;
Student's t-test calculating the difference between LPS and LPS + Mdivi-1 groups. DRP1 = dynamin-related protein 1; LPS = lipopolysaccharide
[Color figure can be viewed at wileyonlinelibrary.com]
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the fact that treatment with DMM or scavenging ROS production

with NAC (10 mM, 30 min) recapitulated the effects of Mdivi-1

(Figure 5) by reducing pro/anti-inflammatory cytokines and chemo-

kine release (Supporting Information Figure S3). Excessive fission

results in fragmented mitochondria and causes a metabolic shift in

microglia (Khacho et al., 2014) from OCR to ECAR. This may result in

increased succinate production which in turn acts as a feedback loop

to amplify aberrant mitochondrial fission (Lu et al., 2018).

3.7 | Inhibition of mitochondria fission by Mdivi-1
suppresses mitochondrial ROS production

Mitochondrial ROS plays an important role in LPS-induced immune

responses (Park et al., 2015). To examine the role of ROS production

after LPS stimulation, mitochondrial ROS (mtROS) was measured with

MitoSOX, a mitochondrial superoxide indicator. The fluorescence

intensity of MitoSOX increased 24 hr after the LPS stimulation

(100 ng/mL, 24 hr) (Figure 7). Treatment with Mdivi-1 (25 μM, 1 hr)

before LPS exposure abolished the increase in MitoSOX fluorescence

intensity observed 2 hr after the LPS stimulation. These results indi-

rectly show that that mitochondrial fission (induced by TLR4 stimula-

tion) increases ROS production as shown in this study and others

(Katoh et al., 2017; Park et al., 2013).

3.8 | Mdivi-1 treatment attenuated LPS induced
increase of mitochondrial membrane potential

Our data suggest that after LPS (100 ng/mL) exposure for 24 hr

microglia mainly depended on glycolysis for energy production. There-

fore, we investigated the mitochondrial membrane potential using the

mitochondrial membrane potential probe JC-1 in these conditions.

We found that there was a consequent elevation of mitochondrial

FIGURE 4 Mdivi-1 treatment reversed the metabolic shift. Inhibition of DRP1 by Mdivi-1 resulted in reduced basal OCR and ATP-linked OCR at

6 hr, whereas Mdivi-1 increased basal OCR and ATP-linked OCR at 24 hr compared with 100 ng/mL LPS exposure (c, d). LPS induced reduction
in FCCP-induced maximal respiration and leak-driven OCR at 24 hr, which was normalized by Mdivi-1 (e, f ). The LPS-evoked drop in SRC was
prevented by Mdivi-1 (g). Mdivi-1 normalized LPS-induced increased ECAR dependent glycolysis and glycolytic capacity (j, h). OCR and ECAR
measured for 3, 6, and 24 hr are expressed in bar graph format as the mean ± SEM, n = 6–9. ***p ≤ 0.001; Student's t-test calculating the

difference between LPS and LPS + Mdivi-1 treated groups. DRP1 = dynamin-related protein 1; LPS = lipopolysaccharide; OCR = oxygen
consumption rate; FCCP = carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; ECAR = extracellular acidification rate; SRC = spare
respiratory capacity [Color figure can be viewed at wileyonlinelibrary.com]
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membrane potential and treatment with Mdivi-1 significantly reduced

mitochondrial membrane potential (525/565 nm) ratio compared with

LPS treated group (Figure 8).

3.9 | Mdivi-1 treatment attenuated microglial
activation in a mouse paradigm of neuroinflammation

Based on our working hypothesis that Mdivi-1 can reduce the inflam-

matory reaction of microglia, we sought to investigate the potential

for Mdivi-1 to reduce the activation of microglia in vivo (Favrais et al.,

2011; Krishnan et al., 2017). We isolated microglia from the brains of

animals at P3 following induction of systemically driven neuroinflam-

mation and con-current treatment with Mdivi-1 from P1 to P3. We

analyzed the isolated microglia for gene expression of markers associ-

ated with functional phenotypes including cytotoxic (Nos2, Ptgs2,

Cd32), repair and regeneration (Arg1, Lga3, Igf1), and immunomodula-

tory (Il1ra, Il4a, Socs3) phenotypes. Exposure to neuroinflammatory-

stimuli affected the gene expression as expected (Krishnan et al.,

2017), with increased expression of all of the genes except for the

gene for IGF1, which was decreased. IGF1 is a pleotropic growth fac-

tor necessary for myelonogenesis and known to be decreased by pro-

inflammatory microglial activation (Wlodarczyk et al., 2017). Mdivi-1

FIGURE 5 Mdivi-1 treatment abolished lipopolysaccharide (LPS) induced exaggerated pro/anti-inflammatory cytokine and chemokine response.

