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Abstract 
 

The clinical application of cardiosphere-derived cells (CDCs) to treat cardiac 

disease has gained increasing interest over the past decade. Recent clinical trials 

confirm their regenerative capabilities, although much remains to be elucidated 

about their basic biology. To develop this new treatment modality, in a cost 

effective and standardised workflow, necessitates the creation of cryopreserved 

cell lines to facilitate access for cardiac patients requiring urgent therapy. 

Cryopreservation may however lead to alterations in cell behaviour and potency. 

The aim of this study was to investigate the effect of cryopreservation on canine 

CDCs. CDCs and mesenchymal stem cells (MSCs) isolated from five dogs were 

characterized. CDCs demonstrated a population doubling time that was 

unchanged by cryopreservation (fresh versus cryopreserved; 57.13 ± 5.27 h versus 

48.94 ± 9.55 h, P = 0.71). This was slower than for MSCs (30.46 h, P < 0.05). The 

ability to form clones, self-renew and commit to multiple lineages was unaffected 

by cryopreservation. Cryopreserved CDCs formed larger cardiospheres compared 

to fresh cells (P < 0.0001). Fresh CDCs showed a high proportion of CD105+ 

(89.0% ± 4.98) and CD44+ (99.68% ± 0.13) cells with varying proportions of CD90+ 

(23.36% ± 9.78), CD34+ (7.18% ± 4.03) and c-Kit+ (13.17% ± 8.67) cells. CD45+ 

(0.015% ± 0.005) and CD29+ (2.92% ± 2.46) populations were negligible. 

Increasing passage number of fresh CDCs correlated with an increase in the 

proportion of CD34+ and a decrease in CD90+ cells (P = 0.003 and 0.03 

respectively). Cryopreserved CDCs displayed increased CD34+ (P < 0.001) and 
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decreased CD90+ cells (P = 0.042) when compared to fresh cells. Overall, our 

study shows that cryopreservation of canine CDCs is feasible without altering their 

stem characteristics, thereby facilitating their utilisation for clinical trials.  

 

Key Terms 
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Introduction 
 

Non-ischemic dilated cardiomyopathy (DCM) is the second most common cardiac 

disease of dogs, accounting for 10% of canine cardiac diagnoses (1). DCM is a 

heterogeneous disease of the canine myocardium that demonstrates breed specific 

characteristics at pathological and clinical levels (2). An underlying genetic basis has 

been proposed in a number of breeds, including the Doberman and Boxer, where the 

disease has been studied in detail and shown to be both common and severe with a 

cumulative prevalence in European Dobermans >8 years of age of 44% (2–7). Two 

distinct histopathological variations of canine DCM have been described; attenuated wavy 

fibre type and fibro-fatty infiltration type (7). Fibro-fatty infiltration is considered analogous 

to arrhythmogenic right ventricular cardiomyopathy (ARVC) in humans because of the 

comparable pathological changes and clinical presentation between the two species (8–

12). Although the pathophysiologic mechanism underlying ARVC remains unclear, it is 

thought to include molecular pathways involved in the formation of mechanical and 

electrical coupling, apoptosis, and migration and differentiation of epicardial-derived cells 

(13). The electrical uncoupling together with fibro-fatty replacement of the myocardium 

are considered primary substrates for arrhythmia and sudden cardiac death is a frequent 

consequence (10). Dogs that survive develop progressive ventricular dilation and systolic 

dysfunction leading to congestive heart failure (12,14). Similar to humans, treatment 

options are limited and directed towards controlling clinical signs but do not promote 

myocardial repair or ultimately reduce disease progression.  
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Since the discovery that the adult heart had regenerative ability there has been increasing 

interest in the therapeutic use of adult cardiac stem cells (15,16). Multiple populations of 

cardiac progenitor cells have been isolated, such as side population cells, stem-cell 

antigen positive cells (Sca-1+), c-Kit+ (also known as CD117) cells, Islet-1+ cells, 

cardiospheres and cardiosphere-derived cells (CDCs) (17–23). CDCs in particular have 

drawn much attention since there is mounting evidence they contribute to myocardial 

repair (22,24–27). Phase 1 clinical trials in humans have shown improved cardiac function 

using autologous CDCs (28,29). Allogeneic CDC therapy was shown to be safe, with 

marginal improvement in cardiac function, in a small clinical trial in Dobermans with DCM; 

however, there was no increase in survival time (30). 

