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Abstract 20 

Interleukin-7 (IL-7) and its receptor (IL-7R) are essential for T cell development in the 21 

thymus, and changes in the IL-7/IL-7R pathway have been implicated in age-associated 22 

thymic involution which results in a reduction of naïve T cell output. The aim of this study 23 

was to investigate the relationship between IL7 and IL7R genetic variation and thymic output 24 

in dogs. No single nucleotide polymorphisms (SNPs) were identified in the canine IL7 gene, 25 

but a number were present in the canine IL7R gene. Polymorphisms in the IL7R exon 8 and 26 

3’UTR were found to be associated with signal joint T cell receptor excision circle (sj-TREC) 27 

values (a biomarker of thymic output) in young and geriatric Labrador retrievers. 28 

Additionally, one of the SNPs in the IL7R 3’UTR (SNP 14 c.1371+446 A>C) was found to 29 

cause a change in the seed-binding site for microRNA 185 which, a luciferase reporter assay 30 

demonstrated, caused changes in post-transcriptional regulation, and therefore might be 31 

capable of influencing IL-7R expression. The research findings suggest a genetic link 32 

between IL7R genotype and thymic output in dogs, which might impact on immune function 33 

as these animals age and provide further evidence of the involvement of IL-7/IL-7R pathway 34 

in age-associated thymic involution. 35 
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1 Abbreviations 

sj-TREC, signal joint T cell receptor excision circle, TCR, T cell receptor, RTEs, recent thymic 
emigrants. 



1. Introduction 42 

Interleukin 7 (IL-7) and its receptor (IL-7R) play an important role in T cell development, in 43 

both primary and secondary lymphoid organs (Fry and Mackall, 2005). In the thymus, IL-7 is 44 

produced by the stromal cells (Moore et al., 1993) and its effects are mediated via binding to 45 

its cognate receptor expressed on the surface of developing thymocytes (Munitic et al., 2004). 46 

The IL-7R is a heterodimer, composed of two subunits, the IL-7 receptor alpha chain (IL-7R) 47 

and a common gamma chain (γc/IL2RG), which is shared with other type I cytokine 48 

receptors (Rochman et al., 2009). Ligation of the IL-7R generates a number of signals (via 49 

phosphorylation of Jak1/Jak3) leading to cell activation (via STATs 1, 3 and 5), proliferation 50 

(via ras, raf and ERK1/2) and survival/resistance to apoptosis (via IP3 and Akt/PKB) (Jiang 51 

et al., 2005). 52 

With increasing age, the thymus undergoes a process of involution, leading to a reduction in 53 

the production of naive T cells for recruitment into the peripheral lymphocyte pool (Lynch et 54 

al., 2009). This can cause expansion of the existing memory T cell populations (Kilpatrick et 55 

al., 2008; Naylor et al., 2005), which in turn can lead to reduced diversity of the T cell 56 

repertoire and impairment of immune responses to novel antigens (Naylor et al., 2005). 57 

Studies in several species (Douek et al., 1998; Kong et al., 1999; Sempowski et al., 2002; 58 

Sodora et al., 2000) have demonstrated that thymic output can be estimated using signal joint 59 

T cell receptor excision circles (sj-TRECs) as a biomarker. These small episomal circles of 60 

DNA are generated during T cell development, when the T cell receptor (TCR)  gene 61 

segments, positioned within the TCR α locus, are excised as a prelude to VDJ recombination 62 

(de Villartay et al., 1988; Hockett et al., 1988). In a recent study (Holder et al., 2016), we 63 

have demonstrated that this technique can be applied in dogs, and that there is an age-64 

associated decline in sj-TREC values. This suggests that in dogs, there is a reduction in the 65 



number of recent thymic emigrants (RTEs) with increasing age, which is similar to that 66 

observed in humans (Douek et al., 1998) and mice (Sempowski et al., 2002). 67 

Despite age-associated thymic involution occurring in all vertebrates, and therefore 68 

considered an evolutionary conserved event (Shanley et al., 2009), the mechanisms involved 69 

in this process still remain to be fully elucidated (Palmer, 2013). In experimental animals, IL-70 

7 expression in the thymus has been shown to decline with age, in parallel with a reduction in 71 

the output of naive T cells, associated with thymic involution (Andrew and Aspinall, 2002; 72 

Ortman et al., 2002). This has led to the proposal that IL-7 may be a contributing factor 73 

towards the aetiology of thymic involution and that it might be possible to use IL-7 74 

supplementation as part of a therapeutic strategy for the maintenance of immune competence 75 

in old age (Aspinall and Mitchell, 2008). However, there is little published work with respect 76 

to IL-7R expression in the aging thymus. In human nonagenarians and their offspring, IL7R 77 

mRNA expression in peripheral blood samples are associated with familial longevity and 78 

healthy aging (Passtoors et al., 2012; Passtoors et al., 2015), suggesting that immune 79 

competence in the elderly could be influenced by expression of both IL-7 and its receptor. 80 

