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Abstract 23 

Syringomyelia is a common and chronic neurological disorder affecting Cavalier King Charles 24 

Spaniels. The condition is putatively painful, but evaluating the affective component of chronic pain 25 

in non-human animals is challenging. Here we employed two methods designed to assess animal 26 

affect – the judgement bias and reward loss sensitivity tests – to investigate whether Cavalier King 27 

Charles Spaniels with syringomyelia (exhibiting a fluid filled cavity (syrinx) in the spinal cord of ≥2mm 28 

diameter) were in a more negative affective state than those without the condition. Dogs with 29 

syringomyelia did not differ in age from those without the condition, but owners reported that they 30 

scratched more (P<0.05), in line with previous findings. They also showed a more negative 31 

judgement of ambiguous locations in the judgement bias task (P<0.05), indicating a more negative 32 

affective state, but did not show a greater sensitivity to loss of food rewards. These measures were 33 

unaffected by whether the dog was or was not receiving pain-relieving medication. Across all 34 

subjects, dogs whose owners reported high levels of scratching showed a positive judgement bias 35 

(P<0.05), indicating that scratching was not directly associated with a negative affective state. Tests 36 

of spontaneous behaviour (latency to jump up to or down from a 30cm high platform) and 37 

physiology (thermography of the eye) did not detect any differences. These results provide initial 38 

evidence from the judgement bias task that syringomyelia may be associated with negative affect in 39 

dogs, and open the way for further and larger studies to confirm findings and investigate the effects 40 

of medication in more detail. 41 
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1. Introduction 46 

Syringomyelia is a neurological disorder commonly affecting Cavalier King Charles Spaniels (CKCSs) 47 

(Parker et al., 2011, Rusbridge et al., 2006). It involves the formation of syrinxes (fluid filled sacs) in 48 

the spinal cord, secondary to an obstruction in the flow of cerebrospinal fluid (CSF) (Rusbridge et al., 49 

2006).  In CKCSs, this is usually due to a Chiari-like malformation which is a developmental change to 50 

skull and cranial cervical vertebrae morphology characterized by rostro-caudal bony insufficiency 51 

(Rusbridge 2004). A consequence is that the brain and cervical spinal cord are overcrowded in the 52 

skull, especially at the cranio-cervical junction, leading to obstruction of the foramen magnum and 53 

CSF channels. These obstructions to CSF flow are thought to play a critical role in the aetiology of 54 

syringomyelia (Cross et al. 2009; Cerda-Gonzalez et al. 2009; Knowler et al. 2017a,b). In an MRI 55 

study of asymptomatic CKCSs, 46% were found to have syringomyelia upon MRI, rising to 70% in 56 

dogs aged six years or older (Parker et al., 2011).  57 

Syringomyelia in dogs is thought to cause chronic neuropathic pain (Rusbridge et al., 2006). 58 

Reported clinical signs that may indicate pain include frequent scratching of the caudal head and 59 

neck area. However ‘phantom scratching’ towards one shoulder or neck region without skin contact 60 

is not necessarily associated with pain (Nalborczyk et al., 2017). Other signs include spinal 61 

hyperaesthesia (aversion to being touched especially in the cervical and thoracolumbar regions) and 62 

vocalisations resembling “screaming” after sudden head movements, when rising, and when the 63 

dogs is lifted under the sternum (Rusbridge and Knowler, 2004). Syringomyelia also occurs in 64 

humans, often as the result of a Chiari type-1 malformation similar to that seen in dogs (Todor et al., 65 

2000). 50-90% of human patients report pain as a prominent feature (Todor et al., 2000),with 66 

around 40% reporting unpleasant burning, tingling or stretching sensations (Milhorat et al., 1996) 67 

that are often “overwhelming and pervasive” (Todor et al., 2000). Similarities in pathogenesis 68 

between humans and dogs with syringomyelia, the fact that pain is a central characteristic of the 69 

disease in humans, and the nature of the spontaneous behavioural signs seen in dogs, strongly 70 

suggest that syringomyelia can be painful in this species. However, not all dogs show these 71 



behaviours, even when MRI scans indicate the presence of syringomyelia (Parker et al., 2011), so 72 

questions remain as to whether, for example, these dogs are in pain despite not exhibiting any signs. 73 

Measures designed to assess affective state may help to address these important uncertainties. 74 

Assessing the affective experience of pain in dogs, or any other non-human species, is far from 75 

straightforward because ultimately we cannot be certain about the private subjective experiences or 76 

feelings of such species (e.g. see Paul et al., 2005, Mendl et al. 2010). Even in humans we have to 77 

rely on the indirect measure of linguistic report as our ‘gold standard’. Nevertheless, if we take the 78 