 

CDCs represent a heterogeneous cardiac stem cell population with the ability to form 

clones, self-renew and commit to multiple lineages including smooth muscle, myocardium 

and endothelium (25,31,32). CDCs are isolated from an intermediate cell population of 

cardiospheres which have been generated using various methods, including plating of 

cardiac outgrowth cells on poly-D-lysine coated wells (21,33), the use of forced 

aggregation on low attachment surfaces (25,30), aggregation plates and the hanging drop 

method (32).  Cardiospheres are then cultured on plastic to form a monolayer of CDCs, 

which can be readily passaged and expanded to clinically useful cell numbers (28).  

 

The development of a cost effective and efficient clinical treatment would necessitate the 

creation of cell banks for allogeneic applications, where cardiac stem cells from donor 

dogs could be cultured, characterised, assessed for endotoxins, purity and subsequently 
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cryopreserved. The aim of this work was to investigate the immunophenotype and basic 

cellular characteristics of canine CDCs prior to and following cryopreservation. 
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Materials and Methods 
 

Tissue preparation 

Canine tissue was obtained immediately post-mortem from five cadavers with owners’ 

informed consent following approval by the Royal Veterinary College Ethics and Welfare 

Committee (Approval number: URN 2013 1246). Donors were aged 0.5, 4, 5, 5 and 6 

years. Full thickness atrial tissue was aseptically removed and placed in chilled cardiac 

explant medium (CEM) consisting of Iscove’s Modified Dulbecco’s Medium (IMDM), 10% 

foetal bovine serum (FBS), 1% L-glutamine, 1% penicillin-streptomycin (P/S) (all from 

Thermo Fisher Scientific) and 0.1 mmol/L 2-mercaptoethanol (2-ME) (Sigma-Aldrich). 

Subcutaneous adipose tissue was harvested from the popliteal region and placed in 

mesenchymal stem cell media (MSCM) consisting of high glucose (4.5 g/L) Dulbecco’s 

Modified Eagle’s Medium (DMEM) (Thermo Fisher Scientific) supplemented with 10% 

FBS and 1% P/S.  

 

Preparation of Cardiosphere-derived Cells 

Atrial tissue was minced into <1 mm3 explants and washed with Dulbecco’s Phosphate-

Buffered Saline (DPBS) (Thermo Fisher Scientific). The explants were digested in 0.2% 

trypsin and 0.1% collagenase IV (both from Thermo Fisher Scientific) three times for 5 

min each at 37°C. After the final digestion, explants were placed in 5 mL of CEM for 5 min 

and then transferred onto fibronectin (Thermo Fisher Scientific) coated 25 cm2 tissue 

culture flasks (Greiner Bio One) with 2-3 explants per flask. These were allowed to adhere 

for 30-60 min, after which 5-7 mL of CEM media was added and incubated in standard 

tissue culture conditions (37°C and 5% CO2 in humidified air) to allow a stromal-like cell 
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layer to emerge as an outgrowth from the explants over a period of 3-7 days, during which 

time phase-bright cells appeared above the cell monolayer (21,31,33). Cells were 

detached with TrypLE Express (Thermo Fisher Scientific) and plated at a density of 1 x 

105/cm2 on Ultra-Low Attachment flasks (ULA) (Corning) in CEM containing 10% FBS. 

Once cardiospheres had formed over 5-7 days, they were collected and seeded onto 

fibronectin coated flasks to yield cardiosphere-derived cells (CDCs) in CEM with 20% 

FBS. Cells were passaged at 60-80% confluence by washing twice with DPBS and 

incubating with 0.25% trypsin (Thermo Fisher Scientific) for 5 min in tissue culture 

conditions. Trypsin was inactivated by adding an equal volume of CEM and cells 

centrifuged at 400g for 7 min. CDCs were cryopreserved in CellBanker 2 medium (AMS 

Biotechnology Ltd.) at a density of 1-2 x 106/mL and temperature decrease of -1°C/min in 

a freezing container (Mr Frosty, Thermo Fisher Scientific) to -80°C. CDCs were 

transferred to liquid nitrogen storage after 24 h. 

 

 

Preparation of Mesenchymal Stem Cells 

Canine adipose-derived mesenchymal stem cells (MSCs) were isolated as previously 

described (34–36). This cell type was used for comparison since they can be readily 

obtained, cultured and is the most comprehensively characterized canine adult stem cell. 