Microglia cells were pretreated with Mdivi-1 (25 μM) for 1 hr followed by LPS (100 ng/mL) for 24 hr, and microglial cells were collected and
analyzed by 23-plex cytokine assay. Heat maps show cytokine concentration (pg/mL). KC = keratinocyte chemoattractant. n = 8 *p ≤ 0.05;
**p ≤ 0.01; ***p ≤ 0.001; Student's t-test calculating the difference between LPS and LPS + Mdivi-1 treated groups [Color figure can be viewed
at wileyonlinelibrary.com]

FIGURE 6 (a) Mdivi-1 normalized lipopolysaccharide (LPS) induced succinate upregulation. Microglia cell homogenates of cells were analyzed by

succinate colorimetric assay. Microglia cells were pretreated with Mdivi-1 (25 μM; 1 hr) followed by LPS exposure of 100 ng LPS for 24 hr
resulted in significant downregulation of LPS induced succinate upregulation. Bar graph expressed as the mean ± SEM, n = 8. *p ≤ 0.05;
Student's t-test calculating the difference between LPS and LPS + Mdivi-1 treated groups. (b) Succinate dehydrogenase inhibitor recapitulated
the effects of Mdivi-1. Pretreatment with dimethyl malonate (DMM, 10 mM; 3 hr) before LPS exposure attenuated succinate accumulation. Bar
graph format as the mean ± SEM, n = 9. *p ≤ 0.05, Turkeys post hoc test using one-way ANOVA revealed difference between control, control +
DMM, LPS, and LPS + DMM treated groups [Color figure can be viewed at wileyonlinelibrary.com]
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treatment normalized to control (PBS) levels the expression of genes

associated with cytotoxicity and immunomodulation, but had no

effect on IGF1 gene expression, and only partly recovered Galectin-3

gene expression (Lgal3), indicating that exposure to Mdivi-1, which

inhibits mitochondrial fragmentation, modulates the microglial inflam-

matory response also in vivo (Figure 9).

4 | DISCUSSION

This study strengthens our knowledge of the links between mitochon-

drial architecture, inflammation, and energy metabolism in microglial

cells. We have shown that activation of microglia to a pro-

inflammatory activation state increased mitochondrial fragmentation,

which was accompanied by a reduction in oxidative phosphorylation

and an increase in glycolysis, which was dose and time dependent.

Pretreatment with the putative mitochondrial division inhibitor,

Mdivi-1, normalized LPS-induced mitochondrial fragmentation,

normalized the cellular respiration and glycolysis to control levels.

Mdivi-1 greatly reduced LPS-induced cytokine production normalized

LPS-induced ROS production and mitochondrial membrane potential.

Neuroinflammation includes complex changes in microglial phe-

notypes, mediated by gene expression changes leading to the produc-

tion of cytokines and chemokines and production of ROS. Altogether

this triggers oxidative and nitrosative stress in the brain (Bolouri et al.,

2014; Hellström Erkenstam et al., 2016). We observed as expected

that LPS-activated microglia produced a plethora of chemokines and

cytokines and ROS. In this pro-inflammatory scenario, suppression of

LPS-induced mitochondrial ROS plays a role in modulating the

production of pro-inflammatory mediators by preventing MAPK and

NF-κB activation suggesting a potential therapy for inflammation-

associated degenerative neurological diseases (Park et al., 2015).

FIGURE 7 Mdivi-1 treatment abolished lipopolysaccharide (LPS)-

induced mitochondrial reactive oxygen species production.
(a) Control, (b) 100 ng/mL LPS exposure for 24 hr, (c) LPS + Mdivi-1,
(d) graphs showing results from an analysis of mitosox fluorescence
by live cell airyscan microscopy. The data are for at least 12 cells per
condition in three independent experiments. Bar graphs expressed as
mean ± SEM. **p ≤ 0.01; Student's t-test calculating the difference
between control LPS and Mdivi-1 treated groups [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 8 Mdivi-1 treatment attenuated lipopolysaccharide (LPS) induced increase of mitochondrial membrane potential: (a–c) control, (d, f)
100 ng/mL LPS exposure for 24 hr, (g, i) LPS + Mdivi-1. Graphs showing results from an analysis of JC1 fluorescence 525/565 nm by live cell
airyscan microscopy. The data are for at least six cells per condition in three independent experiments. Bar graphs expressed as mean ± SEM.
**p ≤ 0.01, ***p ≤ 0.001, Student's t-test [Color figure can be viewed at wileyonlinelibrary.com]
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To understand LPS-induced changes in mitochondrial structure,