‘componential view’ that affective or emotional states comprise subjective, behavioural, and 79 

neurophysiological elements (e.g. Paul et al., 2005), we are able to measure the latter two 80 

components objectively. Many current methods of pain assessment in animals, such as nociceptive 81 

threshold testing and reflex responses (Mogil et al., 1999, Roughan and Flecknell, 2001, Sneddon et 82 

al., 2003) focus on the sensory and nociceptive aspects of pain (i.e. the detection and encoding of 83 

nociceptive stimuli) and how these change in chronic pain conditions (Mogil 2009), rather than the 84 

affective component (i.e. the impact of the noxious stimulus on the animal’s emotional state). In 85 

clinical practice, pain assessment in dogs is often performed via subjective observation of, or 86 

validated scoring systems for, spontaneous behavioural signs thought to be associated with pain 87 

(Firth and Haldane, 1999, Brodbelt et al., 1997, Mathews et al., 2001). However, it is unclear 88 

whether the observed variability in propensity to display such behavioural signs (Firth and Haldane, 89 

1999) is due to genuine variation in pain experienced, or whether some dogs are merely less likely to 90 

display behavioural signs than others. 91 

Measuring the affective component of pain in chronic conditions such as syringomyelia is thus 92 

challenging (Mogil and Crager, 2004) but important. Here, we employ two measures that have 93 

previously been used to detect changes in animal affective valence (positivity/negativity); judgement 94 

bias and reward loss sensitivity. The judgement bias paradigm provides an empirical proxy measure 95 

of affective valence by assessing an animal’s interpretation of an ambiguous cue (Harding et al., 96 



2004). It is based on findings from human psychology studies (Paul et al., 2005) and theoretical 97 

arguments (Mendl et al., 2010a) that individuals in a negative affective state are more likely to make 98 

negative (‘pessimistic’) interpretations of ambiguous stimuli than those in a more positive state, and 99 

has successfully detected negative judgement biases in conditions likely to induce negative affect in 100 

species including rats (Harding et al., 2004; Burman et al., 2008a; Enkel et al., 2010; Papciak et al., 101 

2013), sheep (Doyle et al., 2011), pigs (Murphy et al., 2015), humans (Paul et al., 2011; Schick et al., 102 

2013; Iigaya et al., 2016) and dogs (Mendl et al., 2010). There is also evidence in dogs that positive 103 

judgement biases occur following manipulations designed to induce a more positive affective state 104 

(Kis et al., 2015; Karagiannis et al., 2015). In a study of calves, negative judgement biases were seen 105 

between 6-22h after disbudding, which is likely to be painful and by which time the effects of local 106 

anaesthesia would have worn off (Neave et al., 2013). Here we use the paradigm to investigate 107 

whether negative judgement biases are observed in CKCSs with syringomyelia. 108 

We also use a reward loss sensitivity paradigm. Unexpected omission of an expected reward is 109 

known to cause behavioural and physiological changes in a wide range of mammalian species (Papini 110 

and Dudley, 1997, Papini, 2003), and it is known that humans in a negative affective state show 111 

increased sensitivity to loss of reward (Rolls, 2016). Human patients with depression showed 112 

increased error-related negativity (brain event-related potentials that occur after an error is made) 113 

compared to healthy controls (Chiu and Deldin, 2007), as did people with greater negative affect as 114 

assessed by questionnaire (Hajcak et al., 2004). An animal’s sensitivity to loss of reward can be 115 

measured using the successive negative contrast method (SNC; Flaherty 1999) by training it to run to 116 

a point at which it receives the reward, and then unexpectedly decreasing the amount of reward 117 

given. Burman et al. (2008b) found that rats raised in an enriched environment but then housed in a 118 

barren environment showed a more prolonged response to the unexpected decrease in food reward 119 

(their latency to approach the low reward remained higher for more successive trials) than rats 120 

raised and housed in an enriched environment, suggesting that removal of enrichment induced an 121 

increased sensitivity to reward loss indicative of a negative affective state. SNC effects have been 122 



demonstrated in dogs (Bentosela et al., 2009, but see Reimer et al., 2016) but without studying the 123 

effects of putative background affective state on response to a loss of reward. Here we employ a 124 

runway task similar to that used for rats to assess whether dogs with syringomyelia show a stronger 125 

slowing response to reward loss than control dogs.  126 

We also use tests of physiological change and spontaneous behaviour that may provide further 127 

information about nociceptive and/or affective changes. We measure eye temperature as this has 128 

previously been used as an indicator of acute pain in other species. Stewart et al. (2008) found that 129 