Briefly, tissue samples were washed twice with 5 mL of DPBS, finely minced with scissors 

and then incubated with 0.2% collagenase IV at 37°C with mild agitation (40 rpm) for 45 

min. The resulting suspension was filtered through a 70µm nylon cell strainer (Corning) 

and centrifuged at 1,000g for 10 min. The supernatant was discarded and the cell pellet 
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re-suspended in 1 mL of MSCM. Cells were counted by Trypan blue (Sigma-Aldrich) dye 

exclusion and seeded onto 25 cm2 tissue culture flasks at a density of 3-5 x 104 cells/cm2. 

These were incubated in tissue culture conditions. After 24 h unattached cells were 

removed with two DPBS washes. Cells were passaged and cryopreserved as described 

for CDCs. Both fresh and cryopreserved MSCs were used for analysis, since 

cryopreservation has been shown to not alter their stem characteristics (37). 

 

Cellular assays were performed on at least three donor (biological) samples with three 

technical replicates for each donor sample. 

 

Antibody staining for flow cytometry 

Cryopreserved cells were rapidly thawed at 37°C, re-suspended in appropriate growth 

media, washed once by centrifugation at 400g for 7 min and cultured in the same 

conditions as fresh cells for 3-5 days prior to antibody staining. Fresh cells were used 

directly from tissue culture vessels. Cells were detached by washing twice with DPBS and 

incubating at 37°C with Accutase (Thermo Fisher Scientific). Recovered cells were 

pelleted by centrifugation (400g for 5 min at 20°C), pellets were washed with chilled (4°C) 

FACS buffer (FACSFlow; BD Biosciences), re-suspended at a concentration of 3 x 106/mL 

in FACS buffer and 100µL aliquots transferred into FACS tubes (Thermo Fisher Scientific). 

Monoclonal antibodies or isotope-matched controls were added to each tube and 

incubated for 30 min at 4°C protected from light. Cells were pelleted by centrifugation at 

400g for 5 min at 4°C, washed by re-suspension in FACS buffer and suspended in 1 mL 

of FACS buffer for acquisition. The antibodies used were anti-canine CD90 (eBioscience, 
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clone YKIX337.217, 1:20 dilution), anti-mouse CD105 (BD Biosciences, clone MJ7/18, 

1:10), anti-human CD44 (Biolegend, clone IM7, 1:20), anti-human CD29 (BD Bioscience, 

clone MAR4, 1:20), anti-canine CD34 (R&D Systems, clone IH6, 1:10), anti-canine CD45 

(Bio-rad, clone YKIX716.13, 1:10) and anti-human CD117 (BD Bioscience, clone YB5.B8, 

1:10). Isotype controls were mouse IgG1 for CD34, CD29 and CD117 (BD Bioscience, 

clone MOPC-21, 1:10), rat IgG2b for CD90, CD45 and CD44 (eBioscience, clone 

eB149/10H5, 1:10) and rat IgG2a for CD105 (BD Biosciences, clone R35-95, 1:10). 

Antibodies were conjugated with R-phycoerythrin (RPE).  

 

Flow cytometry 

Samples were acquired in polystyrene FACS tubes on a BD FACS Calibur flow cytometer 

(BD Bioscience). The instrument was calibrated using CaliBRITE 3 colour FACS Comp 

beads (BD Bioscience) before acquiring and analysing each set of samples using 

CellQuest Pro software (BD biosciences). Unlabelled cells were acquired in order to set 

the forward and side scatter parameters to centre the cell population on the scatter plot. 

Fluorescence intensity was adjusted to set the unlabelled cells within 100 - 101 on the log 

scale axis. Cells were then acquired with an event count set to a total of 1 x 104 events. 

Data was analysed using FlowJo software (FlowJo, LLC). Further details are provided in 

MIFlowCyt (Supporting Information). 

 

Population doubling time 

Freshly prepared CDCs and MSCs (non-cryopreserved), and cryopreserved CDCs were 

assessed for growth kinetics using a population doubling time protocol (PDT) as 
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previously described (35). Cryopreserved cells were expanded for 3-5 days in tissue 

culture vessels as described above prior to the PDT protocol.  Briefly, cells were detached 

from culture vessels using 0.25% trypsin, pelleted and counted by Trypan blue dye 

exclusion. 1 x 104 cells suspended in CEM (CDCs) or MSCM (MSCs) were plated per 

well, in 6-well plates, in triplicate for each cell type and each time point.  Cells were 

detached with trypsin every 3-4 days for two weeks to perform cell counts. The doubling 

time was calculated according to the formula PDT = ln(N/N0)/ln2 where N was the final 

cell number and N0 was the cell number at the beginning of the logarithmic increase. 