Genetic variability within the coding region of the IL7 gene does not seem to be associated 81 

with adverse effects/disease (Mazzucchelli et al., 2012), although polymorphisms in the 82 

5’UTR of the human IL7 gene have been associated with susceptibility to multiple sclerosis 83 

(Zuvich et al., 2010) and HIV infection (Song et al., 2007). In contrast, polymorphisms in the 84 

IL7R gene have been linked with a number of human autoimmune diseases (Mazzucchelli et 85 

al., 2012), including multiple sclerosis, where they have demonstrated a functional effect by 86 

influencing expression of the receptor on the cell surface of thymocytes (Gregory et al., 87 

2007). In multiple sclerosis patients, the polymorphisms in the IL7R gene have been 88 

associated with the frequency of RTEs, where the number of naive T cells was found to be 89 



significantly reduced in those individuals who did not express the 'protective' IL7R haplotype 90 

(Broux et al., 2010). 91 

Companion animals are potentially valuable as comparative and translational models of 92 

ageing and disease (Day, 2010). Immunosenescence is likely to occur more rapidly in the 93 

canine species, compared with humans, and the differences in longevity apparent in different 94 

dog breeds, potentially reflects underlying genetic factors that are involved in ageing and 95 

immunological health. The specific aim of the present project was to investigate whether 96 

genetic diversity in the IL7 or IL7R genes was associated with differences observed in sj-97 

TREC values in a defined population of Labrador retriever dogs of different ages. 98 

 99 

2. Material and methods 100 

2.1 Study samples 101 

Blood samples from crossbreed dogs (n=6) and Labrador retrievers (n=100) were identified 102 

in the clinical sample archive of the Royal Veterinary College, University of London. EDTA 103 

blood had been archived following completion of diagnostic testing, with ethical approval 104 

(approval number URN2016/1475) and informed owner consent for their use in clinical 105 

research. The Labrador retriever dogs were categorised into young (<2 years, n=30), middle 106 

aged (5-7 years, n=30) and geriatric (≥10 years, n=40) age groups. Genomic DNA was 107 

extracted from blood samples using the GenElute Blood Genomic Kit (Sigma-Aldrich, Poole, 108 

UK) according to the manufacturer’s instructions. 109 

 110 

2.2 Amplification and sequencing of canine IL7 and IL7R genes 111 



Genomic DNA samples from six crossbreed dogs were used to amplify selected regions of 112 

the canine IL7 (NM_001048138.1) and IL7R (XM_005619397.2) genes. Gene specific 113 

primers were designed (Supplementary Table A1) using sequence information the NCBI 114 

Entrez nucleotide sequence database (Genbank) (www.ncbi.nlm.nih.gov/Entrez) and the 115 

Ensembl canine genome assembly version CanFam 3.1 116 

(www.ensembl.org/Canis_familiaris/index.html). 117 

PCR reactions were carried out using Immolase DNA polymerase (Bioline, London, UK) 118 

according to the manufacturer’s instructions. Thermocycling conditions consisted of an initial 119 

polymerase activation at 95°C for 10 min, followed by 35 cycles of 94°C for 40 s, 55 or 60°C 120 

for 30 s and 72°C for 1 or 2 min with a final extension step of 72°C for 10 min (G Storm GS1 121 

thermocycler, Gene Technologies Ltd, Essex, UK). 122 

The PCR products generated were separated by agarose gel electrophoresis, purified using 123 

the GenElute Gel Extraction Kit (Sigma-Aldrich), and then submitted for sequencing (Source 124 

Bioscience, Nottingham, UK). Single nucleotide polymorphisms (SNPs) were identified 125 

using CLC Main Workbench version 6.0.2 (CLC bio, Aarhus, Denmark). 126 

Following initial SNP discovery in the six cross breed dogs, a region of the IL7R exon 8 and 127 

3’UTR, containing seven polymorphisms (IL7R SNPs 9-15) identified as being in linkage 128 

disequilibrium, was amplified and sequenced using genomic DNA samples from the 129 

Labrador retrievers (n=100). 130 

 131 

2.3 Real-time quantitative PCR (qPCR) for sj-TREC 132 

Genomic DNA samples from the 100 Labrador retrievers were used to quantify sj-TREC 133 

expression by real-time qPCR as previously described by Holder et al. (Holder et al., 2016). 134 



Briefly, the samples were initially amplified in a pre-quantification PCR reaction using 135 

Immolase DNA polymerase (Bioline), according to the manufacturer’s instructions, which 136 

contained primers located upstream (sense) and downstream (antisense) of those used for the 137 

subsequent qPCR (Supplementary Table A1). Thermocycling conditions for the pre-138 

quantification PCR were as follows: 95°C for 10 min, followed by 10 cycles of 94°C for 40 s, 139 