calves dehorned without local anaesthetic initially displayed an initial transient decrease in eye 130 

temperature followed by a prolonged increase. Sheep showed increased eye temperature following 131 

ischaemic damage to the forelimb (Stubsjøen et al., 2009), and elk showed increased eye 132 

temperature following antler removal (Cook et al. 2006). If eye temperature measurement 133 

correlates with the presence of syringomyelia or with negative judgement bias, it offers a more 134 

convenient proxy measure of pain or distress. Additionally, since owners often describe a reluctance 135 

for dogs with syringomyelia to jump up or to climb stairs, we measure the latency for dogs to jump 136 

up to and down from a surface in exchange for a reward to assess whether syringomyelia affects the 137 

dogs’ mobility. We also use owner reports of frequency of scratching performed by dogs in their 138 

home environment in order to assess the severity of spontaneous behavioural signs of 139 

syringomyelia. 140 

 141 

 142 

2. Materials and Methods 143 

2.1. Animals 144 

Ethics approval was granted by the University of Bristol, UIN number UB/12/010. 27 CKCSs were 145 

recruited using Clare Rusbridge’s website http://clarerusbridge-news.blogspot.co.uk/. Eligible dogs 146 

were purebred Cavalier King Charles spaniels that had had a MRI scan of the head and neck in the 147 

http://clarerusbridge-news.blogspot.co.uk/


last two years. Dogs that were known to have other medical conditions causing neurological signs, 148 

scratching or pain were excluded, as were dogs with grade III or greater mitral valve disease. It was 149 

not possible to exclude dogs with medication (e.g. NSAIDs, corticosteroids, opioid or gabapentin 150 

analgesics), since medical treatment is commonly initiated as soon as signs of syringomyelia become 151 

apparent. Neither was it possible to withhold medication during the study, as this may exacerbate 152 

the dogs’ pain or discomfort and thus would be ethically unacceptable. 153 

Dogs were diagnosed with syringomyelia (SM) if their MRI results revealed a fluid-filled cavity 154 

(syrinx) within the spinal cord parenchyma with an internal transverse diameter greater than or 155 

equal to 2mm. Of the 27 dogs recruited, 11 were diagnosed with syringomyelia and 16 were free 156 

from syringomyelia. 11 dogs (7 diagnosed with SM on MRI and 4 diagnosed as free from SM) were 157 

on medication, and 16 (4 diagnosed with SM and 12 diagnosed as free from SM) were not taking 158 

medication. This discrepancy is probably because dogs may be put on medication due to behavioural 159 

signs of SM rather than following MRI, and around a quarter of dogs that display clinical signs of SM 160 

have no signs of a syrinx on MRI (Loderstedt et al., 2011).  161 

Signalment data (e.g. age, sex, medication) and scratching scores as recorded on a Visual Analogue 162 

Scale (VAS) by owners, were collected via questionnaire prior to visiting the dog at its home. Data 163 

were collected in owners’ homes by AC and veterinary student Audrey Dupont in the following 164 

order: eye temperature recording, judgement bias testing, reward loss sensitivity testing, and jump 165 

up/jump down latency. 166 

 167 

2.2. Scratching score 168 

Owners were given instructions on completing VAS assessments and shown an example. Owners 169 

were then asked “Please indicate the extent to which your dog scratches its shoulder, neck or face:” 170 

upon a 100mm line between “Never” on the left and “Very frequently” on the right. The position 171 



marked by the owner was measured in millimetres from the leftmost point and was expressed as a 172 

visual analogue score (VAS) between 0 (“Never”) and 100 (“Very frequently”). 173 

 174 

2.3. Eye temperature recording 175 

Eye temperature was recorded by taking a thermal image of the dog at an emissivity of 0.96 from 50 176 

centimetres away.  An audible toy was used to attract the dog’s attention to the camera.  When the 177 

dog was standing straight, facing the camera and in focus a thermal image was taken and maximum 178 

temperature of the eye found using ThermaCAM reporter 2000 Professional software.  179 

 180 

2.4. Judgement bias test 181 

To measure cognitive bias the equipment was assembled as in Fig. 1.  Five pre-determined locations, 182 

4m in front of the dog’s fixed starting location were marked on the floor, or the maximum possible 183 

arena size in smaller rooms.  The baited positive (P) and un-baited negative (N) location were 184 

randomly assigned such that P could be on the left or right of the dog and N in the other position. 185 

The methodology was identical to that reported by Mendl et al. (2010b).  Dogs were held behind a 186 

barrier by an experimenter (AD) while a food bowl was baited with three small pieces of food 187 