 

Clonal growth assay 

CDCs were trypsinised from culture vessels, counted and plated at very low density (20 

cells/cm2) on fibronectin coated 25cm2 flasks. After 24 h individual cells were visualised 

on an Olympus inverted microscope (model CKX415F; Olympus Corporation). The 

culture vessel was observed daily for 10 days to identify the formation of colonies. Cells 

were discounted from analysis if more than one cell was present in the field of view of a 

low power objective lens (4 x magnification objective) at the start of the culture period. 

Images were captured with a colour digital camera (GT Vision Ltd.). Colony size was 

measured using ImageJ software version 1.50i (National Institute of Health). 

 

Sphere size assessment 

To assess the diameter of spheres formed from fresh CDCs and cryopreserved CDCs, 

cells were seeded at a density of 1 x 105/cm2 on an ULA surface. The spheres formed 

were tracked with culture time and sphere number and diameter measured at 5 days 
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using ImageJ software. These parameters were compared to primary spheres that were 

formed by fresh CDCs at the same time point as detailed above in the preparation of 

cardiosphere-derived cells section.  

 

Differentiation capacity of CDCs and MSCs 

MSCs were induced to differentiate towards osteogenic, adipogenic (26-28) or smooth 

muscle (14) lineages as previously reported. 

 

Osteogenic differentiation 

MSCs were plated in 6-well plates (5,000 cell/cm2) and cultured to 80% confluence before 

induction. Osteogenic induction medium consisted of DMEM with 10% FBS 

supplemented with dexamethasone (100nM), ascorbic acid (0.2mM) and β-

glycerophosphate (10mM) (all from Sigma-Aldrich) with P/S. Medium was changed every 

2-3 days. After 14 days of induction, extracellular calcium deposits were assessed using 

2% Alizarin Red S (Sigma-Aldrich) staining at pH 4.3.  

 

Adipogenic differentiation 

MSCs were plated in 6-well plates (8,000 cell/cm2) and cultured to 90-100% confluence 

before induction. Induction wells were subjected to alternating cycles of inductive medium 

(72 h) followed by maintenance medium (24 h) repeated 6 times. Inductive medium 

consisted of DMEM with 10% FBS supplemented with dexamethasone (1µM), 1% insulin, 

indomethacin (100µM), 3-isobutyl-1-methylxanthine (100µM) (all Sigma-Aldrich) with P/S. 

Oil-Red-O staining was used to assess intracytoplasmic lipid accumulation. 
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Smooth muscle and endothelial differentiation 

Fresh CDCs, MSCs and cryopreserved CDCs were seeded onto fibronectin-coated Nunc 

Lab-Tek chamber slides (Thermo Fisher Scientific), allowed to reach 80% confluence and 

subjected to differentiation media for 12-13 days. Smooth muscle differentiation media 

consisted of IMDM with 1% L-glutamine, 1% P/S and 10ng/mL platelet-derived growth 

factor-β (PDGF-β, Preprotech; 100-14B). Endothelial differentiation media consisted of 

IMDM with 1% L-glutamine, 1% P/S and 50ng/mL vascular endothelial growth factor 

(VEGF, Preprotech; 100-20A). Immunocytochemistry was performed to assess formation 

of actin fibres or expression of von Willebrand factor (vWF).  

 

Cardiomyocyte differentiation  

Following monolayer culture, fresh CDCs and cryopreserved CDCs were dissociated and 

seeded at a density of 1 x 105/cm2 on either 24 or 6 well plates on a cell-repellent surface 

(Greiner Bio One) to form secondary cardiospheres. Once spheres had formed (3-5 

days), media in inductive wells was changed to Cardiomyocyte Differentiation Kit media 

according to the manufacturers instructions (Thermo Fisher Scientific) and continued for 

12-14 days. Next, spheres were harvested and attached to FBS-coated chamber slides 

for 18 h. Expression of cardiac troponin T (cTNT) was assessed by immunocytochemistry. 

Expression of cTNT was also assessed on individual cells as described for smooth 

muscle and endothelial differentiation. 