60°C for 30 s and 72°C for 1 min with a final extension step of 72°C for 10 min (G Storm 140 

GS1 thermocycler, Gene Technologies Ltd, Essex, UK). 141 

A multiplex real-time qPCR was then performed, using the StepOne Real-Time PCR System 142 

(Applied Biosystems 2010 Life Technologies Corporation, Grand Island, USA), to quantify sj-143 

TREC and albumin expression in samples that had undergone the pre-quantification PCR. The 144 

qPCR reactions, containing gene specific primers and Taqman probes (Appendix A), were 145 

performed using SensiFAST Probe Hi-ROX qPCR Mix (Bioline) according to the 146 

manufacturer’s instructions. The reaction conditions were as follows: 95°C for 5 min, followed 147 

by 40 cycles of 95°C for 10 s and 65°C for 60 s. Fluorescent readings were taken after each 148 

cycle. 149 

To enable quantification of target DNA in the test samples, standard curves were generated 150 

from serial dilutions of a recombinant plasmid DNA, containing partial sequences for both 151 

canine sj-TREC and albumin. Sj-TREC values were corrected for the pre-amplification, and 152 

normalised for numbers of white blood cells (WBC) (estimated from albumin qPCR values) 153 

using the following equation: 154 

 155 

sj-TREC/1×10
5
 WBC = 

sj-TREC (copies/μl)

102.4
 ×  

1×10
5

(Albumin (copies/μl) ×10) ÷ 2
 156 



 157 

2.4 Generation of miRNA target recombinant constructs 158 

A region of the canine IL7R 3’UTR, containing SNPs 11-15, was examined for the presence 159 

of miRNA seed-binding sites, using the Target Mining function on the miRDB website 160 

(www.mirdb.org) (Wong and Wang, 2015). SNP 14 (c.1371+446A>C) was identified as 161 

causing a change to the seed-binding site for cfa-miR-185. 162 

An oligonucleotide pair (sense and antisense) was designed to contain the miRNA target 163 

sequence for cfa-miR-185 (Supplementary Fig. A1). The oligonucleotide pair was designed 164 

so that they would dimerise and could be ligated into the dual-luciferase miRNA target 165 

expression vector, pmirGLO (Promega), following digestion with PmeI and XbaI. An internal 166 

NotI site was included to allow confirmation of ligation into the vector, which also contains a 167 

NotI site at position 93. The sense and anti-sense oligonucleotides were both diluted to 1 168 

nmol/µl and 1 µl of each was added to 18 µl Oligo Annealing Buffer (Promega). This 169 

mixture was then heated at 90°C for 3 min before being transferred to a water bath for 15 min 170 

at 37°C. The annealed oligonucleotide dimers were then ligated into pmirGLO vector 171 

(Promega), which had previously been linearized by restriction digestion with PmeI and 172 

XbaI, using the LigaFast™ Rapid DNA Ligation System (Promega) according to the 173 

manufacturer’s instructions. 174 

A 280 bp region of the IL7R 3’UTR (containing SNPs 11-15) representing the two haplotypes 175 

was amplified by PCR (see Supplementary Table A1 for primers) and purified by gel 176 

extraction (GenElute™ Gel Extraction Kit, Sigma-Aldrich). These were ligated into to 177 

pmirGLO, using the PmeI and XbaI restriction sites and the LigaFast™ Rapid DNA Ligation 178 

System (Promega). 179 



 180 

2.5 Dual-Glo miRNA target luciferase reporter assay 181 

Chinese hamster ovary (CHO) cells were transfected with recombinant pmirGLO constructs 182 

and/or Mission miRNA mimics (Sigma-Aldrich), which consisted of a targeted miRNA 183 

mimic (hsa-miR-185, which demonstrates sequence conservation with cfa-miR-185) and a 184 

negative control miRNA mimic (from Arabidopsis thaliana). CHO cells were plated in 185 

MEM/6% FBS and cultured until they reached 80-90% confluency. The cells were 186 

transfected in triplicate with 200ng plasmid DNA and/or 10 pmol miRNA mimics per well 187 

using Lipofectamine 2000 (Invitrogen) according to the manufactures instructions. 188 

Untransfected cells were used as a negative control. 189 

Twenty-four hours after transfection, cells were assayed for both firefly and renilla luciferase 190 

activity, using the Dual-Glo Luciferase Assay System (Promega). Briefly, 50 µl Dual-Glo 191 

Luciferase Reagent was added to the cells to induce cell lysis and act as a substrate for firefly 192 

luciferase. After 15 min incubation on a rotating platform luciferase activity was measured 193 

using a luminometer (Spectramax M2, Molecular Devices Ltd, Wokingham, UK). Next, 50 194 