(Cheddar cheese), or not baited.  The bowl was placed at N (if not baited) or P (if baited) and the 188 

barrier lifted to release the dog (Fig. 1).  The latency to reach the bowl was recorded (capped at 30 189 

seconds). 190 

During the training phase, the first four trials were 2 positive (P) followed by 2 negative (N) trials.  If 191 

the dog did not approach the bowl within 30s, the experimenter tapped the side of the bowl to 192 

encourage the dog to approach.  Following this, negative and positive trials were presented in a 193 

pseudorandom order, with no more than three trials of the same type presented consecutively.  The 194 

learning criterion was reached when for the preceding 5 positive and 5 negative trials the dog was 195 



always quicker to P than N. If the dog had not reached the learning criterion within 50 trials, the dog 196 

did not progress to the next phase of the study. 197 

During the testing phase, dogs were presented with non-reinforced probe trials, performed 198 

identically to the training trials but with unbaited bowls placed in one of three intermediate 199 

ambiguous locations; near positive (NP), middle (MID), or near negative (NN) (see Fig. 1).  Each 200 

testing location (NP, MID and NN) was presented twice (6 probe trials in total), ordered pseudo-201 

randomly such that all 3 testing locations were presented during both the first 3 probe trials and the 202 

last 3 probe trials, and interspersed with 2 or 4 trials with a baited bowl placed at P or an unbaited 203 

bowl at N.  Following the 6 probe trials, a baited bowl was presented at the negative location as a 204 

‘false negative’ and the latency recorded, to test if dogs were using olfactory cues to indicate reward 205 

location.   206 

 207 

2.5. Sensitivity to reward loss test 208 

Using the same arena setup as the cognitive bias task, the bowl at P was then baited with a single 209 

small piece of food that was one quarter of the size of the initial pieces used (i.e. one twelfth of the 210 

initial quantity).  Twelve consecutive trials were run to location P as previously, and trials were 211 

stopped if the dog did not go to the bowl on 3 successive trials. Following the test, a final trial was 212 

carried out in which an unbaited ‘false positive’ bowl was presented at the positive location, in order 213 

to assess whether the dog was using olfactory cues to discriminate between baited and unbaited 214 

bowls.  This was done by comparing the latency to the unbaited bowl with the average latency to the 215 

baited bowl at P during the judgement bias task. 216 

 217 

2.6. Jump up/jump down test 218 



To record jump-up latency, a 60cm (length) x 60cm (width) x 30cm (height) pouffe footstool was 219 

placed on the floor 1m away from the dog.  A piece of food was dropped into a bowl on top of the 220 

footstool and the dog was then released to allow it to jump up on to the stool and consume the 221 

food. The dog was allowed a maximum of 20 seconds to retrieve the food, and its latency to do so 222 

was recorded.  An average latency was calculated over 3 repeats of this test.  The technique was 223 

then repeated to assess jump-down latency. The dog placed on the footstool and the baited bowl on 224 

the floor 1m away, and the latency for the dog to jump down from the footstool to reach the bowl 225 

was recorded over 3 repeats of the test. 226 

 227 

2.7. Data preparation and statistical analysis 228 

For the judgement bias test, latencies (seconds) to each probe location were calculated and 229 

averaged across the two repeats per location.  Mean latencies to the P and N locations were 230 

calculated from the 3 trials preceding, and all trials during, the testing phase.  Dogs had different 231 

baseline running speeds to the positive and negative bowl and some arena sizes were slightly 232 

smaller than standard (4m by 3m) due to limitations of testing in the owner’s home.  To control for 233 

this when comparing SM and SM-free dogs, an adjusted latency (ia) was calculated to give a score for 234 

each probe (ambiguous) trial relative to each dog’s average speed to the baited (P) and unbaited (N) 235 

bowls, using the formula: 236 

ia = ((i-p)/(n-p)) * 100 237 

Where ‘p’ is the mean latency to the positive bowl, ‘n’ is mean latency to the negative bowl and ‘i’ 238 

the absolute latency to the intermediate bowl on that trial.  239 

 240 

During the reward-loss sensitivity task, for trials on which the bowl was not visited and trials that 241 

were stopped before 12 trials were complete, the latency to reach each bowl was coded as 30s (the 242 



maximum time given to dogs to approach the bowl). Each dog’s mean latency to the P location, 243 

calculated as described above, was subtracted from its latency to the bowl on each trial as a 244 

measure of the increase in approach latency relative to baseline.  245 

 246 

Data were analysed using IBM SPSS Version 23. For each dataset, relevant assumptions for 247 

parametric tests were checked including, as appropriate, Shapiro-Wilk tests of normality, Levene’s 248 

tests of homogeneity of variance and Mauchly’s tests of sphericity. Where assumptions were not 249 

met, logarithmic transformations of the data were initially performed. If these were unsuccessful 250 