 

Immunocytochemistry 
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Following termination of differentiation, cells were fixed in 4% PFA for 10 min then blocked 

and permeabilized in protein block solution (DAKO) containing 1% saponin (Sigma-

Aldrich) for 1.5 h. Cells were incubated at 4°C with a primary antibody for 1 h then 

secondary antibodies for 1 h. The primary antibodies used were: monoclonal mouse anti-

cardiac troponin T (Abcam, clone 1C11; 1:500 dilution), mouse anti-smooth muscle actin 

(Sigma-Aldrich, clone 1A4; 1:200) and polyclonal rabbit anti-von Willebrands factor 

(Abcam, 1:400). Fluorescein isothiocyanate (FITC) labelled secondary antibodies were 

purchased from Abcam (polyclonal goat anti-mouse IgG, 1:500) and Biolegend 

(polyclonal donkey anti-rabbit IgG, 1:250). Control slides consisted of unstained cells, 

undifferentiated cells and secondary antibody only stained slides. Slides were mounted 

with Vectashield containing 4’, 6-diamidino-2-phenylindole (DAPI) (Vector Laboratories 

Ltd). Cells were visualised with an Olympus BX60 microscope (Olympus Corporation) 

equipped with a CoolLED pE-2 fluorescence illumination system (CoolLED Ltd.) and 

images captured using a QImaging QICAM digital camera. 

 

Statistical analysis 

GraphPad Prism 7 software (GraphPad Software Inc. CA, USA) was used for statistical 

analysis. Data was assessed for normality. All data is presented as the mean ± SEM 

unless stated otherwise. Comparisons between two independent samples were 

performed using student’s two-tailed T-test and between three or more groups using one-

way ANOVA with post-hoc Tukey analysis. A P value of < 0.05 was considered significant.  
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Results 
 

Cardiosphere formation 

CDCs were isolated and expanded from dogs (n=5) of different breeds or of non-pedigree 

origin. Donor characteristics are summarised in supplementary table 1 (Table S1). Within 

5-7 days a stromal-like monolayer of cells emerged from the explants above which phase-

bright cells migrated (Fig. 1A). The phase-bright cells formed spheres (Fig. 1B). Early 

passage CDCs showed a heterogeneous population of cell morphologies consisting of 

both long spindle shaped cells and rounded cells (Fig. 1C and D). CDCs had a post-

cryopreservation viability of 95-98% after being frozen for 3 months and could be further 

expanded in monolayer culture on fibronectin-coated flasks. Culture expanded cells 

showed a similar heterogeneous morphology (Fig. 1E). By comparison MSCs prepared 

from adipose tissue showed typical spindle shaped cells, which were homogeneous in 

morphology (Fig. 1F). 

 

Cardiosphere characteristics  

Both cryopreserved and non-cryopreserved CDCs were able to readily form into 

secondary cardiospheres when plated onto a low attachment surface. The diameter of 

primary, secondary and cryopreserved cardiospheres was compared. Secondary spheres 

formed by fresh CDCs were 20% smaller than primary spheres (Fig. 2A; P < 0.0001). 

Strikingly, the spheres formed by cryopreserved cells were approximately three times 

larger than those formed from fresh CDCs (Fig. 2A; P < 0.0001). 

 

Population doubling and cloning potential 
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The cloning potential and growth kinetics were assessed for CDCs prior to and after 

cryopreservation. The population doubling time was similar between the two groups (Fig. 

2B; fresh versus cryopreserved; 57.13 ± 5.27 h versus 48.94 ± 9.55 h, P = 0.71). As a 

comparison, canine MSCs had a significantly faster population doubling time compared 

to both fresh and cryopreserved CDC (Fig. 2B; 30.46 h, P < 0.05). There was no 

significant difference in the diameter of clonal colonies between the two groups by day 7 

(Fig. 2C; fresh versus cryopreserved; 1.30 ± 0.19 mm versus 1.20 ± 0.13 mm, P = 0.73). 

Both cell populations were able to form clonal colonies from single cells when plated at 

very low density (Fig. 2D). 

 

Multipotency of CDCs and MSCs 

When fresh and cryopreserved CDCs were placed into suspension culture to form 

secondary cardiospheres, they expressed high levels of troponin T within their cytoplasm 

following induction with a cardiomyocyte medium (Fig. 3A-I). In addition, single plated 

CDCs showed cytoplasmic troponin T staining that was mostly disorganised (Fig. 3J), but 

a small number of cells demonstrated early fibre alignment and striation (Fig. 3K). Both 

fresh and cryopreserved CDCs also demonstrated capacity for differentiation towards 

lineages of endothelium (positive expression of vWF) and smooth muscle (positive 

expression of α-smooth muscle actin, Fig. 3L-Q). MSCs also differentiated into a smooth 

muscle phenotype when induced with PDGF-β and expressed smooth muscle actin (Fig. 