we used high-resolution 3D ELYRA-SIM (Shim et al., 2012) to quantify

mitochondrial morphology which revealed that high-dose LPS for

24 hr increased fragmentation. A low dose of LPS caused an initial

increase in OCR which was not accompanied by any change in mito-

chondrial morphology. However, a higher dose of LPS induced a

decrease of OCR and a further increase of ECAR accompanied by

mitochondrial fission. Fragmented mitochondria constitute the pre-

ferred morphological state when respiratory activity is low

(Westermann, 2012). A high or moderate dose of LPS caused a

decrease in respiration, and cells became dependent on glycolysis

favoring excessive fragmentation. The molecular mechanisms behind

this response is not known, but it has been proposed that the energy

depletion elicits mitochondrial fragmentation and subsequent mito-

phagy (Youle & van der Bliek, 2012). Increased mitochondrial frag-

mentation due to excessive fission can exacerbate the inflammatory

response of microglia (Ho et al., 2018) through modulation of DRP1

de-phosphorylation and elimination of ROS (Park et al., 2016). We

chose to use Mdivi-1, a mitochondrial division inhibitor, to study

microglial metabolism as it related to mitochondrial morphology as

previous studies revealed that LPS exposure in microglia cells leads to

activation of mitochondrial fission protein DRP1 (Katoh et al., 2017;

Park et al., 2013).

Mdivi-1 is a widely accepted DRP-1 mediated mitochondrial fis-

sion inhibitor used in many studies (Baek et al., 2017; Peiris-Pagès,

Bonuccelli, Sotgia, & Lisanti, 2018; So, Hsing, Liang, & Wu, 2012; Xie

et al., 2013). Our data supports the assertion that changes in mito-

chondrial dynamics may be needed for the expression of inflammatory

mediators in activated microglia cells. Mdivi-1 has previously been

shown to attenuate LPS-induced ROS and pro-inflammatory mediator

production in a BV-2 microglial cell line (Park et al., 2013) with a very

high dose of 1 μg/mL. BV2 cells are similar to primary microglia (Henn

et al., 2009), but they contain oncogenes that render them phenotypi-

cally different with regard to, for example, proliferation and adhesion

(Horvath, Nutile-McMenemy, Alkaitis, & Deleo, 2008). Our findings

not only show that pretreatment with Mdivi-1 reduced LPS-induced

FIGURE 9 (a) Schematic representation of the testing of the effects of Mdivi-1 on neuroinflammation induced microglial gene expression in vivo.

(b) Mdivi-1 prevented many of the neuroinflammation (IL-1β-induced) alterations in gene expression. Relative gene expression of Ptsg2, Cd32,
Nos2, Lgal3, Igf1, Arg1, Il4ra, Il1rn, and Socs3 were assessed by qRT-PCR from MACS isolated CD11b + microglia from P3 mice. Protein names
for the genes are shown in brackets on the panels. The legend indicates that the first bar (blue) is the control (PBS injected group), the middle bar

(red) is the neuroinflammatory challenge group, and that the right bar (green) is the group challenged with neuroinflammation but also treated
with Mdivi-1. The dotted line highlights the gene expression in the control group. Results are expressed as the mean ± SEM. There are 10–15
data points from three independent experiments per group. Data were analyzed with a Kruskal–Wallis ANOVA, p < 0.001 with a Dunn's test for
comparison among groups: **p < 0.01, ***p < 0.001, ****p < 0.0001 [Color figure can be viewed at wileyonlinelibrary.com]
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mitochondrial fragmentation and expression of pro-inflammatory

mediators but also normalized mitochondrial function in microglia.

These data support the suggestion that increasing the fusion/fission

ratio reduces the extent of neuroinflammation (Kim, Lee, Park, Kim, &

Roh, 2016). To further support the potential validity of targeting fis-

sion as a therapeutic strategy, we tested the ability of Mdivi-1 to

modify microglial activity in vivo. We used a paradigm of systemically

driven neuroinflammation, wherein an IP injection of the inflammatory

agent interleukin-1β induces a highly complex neuroinflammatory

reaction involving microglia (Krishnan et al., 2017; Van Steenwinckel

et al., 2018). Supporting our in vitro data mdivi-1 was able to reduce

the expression of genes associated with classically pro-inflammatory

genes and the anti-inflammatory activation state, which is associated

with the in vivo inflammatory reaction.

Previous work with BV2 demonstrated that LPS causes an inhibi-

tion of OXPHOS (Voloboueva, Emery, Sun, & Giffard, 2013). How-

ever, this study used a very high dose of LPS (1 μg/mL) which is

shown to elicit mitochondrial toxicity (Ahn et al., 2012). We demon-

strate for the first time that a low or moderate dose of LPS (50 ng/mL)

results in an increase of ATP-linked OCR and basal respiration in sup-

port of another study in skeletal muscle cells where they used a very

low dose of LPS in isolated mitochondria (Frisard et al., 2015). High

dose of LPS (100 ng/mL) caused a decrease in FCCP-induced maximal

respiration and an increase in leak-driven respiration. A depletion of

spare respiratory capacity was found at 6 and 24 hr following LPS

exposure. However, we have noted no significant difference in cell

viability or death after LPS.