(e.g. for unadjusted latencies to approach the bowl in the judgement bias task; latency data in the 251 

reward-loss sensitivity task), nonparametric alternatives (e.g. Friedman test, Mann-Whitney U test, 252 

Spearman rank correlation) were used. Other details of statistical tests are given with their relevant 253 

results.  254 

 255 

 256 

3. Results 257 

3.1. Signalment, scratching score, and arena size 258 

21 dogs (78%) completed the judgement bias task (8 dogs with SM and 13 without). Fourteen dogs 259 

were female (67%; 5 with SM and 9 without SM) and seven dogs were male (33%; 3 with SM and 4 260 

without SM).  The mean age of dogs that completed the judgement bias task was 65 ± 9.5 months 261 

(5.4 ± 0.8 years). There was no difference in age between dogs with SM (median 69 (IQR 45-80.25) 262 

months) and dogs without SM (median 51 (IQR37-76.5); Mann-Whitney U test U=38.5, z=-0.978, 263 

p=0.336). Owners reported significantly higher scratching scores in SM dogs than in SM-free dogs 264 

(U=23, z=-2.161, p=0.037; Fig. 2). 265 

Arena sizes varied between owner homes but there was no significant correlation between the area 266 

of the arena and the mean adjusted latency to all 3 probe locations (ϱ=-0.107, n=21, p=0.645) or the 267 



mean increase in latency across all trials during the reward loss sensitivity task (ϱ=0.158, n=21, 268 

p=0.495). Furthermore, there was no significant difference between the areas of arenas used for 269 

dogs with and without SM (U = 41.5, z=-0.786, p=0.456). 270 

 271 

3.2. Judgement bias test 272 

All dogs reached criterion during the training phase of the judgement bias task in a median of 21 273 

trials (IQR 18.5-27), and SM diagnosis did not affect learning speed (SM: median 25 (IQR 19.25-29.5); 274 

SM-free: median 21 (IQR 17-22.5); U=34.5, z=-1.274, p=0.21). In the testing phase, unadjusted 275 

latency data (n=21; SM and SM-free dogs pooled) were used in a within-subjects analysis to 276 

investigate whether dogs discriminated between P and N locations and how this generalised across 277 

ambiguous locations. Bowl location affected latency (Friedman’s test: Χ2=47.42, n=21, p<0.001), with 278 

dogs reaching the P location fastest, N location slowest, and showing intermediate latencies to the 279 

NP, MID and NN locations, indicating that they had learnt the task (Fig. 3). 280 

To compare responses of SM and SM-free dogs to the ambiguous probe locations (Bateson & Nettle 281 

2015; Bateson et al. 2015), adjusted latency data were used to control for differences in individual 282 

running speed and arena size. A mixed model ANOVA was constructed with adjusted latency as the 283 

dependent variable, SM (presence/absence) and medication (medicated/unmedicated) as between-284 

subject variables, ambiguous bowl location (near positive, middle and near negative) as a within-285 

subjects variable, and scratching VAS score as a continuous covariate. Medication was then removed 286 

from the initial model as it had no significant effect (F1,16=2.520, p=0.132), and the model was 287 

recalculated using the remaining factors. 288 

There was no significant effect of location on adjusted latency to reach the bowl (F2,34=1.395, 289 

p=0.262) and no significant interactions with bowl location (p>0.05). There were significant effects of 290 

SM diagnosis (F1,17=5.201, p=0.036) and scratching score (F1,17=6.098, p=0.02) with SM dogs (Fig. 4a) 291 



and dogs who scratched less (Fig. 4b) being slower to move to the ambiguous locations. Fig 4b 292 

indicates that this latter relationship was stronger in SM dogs than SM-free dogs, although this was 293 

not significant (scratching score * SM diagnosis interaction (F1,17=1.107, p=0.307)). 294 

 295 

3.3. Reward loss sensitivity test 296 

Food reward was reduced from 3 pieces of cheese to 0.25 pieces on trial 1, and for all subsequent 297 

trials. Testing was stopped for four dogs (2 with SM: stopped after trials 9,11; 2 without SM: stopped 298 

after trials 6,10) who failed to visit the bowl on 3 consecutive trials. There was no difference 299 

between SM diagnosis groups in the number of trials completed (U= 48, z=-0.422, p=0.804). Latency 300 

to approach the bowl relative to baseline (mean latency to the P location) was strongly affected by 301 

trial (Friedman test: X2=79.42, n=21, p<0.001) indicating a decrease in speed to move to the bowl 302 

across trials, especially between the first 3 and later trials (Fig. 5). To minimise multiple comparisons 303 

of the effects of diagnosis on relative increase in latency to the bowl, data for each individual were 304 

averaged across blocks of trials (1-3, 4-6, 7-9, 10-12). There were no significant differences in 305 

increase in latency between SM and SM-free dogs, or between medicated and non-medicated dogs, 306 

during any trial block (Mann-Whitney U-tests, p>0.05 for all).  307 

 308 

3.4. Tests of the use of olfaction to detect the food reward 309 

There was no significant difference between latencies to reach the positive and false positive bowls 310 