3R and S) and showed positive staining for Alizarin Red S and Oil Red O following 

induction in osteogenic or adipogenic medium, respectively, when compared to control 

cells (Fig. 4A-D). 
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Surface marker expression profile 

Flow cytometry analysis showed fresh CDCs consisted of a high proportion of CD105+ 

(89.0% ± 4.98) and CD44+ (99.68% ± 0.13) cells, low proportions of CD90+ (23.36% ± 

9.78), CD117+ (13.17% ± 8.67), CD29+ (2.92% ± 2.46) cells and a negligible proportion 

of CD45+ cells (0.005% ± 0.003, Fig. 5A-F). In contrast MSCs showed a high proportion 

of CD90+ (99.60% ± 0.30), CD44+ (99.85% ± 0.05) and CD105+ (76.55% ± 22.35) cells 

and a small fraction of CD34+ cells (1.80% ± 1.76).  CD117+ (0.92% ± 0.34), CD45+ 

(0.015% ± 0.005) and CD29+ (0.57% ± 0.46) cells represented a very small fraction (Fig. 

5M-R).  Interestingly, the percentage of CD34+ cells was variable with passage number 

with low percentages in low passage CDCs (P1-2; 7.18% ± 4.03) but increased to 

moderate and high percentages with further passaging (P4-6; 59.75% ± 3.45, P = 0.003, 

Fig. 6A-C), with high percentages following cryopreservation (79.35% ± 4.85, Fig. 6D). 

This was in contrast to the proportion of CD90+ cells, which was higher in unpassaged 

cells (P0; 42.55% ± 13.65) but decreased in P4-5 (15.04% ± 9.77, P = 0.03, Fig. 6 E-G). 

The CD90+ fraction was low in CDCs following cryopreservation (3.03% ± 1.41, Fig. 6H). 

Other markers (CD105, CD44, CD45, CD117 and CD29) exhibited a similar expression 

profile between fresh and cryopreserved CDCs. 
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Discussion 
 

In this study we derived CDCs from multiple donor animals for characterisation prior to 

and following cryopreservation, since to the authors knowledge the effect of freezing on 

CDCs has not been assessed in any species. Understanding the effect of 

cryopreservation on these cells is vital for conducting clinical trials using frozen CDCs. 

The effect of cryopreservation is well characterised for MSCs (37,38); however, previous 

attempts in our laboratory to freeze canine cardiac stem cells suggested they may be 

more labile than MSCs to cryopreservation. We utilised atrial tissue as previous reports 

indicated a higher number of c-Kit+ cells present within the atria and therefore potentially 

a greater number of cardiac stem cells may be obtained compared to the ventricle (17,24). 

Atrial tissue has also been used previously to isolate canine cardiac stem cells (33). We 

demonstrate for the first time that cryopreservation of canine CDCs does not affect their 

vital stem cell characteristics. Firstly, there were no significant differences in clonal growth 

and population doubling characteristics suggesting that CDCs tolerate freezing.  The 

ability of CDCs to differentiate was also unaffected since they were able to express α-

smooth muscle actin, von Willebrand factor and troponin T indicating commitment to the 

smooth muscle, endothelial and cardiomyocyte lineages, respectively, as reported by 

others for fresh cells (25,31). Furthermore, fresh and cryopreserved CDCs demonstrated 

cardiomyogenic potential following secondary sphere formation and culture in the 

presence of cardiomyocyte differentiation media. Cytological staining on individual cells 

shows mostly an immature troponin organisation, although a small fraction of cells 

demonstrated a more complex organisation, characterized by the emergence of a striated 

pattern.  
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Conversely, the process of cryopreservation did alter the proportions of certain cell 

surface markers. Specifically, the CD34+ fraction was increased after culture of 

cryopreserved CDCs. CD34, a transmembrane phosphoglycoprotein, is found on a 

diverse range of cells and appears to have multiple functions. It has been associated with 

cell-cell adhesion and highly proliferative cells (39–41). CD34 is often used as an 

exclusion criteria for MSCs (42), however a more recent literature review indicates its 

presence on some MSC populations (specifically adipose derived MSCs) and is 

expressed by a diverse range of other progenitor cells (43). The higher proliferative 

capacity of the CD34+ population (34-36) may explain the increase we observed with 

passage number and following cryopreservation. CD34+ cells also appear highly tolerant 

to freezing when compared to other nucleated cell types and therefore may have better 

survival in the heterogeneous CDC population (44).  This may have clinical relevance as 

experiments in animal models of myocardial infarction using CD34+ purified cell 

populations showed an increased cellular persistence within the myocardium and showed 

positive effects on heart function (45,46).  