OCR exhibited a biphasic response characterized initially by an

increase of OCR in response to low LPS and then a marked drop of

OCR after moderate to high doses of LPS, whereas ECAR increased in

proportion to the dose of LPS. We interpret the initial increase of

OCR as a means to match an increased demand of ATP. However, as

the pro-inflammatory stimulus becomes stronger, it appears favorable

to shift from mitochondrial respiration to aerobic glycolysis (Warburg

effect) to promote more rapid ATP production (Kelly & O'Neill, 2015;

Orihuela et al., 2016) and synthesis of inflammatory mediators such as

cytokines/chemokines and ROS (Kelly & O'Neill, 2015). We believe

the Warburg effect is an important concept for understanding meta-

bolic changes occurring during microglial activation. It is shown that

also activation of macrophages or DCs with LPS induces a metabolic

switch from OXPHOS to glycolysis (Krawczyk et al., 2010). Metabolic

shift may be facilitated by increased mitochondrial fission and/or

reduced fusion mediated by DRP1 activation (Baker, Maitra, Geng, &

Li, 2014). However, as glycolysis is less efficient at producing ATP

than OXPHOS, this metabolic reorientation cannot solely be to meet

energy demands. Glycolysis may also facilitate cytokine production by

producing intermediate metabolites (Mills et al., 2016). A previous

study found that glycolysis was required to produce optimal IFN-γ

during T cell activation and is translationally regulated by the binding

of the glycolysis enzyme GAPDH to IFN-γ mRNA (Chang et al., 2013).

Our results in microglia add to what has already been shown in

DCs and macrophages (Williams & O'Neill, 2018), specifically that pro-

inflammatory activation resulted in increased succinate accumulation.

In DCs and macrophages, this succinate accumulation was related to

an altered Krebs cycle and this was normalized by Mdivi-1. Aberrant

mitochondrial fission alters the Krebs cycle, by interfering with the

processes after citrate and after succinate (Jha et al., 2015) by reduc-

ing of cytochrome c oxidase and succinate dehydrogenase activity

(Zhang et al., 2013). Impaired succinate dehydrogenase activity results

in succinate accumulation due to impaired succinate to fumarate con-

version (Mills et al., 2016). Accumulated succinate drives reverse elec-

tron transport (RET) to generate excessive mitochondrial ROS

production (Chouchani et al., 2014; Niatsetskaya et al., 2012). Our

data support this link between accumulation of succinate and ROS

production, which was prevented by Mdivi-1.

LPS induced an increase in proton leak with an increase in mem-

brane potential. Proton leak is partly mediated by uncoupling proteins

(UCPs) present in the mitochondrial inner membrane (Hass & Barnsta-

ble, 2016; Krauss, Zhang, & Lowell, 2005). It is shown that in primary

microglia LPS induces an increase in UCP2 levels and membrane

potential. UCP2-silenced microglia stimulated with LPS show a

decrease in membrane potential (De Simone et al., 2015). In macro-

phages LPS stimulation repurpose their mitochondria from ATP pro-

duction to succinate-dependent ROS generation, with glycolysis

taking on the role of ATP generation. In this case, mitochondria sus-

tain a high membrane potential because protons generated by the

electron transport chain to make ATP are no longer being consumed

by mitochondrial ATP synthase (Mills et al., 2016). Macrophages can

also reorganize their respiratory chain in response to a bacterial infec-

tion, decreasing Complex I levels and increasing the activity of Com-

plex II (Garaude et al., 2016). These changes boost production of pro-

inflammatory cytokines such as interleukin 1β (IL-1β). Our data sup-

port these findings as normalizing mitochondrial membrane potential

and ROS production with Mdivi-1 abolished pro- and anti-

inflammatory cytokine and chemokine release.

Aberrant activation of microglial affects neurodegenerative pro-

cesses through various neurotoxic cascades. We have shown that

pro-inflammatory microglial activation alters cellular bioenergetics by

inducing mitochondrial dysfunction and promoting a switch to glycoly-

sis, supported by excessive mitochondrial fragmentation, and

increased cytokine output. This is likely an adaptive mechanism as the

transition of sensing and surveying microglia into an activated state is

likely to be accompanied by significantly increased energy consump-

tion. Preventing excessive mitochondrial fission in microglial cells

stimulated with LPS using a fission inhibitor Mdivi-1 normalizes mito-

chondrial respiration and glycolysis and attenuates the release of

cytokines/chemokines. These lines of in vitro morphological and func-

tional data and the in vivo data suggest that regulating mitochondrial

dynamics may be a useful therapeutic modality for preventing neuro-

logical disorders caused by aberrant microglia activation.
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