(Wilcoxon test Z=-0.608, n=21, p=0.543). The latency to reach the false negative bowl (median 30 311 

(IQR 20.05-30)) was actually greater than that to reach the negative bowl (median 20.65 (IQR 15.13-312 

27.81), Z=-2.133, n=21, p=0.033), indicating that dogs were not using olfactory stimuli to detect and 313 

preferentially approach when food was present.  314 

 315 



3.5. Syrinx size 316 

For dogs with SM, mean syrinx size was 4.20 ± 0.97mm (n=5; exact syrinx size was unknown for 317 

three dogs diagnosed with SM following MRI). Syrinx size was not significantly correlated with VAS 318 

scratching score (ϱ=-0.5, N=5, p=0.391) or with the mean adjusted latency to all 3 probe locations in 319 

the judgement bias task (ϱ=-3.59, N=5, p=0.553). Dogs without SM all had a syrinx size of 0mm and 320 

were not included in these analyses. 321 

 322 

3.6. Eye temperature 323 

A t-test revealed no significant difference in eye temperature (t(19) = 0.122, p=0.904) between dogs 324 

with SM (34.69±0.262°C) and dogs without SM (34.73±0.256°C). Furthermore, there was no 325 

significant correlation between eye temperature and mean adjusted latency to all 3 probe locations 326 

in the judgement bias task (r=-0.118, N=21, p=0.611). 327 

 328 

3.7. Jump up/jump down test 329 

There were no significant differences between diagnosis groups in the mean latencies (s) to jump up 330 

onto or down off the footstool (jump up: SM median 1.84 (IQR 2.41-7.75); SM-free median 4.17 (IQR 331 

2.62-7.7); U=39.0, z=-4.13, p=0.717; jump down: SM median 3.87 (IQR 1.3-2.5); SM-free median 1.98 332 

(IQR 1.78-3.23); U=32.0, z=-0.991, p=0.322)). Age correlated positively with both latency to jump up 333 

(ϱ=0.505, N=19, p=0.027) and latency to jump down (ϱ=0.486, N=19, p=0.035). Both latencies were 334 

strongly positively correlated with each other (ϱ=0.767, N=19, p<0.001). 335 

 336 

 337 

4. Discussion 338 



Dogs achieved performance criterion on the judgement bias task in a median of 21 trials. A within-339 

dog analysis of unadjusted running speed showed that they successfully discriminated the P and N 340 

locations, and responded to the intermediate locations as predicted if making a spatial 341 

generalisation of the location-reward contingency. To compare how dogs with syringomyelia (SM) 342 

and SM-free dogs responded to the ambiguous locations, latencies were adjusted to account for the 343 

effects of individual differences and varying test arena sizes on baseline running speed to P and N 344 

locations. Dogs with syringomyelia were significantly slower relative to their baseline running speed 345 

to reach the ambiguous bowls than SM-free dogs, indicating a relatively negative judgement of 346 

ambiguous stimuli. This is in line with other studies demonstrating that putative negatively valenced 347 

affective states, including pain, induce negative judgement biases (e.g. Harding et al., 2004, Burman 348 

et al., 2008a, Mendl et al., 2010b, Neave et al., 2013). Olfactory detection of food rewards was 349 

unlikely to have influenced these results because, in tests of this possibility, dogs ran just as fast to 350 

an unbaited bowl in the positive location as they did to a standard baited bowl in this location, and 351 

actually ran more slowly to a baited bowl in the negative location than to a standard unbaited bowl 352 

in this location. This latter result may have occurred because the ‘false negative’ trials were 353 

performed some time after those used to calculate mean running time to the N location, and hence 354 

dogs would have had further time to learn that bowls in the negative location did not contain food.  355 

Dogs with syringomyelia had higher owner-reported scratching VAS scores than SM-free dogs, in line 356 

with the finding that scratching is a commonly-reported sign of SM (Plessas et al., 2012). It was 357 

hypothesised that increased scratching would indicate increased severity of SM, and thus that it 358 

would correlate negatively with affective state, and hence be associated with increased latency to 359 

reach the ambiguous bowl locations. However, the results of this study show that higher scratching 360 