 

In comparison with other species, early passage (P2) human CDCs exhibit a similar 

CD34+ population (approximately 10%) (47). However, another study reported fewer 

CD34+ cells (1%) in human CDCs of undefined passage number (48). It has also been 

noted that increasing media serum content from 10% to 20% increases the CD34+ 

population from 0.9% to 7.5% (31). Cardiac progenitor cells grown directly from rat heart 
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explants (without the cardiosphere step) declined in their CD34+ population over a culture 

period of 35 days (23). 

 

Furthermore there were varying proportions of CD90+ cells, which was both inter-donor 

(the variability between donors) and intra-donor dependent (the variability within a donor, 

dependent on culture conditions). The CD90+ fraction also decreased following 

cryopreservation and increasing passage number of fresh cells. CD90 (Thymocyte 

antigen-1; Thy-1) is a commonly used marker for MSCs in all reported species, including 

canines (35,49–51). The CD90+ population in our CDC preparations exists as a small 

fraction, as noted by others (20,29,45).  Our finding that the CD90 population can be 

manipulated by passaging or cryopreservation may have clinical implications as this 

population appeared to reduce the therapeutic efficacy of CDCs in a rodent model of 

myocardial infarction (24).  

 

Cryopreserved CDCs formed cardiospheres that were approximately three times larger 

than their fresh counterparts. This may be due to the higher CD34+ fraction increasing the 

cell-cell adhesion efficiency. Alternatively this may be an integrin dependent interaction 

as this has previously been shown to significantly increase the adherence and cell-cell 

binding in MSCs (52). This may be clinically relevant as the larger size could predispose 

them to arteriole blockage and subsequent tissue ischemia.  Sphere size would therefore 

need to be controlled by the use of aggregation wells (53). 
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In comparison with other species, canine CDCs exhibit remarkable phenotypic similarities 

to mouse, rat, human and porcine cells (21,22,28,54,55). As we elucidated in the 

introduction, canines are a unique naturally occurring model for non-ischemic 

cardiomyopathy in humans, specifically ARVC (8,10,56). The effect of cryopreservation 

on human CDCs is poorly understood; therefore given the similarities with canine cells 

the present study also provides vital translational information to the human field. Also 

phenotypically the sphere size formed from fresh cells is similar to reports in other species 

(21,31), conversely the large spheres from cryopreserved cells has not been noted 

previously. There are other notable differences. Firstly, differentiation of canine CDCs to 

functioning cardiomyocytes appears challenging. Methods attempting to translate mouse 

and rat differentiation protocols to canine cells have proved only partially successful 

(25,33). We also found similar difficulties in using cardiac differentiation media designed 

for mouse and human iPSCs. Additionally the c-Kit+ proportion in our atrial derived CDCs 

was higher than that reported in mouse, human and canine ventricular derived CDCs 

(22,23,25,30,31). C-Kit+ cells have been reported to be localised in areas within the heart 

with low haemodynamic stress, such as the atria in humans (17,18,57). The location of 

c-Kit expressing cells in the canine heart has not been described but the tissue 

compartment (atria) source likely explains the greater c-Kit+ population in our CDCs. 

Previous studies with canine CDCs have examined ventricular tissue from a single donor 

(25,30) which limits the comparative interpretation with our study.  

 

In conclusion, we conduct for the first time phenotypic analysis of CDCs prior to and 

following cryopreservation. Our most important finding is that the key stem characteristics 
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of these cells are unchanged by this process. Changes were noted in the populations of 

cells expressing CD34 and CD90; however, the clinical significance of this is unknown, 

but based on previous literature could be beneficial. Our results show promise for the 

creation of cryopreserved cell banks for usage in future clinical trials.  
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Figure legends 
 

 

Figure 1: Representative photomicrographs showing the formation of cardiosphere-

derived cells (CDCs) and mesenchymal stem cells (MSCs). Panel (A) stromal-like 

outgrowth cells from an atrial tissue explant with phase-bright cells (long arrows) 

migrating over the spindle like cell monolayer. The phase-bright cells were harvested and 

further grown in suspension culture to form cardiospheres (B).  Heterogeneous sized 

cardiospheres were typically formed.  Cardiospheres were collected by aspiration and 

seeded on fibronectin-coated tissue culture plastic to form cardiosphere-derived cells 

(CDCs) which are the fibronectin adherent population emerging from the cardiosphere 

(C) and shown at higher magnification (D). CDCs that were cultured following 

cryopreservation (E) had a similar morphology to fresh CDCs (D). The CDC population 

typically contained a mixture of spindle like cells (white arrows) among more rounded 

cells (black arrows). These are representative results for atrial tissue from five dogs. 