VAS scores were associated with shorter rather than longer latencies to approach ambiguous bowl 361 

locations, suggestive of a relatively positive affective state. One possible explanation is that 362 

scratching functions to relieve discomfort caused by SM, as is known to occur with acute itch 363 

(Davidson et al., 2009), and hence decreased distress in this way.  364 



Another possibility is that much of the scratching reported by owners was phantom scratching and 365 

that this is not directly related to pain. Phantom scratching has been shown to be associated with 366 

MRI findings of a large syrinx extending into the mid cervical superficial dorsal horn. The action is 367 

very similar to fictive scratching which occurs in animals with severed spinal cords (Sherrington 368 

1906) and it is hypothesised that it is not a behavioural response to a perceived discomfort but due 369 

to damage to a population of spinal cells which influence the lumbosacral central pattern generator 370 

(Nalborcyk et al. 2017). The possibility that the VAS scratching score primarily reflected phantom 371 

scratching could explain why dogs who had a higher score did not also show a negative judgement 372 

bias, but not why they showed a more positive judgement bias. Since the scratching score used in 373 

this study did not allow discrimination between phantom scratching and scratching in which the dog 374 

makes contact with the body, it was not possible to investigate this possibility further.  375 

In the reward loss sensitivity test, dogs increased their latency to move to the positive bowl location 376 

after the available reward had been decreased to a quarter of its previous size. In the absence of an 377 

appropriate control group, it is not possible to determine whether they also showed a successive 378 

negative contrast (SNC) effect and slowed their responding in comparison to those who had always 379 

been presented with the smaller reward size. Bentosela et al. (2009) observed such an effect, but 380 

Reimer et al. (2016) failed to replicate it. However, the aim here was to investigate whether SM dogs 381 

showed a stronger response to reward loss than SM-free dogs, as observed in depressed compared 382 

to non-depressed humans (Chiu and Deldin, 2007, Hajcak et al., 2004) and rats in unenriched 383 

compared to enriched housing (Burman et al., 2008b). There was no evidence of this effect. As 384 

concluded by Reimer et al. (2016), further work is required to determine whether this type of test 385 

can: (i) generate SNC effects; (ii) identify whether dogs in putatively different affective states show 386 

different sized SNC effects, including when used under non-laboratory conditions. 387 

There were no significant differences in eye temperature between dogs with and without SM, and 388 

no correlation between eye temperature and judgement bias scores. This is possibly because studies 389 



that have detected a pain-related increase in eye temperature have done so following acute or 390 

evoked pain (Stewart et al., 2008, Stubsjøen et al., 2009, Cook et al., 2006). Dogs with SM are 391 

thought to have chronic neuropathic pain (Plessas et al., 2012), which may not cause increases in 392 

eye temperature in the same way. Additionally, CKCSs are predisposed to a wide range of 393 

ophthalmic disorders (Belknap et al., 2015), and thus their ocular blood flow and eye conformation 394 

may differ anatomically and physiologically to that of the wild-type ancestors of dogs, potentially 395 

affecting their eye temperature variation in response to pain. Therefore, the use of eye temperature 396 

measures as indicators of pain may have limitations in this breed. 397 

There was also no difference in latency to jump up or down from a footstool between dogs with and 398 

without syringomyelia. It thus appears that the dogs recruited for this study did not have 399 

significantly impaired mobility, or a lowered threshold of movement-induced pain (as measured by 400 

reluctance to jump), due to their syringomyelia. Although older dogs did have increased latencies to 401 

jump up or down, there was no significant difference in the ages of dogs with and without 402 

syringomyelia in this study. Older dogs are more likely to have osteoarthritis (Henrotin et al., 2005), 403 

which is known to impair mobility (Wernham et al., 2011). Dogs diagnosed with painful conditions 404 

like this were excluded from the study, but it is possible that undiagnosed osteoarthritis may have 405 

been present, and may have caused the increase in latency to jump up and down in older dogs. 406 