MSCs showed typical spindle like cell morphology (F). Scale bars = 250µm. 
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Figure 2: Comparison of growth characteristics of canine cardiosphere-derived cells 

(CDCs). (A) Sphere diameters of primary and secondary cardiospheres obtained from 

fresh cells and from cryopreserved cells. Secondary spheres were significantly smaller 

than primary spheres and spheres obtained from cryopreserved CDC were significantly 

larger than either primary or secondary spheres. (B) There was no significant difference 

in the PDT between fresh and cryopreserved cells but both were significantly slower 

compared to canine adipose MSCs. (C) Colony diameter for fresh and cryopreserved 

CDCs plated at low density. Colony size measurements shown were taken at days 4 and 

7 and showed no significant difference between the two cell populations on either day. 

(D) Clonal expansion of CDCs from both fresh and cryopreserved cells. Scale bars = 

250µm. 
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Figure 3: Cardiac, smooth muscle and endothelial differentiation. Fresh and 

cryopreserved canine cardiosphere-derived cells (CDCs) demonstrated expression of 

cardiac troponin T (cTNT, green fluorescence) following repeat sphere formation in the 

presence of cardiomyocyte differentiation medium (A-I). Individual CDCs for the majority 

showed disorganised cTNT protein (J), although a small number of cells showed an early-

striated fibre pattern (K). CDCs were also able to differentiate towards a smooth muscle 

lineage as shown by expression of alpha-smooth muscle actin (α-SMA, green 

fluorescence) when compared to control cells (L and M), this ability was unaffected by 

cryopreservation (N). Expression of von Willebrand factor (vWF, green fluorescence) 

demonstrating a commitment to the endothelial lineage in fresh and cryopreserved cells 

(O-Q). MSCs showed marked up-regulation of α-SMA on induction when compared to 
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control cells (P and Q). Nuclei are counterstained with DAPI (blue fluorescence). Scale 

bars = 50µm (D-I and K) 25µm (other panels). 

 

Figure 4: Adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs).  

Photomicrographs depicting Alizarin Red S staining for osteogenic differentiation: (A) 

control (non-induced) cells and (B) induced cells showing positive red staining for mineral 

deposition.  Oil Red O staining for adipogenic differentiation: (C) control (non-induced) 

cells, (D) induced cells showing intracellular deposits of red stained oil droplets.  Images 

are representative of differentiation of cells derived from five dogs. Scale bar = 250µm. 
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Figure 5: Flow cytometry contour plots for surface marker expression analysis of 

cardiosphere-derived cells (CDCs) and mesenchymal stem cells (MSCs). CDCs show 

intermediate proportions of CD90+ cells (A), negligible CD45+ cells (B), high proportion of 

CD44+ cell (C), low numbers of CD117+ cells (D), intermediate to high CD34+ cell 

percentage (E) and high CD105+ cell portion (F). MSCs showed a high percentage of 

CD90+ cells (G), low proportion of CD45+ cells (H), high CD44+ proportion (I), negligible 

CD117+ (J) and CD34+ proportion (K) and a high CD105+ proportion (L). Blue contours 

denote isotype control and red contours denote antibody labeled samples. Antibodies 

were R-PE conjugated. 
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Figure 6: Flow cytometry comparing CD34 and CD90 expression on cardiosphere-

derived cells (CDCs) at different passages and post-cryopreservation. CD34+ cell were 

negligible in P0 cells (A; 1.1%) but increased from P1 to P4 (B and C, 14.8% and 55.3%). 

Cryopreserved cells showed a high CD34+ proportion (D, 84.2%). Conversely the CD90+ 

portion was reduced with passage number. P0 CDCs showed a high CD90+ percentage 

(E, 56.2%), and 50.7% at P1 (F) and 28.9% at P4 (G). CD90 was absent in cryopreserved 

CDCs (H). Blue contours denote isotype control and red contours denote antibody labeled 

samples. 

 