Most dogs with SM (and some found not to have SM following MRI) in this study were on 407 

medication. This included drugs to reduce CSF pressure and thus treat SM directly (omeprazole and 408 

cimetidine). In addition, some dogs were receiving medication to treat pain associated with the 409 

condition such as nonsteroidal analgesics (mavacoxib, carprofen), corticosteroids, opioid analgesics, 410 

and gabapentinoid analgesics (gabapentin, pregabalin). Many dogs were on various combinations of 411 

these drugs so it was not possible to assess their effects individually, and furthermore it was not 412 

possible to withhold medication during the study for ethical reasons. However, the presence or 413 

absence of medication did not have any effect on latency to approach any of the ambiguous bowls 414 



or on reward-loss sensitivity. This suggests that the differences seen between SM and SM-free dogs 415 

in this study were not caused by medication, and implies that they occurred as a result of 416 

syringomyelia itself. Our findings might also indicate that, even with medication, some SM dogs may 417 

have been experiencing a negative affective state, implying that medication may not always fully 418 

control the effects of syringomyelia. This is in line with the findings of Plessas et al. (2012) who 419 

observed that clinical signs of 75% of dogs diagnosed with syringomyelia continued to worsen 420 

following diagnosis and medical treatment, such that 14.6% were euthanased prior to study 421 

completion due to clinical signs of neuropathic pain. It thus appears there is an unmet need for more 422 

effective treatments of syringomyelia in CKCSs. 423 

Whilst it is possible that the negative affective state implied by the negative judgement bias 424 

observed in this study was due to neuropathic pain caused by syringomyelia (Plessas et al., 2012), it 425 

could also be due to other clinical signs associated with the disease. In humans, whilst 50-90% of 426 

syringomyelia patients report pain, many also report a sensation of burning, tingling or stretching of 427 

the skin (Todor et al., 2000) which could cause discomfort in dogs too. Human patients sometimes 428 

experience impaired proprioception (Masur et al., 1992) which, if present in dogs, may cause 429 

negative affective states by interfering with perceived behavioural control. People with Chiari 430 

malformation have a high incidence of sleep apnoea (Gagnadoux et al., 2006) that causes restless 431 

sleep and decreased quality of life (McArdle et al., 2001). If this occurs in dogs, it may induce similar 432 

negative states. Therefore, whilst pain is a very common feature of syringomyelia in humans 433 

(Milhorat et al., 1996) that causes a negative emotional state (Hummel et al., 2008, Gaskin et al., 434 

1992), there are other seemingly unpleasant features of human syringomyelia that, if also present in 435 

dogs, may cause or contribute to negative affect. 436 

 437 

5. Conclusion 438 



This study provides a first indication that CKCSs with syringomyelia display a relatively negative 439 

judgement of ambiguity compared to SM-free dogs, suggesting that syringomyelia induces a 440 

negative affective state. Further confirmation of these results is required in studies with larger 441 

sample sizes that may be able to address some of the alternative explanations listed above and, 442 

importantly, allow the effects of medication to be more carefully analysed. Should such studies 443 

generate similar findings, they will indicate that changes to breeding and showing practices could 444 

allow selection to decrease the risk of syringomyelia and the negative affective states that may 445 

accompany it.446 
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Figure legends 611 

Figure 1:  Plan view of the set-up for Judgement Bias testing, including the two training locations, P 612 

and N, and the three ambiguous locations, NP, MID and NN. The standard arena length between 613 

start point and bowl location was 4m, with 3m between the P and N locations. However, some 614 

arenas were smaller than this. 615 

Figure 2: Scratching scores of dogs with and without SM. Box-plots show medians, quartiles and 616 

ranges. Data points are indicated if they are greater than 1.5 (circle) or 3 (asterisk) inter-quartile 617 

ranges away from the upper or lower quartile. 618 

Figure 3: Median unadjusted latency to reach each bowl location in the judgement boas test. Box-619 

plots show medians, quartiles and ranges. Data points are indicated if they are greater than 1.5 620 

(circle) inter-quartile ranges away from the upper or lower quartile. Pairwise Dunn-Bonferroni test 621 

significant differences (p<0.005 for all) were found between locations that do not share any of the 622 

same letter superscripts. 623 

Figure 4: (a) Mean (+/- sem) adjusted latency to reach ambiguous bowls in SM and non-SM dogs. 624 

Data from all three ambiguous bowls are pooled as no significant effect of bowl location was found. 625 

(b) Mean adjusted latency to reach ambiguous bowls against scratching score for each dog. SM dogs 626 

are shown as filled circles, and SM-free dogs as open circles. Lines represent linear regression 627 

functions for each diagnosis, defined as y=85.43-0.76x (R2= 0.471) for dogs with SM (solid line) and 628 

y=37.49-0.31x (R2= 0.116) for dogs without SM (dashed line). 629 

Figure 5: Increase in latency to move to food bowl relative to baseline across all 12 trials of the 630 

Reward loss sensitivity test. Box-plots show medians, quartiles and ranges. Data points are indicated 631 

if they are greater than 1.5 (circle) or 3 (asterisk) inter-quartile ranges away from the upper or lower 632 

quartile. Pairwise Dunn-Bonferroni test significant differences (p<0.05 for all) were found between 633 

trials that do not share any of the same letter superscripts. 634 