µl Dual-Glo Stop & Glo Reagent was added, and after another 15 min incubation 195 

luminescence was measured for a second time to obtain a reading for renilla luciferase 196 

activity. 197 

Luciferase activity (mean firefly luciferase activity/mean renilla luciferase activity) for 198 

constructs treated with the miR-185 mimic were compared to those treated with the negative 199 

control mimic using the following equation. 200 

 201 



[
luciferase activity with miR-185 mimic (mean firefly ÷ mean renilla)

luciferase activity with negative control mimic (mean firefly ÷ mean renilla)
] × 100 202 

 203 

2.6 Statistical analysis 204 

Statistical analyses were performed using a commercial software package (SPSS version 23 205 

for Windows, IBM). Mann-Whitney U tests were used to compare sj-TREC values between 206 

dogs grouped according to age. Associations between IL7R haplotype or genotype frequencies, 207 

and sj-TREC levels in different age groups of dog were achieved using Fisher’s Exact test. The 208 

firefly and renilla luciferase activity data generated from three replicate experiments, where 209 

CHO cells were transfected with pmirGLO constructs, was calculated as the mean ± the 210 

standard error of the mean (SEM). The variation in normalised luciferase activity 211 

(firefly/renilla), between transfections with the miR-185 mimic and the negative control 212 

mimic, was analysed using an independent two-sample t-test.  213 

 214 

3. Results 215 

3.1 Polymorphisms in the canine IL7 and IL7R genes 216 

Variability in the canine IL7 and IL7R genes was initially investigated in DNA samples from 217 

crossbreed dogs. No polymorphisms were identified in the coding sequence of the canine IL7 218 

gene, although a small number of SNPs (n=4) were found in the intronic regions 219 

(Supplementary Table B1). Since all these polymorphisms occurred at a relatively low 220 

frequency, no further investigation of the canine IL7 gene was undertaken. 221 



Sequencing of canine IL7R revealed 15 SNPs, six of which were found to be exonic, while 222 

the other nine were intronic (Table 1). Of the six SNPs located in the coding region, four 223 

were synonymous while the remaining two (c.956A>G, c.1145C>T) resulted in amino acid 224 

substitutions (Glu-Gly and Ser-Phe, respectively). Based on the genetic variation identified in 225 

the cross-breed dogs, it was decided further studies would focus on IL7R exon 8 (containing 226 

the coding sequence for the C-terminal region and the 3’UTR). This region was selected 227 

because it contained nine of the 15 SNPs identified, including the two non-synonymous 228 

SNPs. Additionally, it was determined that SNPs 9-15 were in linkage disequilibrium, giving 229 

rise to the following haplotypes: haplotype 1 (SNPs 9-15 CGTAAAT), haplotype 2 (SNPs 9-230 

15 TAGGGCC). 231 

 232 

Table 1. IL7R gene polymorphisms identified in six crossbreed dogs. 233 

Name Exon Position on 

chromosome 

4 

SNP ID SNP F Type Amino 

acid 

change 

SNP1 2-3 72,659,664 c.221+136G>C G-S-C 5:1:0 Intronic n/a 

SNP2 4 72,641,688 c.402T>C T-Y-C 2:3:0 Exonic 

Synonymous 

Asp-

Asp 

SNP3 4-5 72,641,521 c.537+32A>C A-M-C 4:1:0 Intronic n/a 

SNP4 5 72,639,560 c.543T>G T-K-G 2:2:2 Exonic 

Synonymous 

Val-

Val 

SNP5 7-8 72,637,664 c.795-110T>C T-Y-C 3:2:1 Intronic n/a 

SNP6 7-8 72,637,331 c.870+148G>C G-S-C 3:2:1 Intronic n/a 

SNP7 8 72,637,009 c.956A>G A-R-G 5:1:0 Exonic 

Non-synonymous 

Glu-

Gly 

SNP8 8 72,636,820 c.1145C>T C-Y-T 5:1:0 Exonic 

Non-synonymous 

Ser-

Phe 

SNP9 8 72,636,813 c.1152C>T C-Y-T 3:2:1 Exonic 

Synonymous 

Ser-Ser 



SNP10 8 72,636,732 c.1233G>A G-R-A 3:2:1 Exonic 

Synonymous 

Thr-

Thr 

SNP11 8 72,637,155 c.1371+284T>G T-K-G 3:2:1 3'UTR n/a 

SNP12 8 72,637,293 c.1371+423A>G A-R-G 3:2:1 3'UTR n/a 

SNP13 8 72,637,302 c.1371+432A>G A-R-G 3:2:1 3'UTR n/a 

SNP14 8 72,637,316 c.1371+446A>C A-M-C 3:2:1 3'UTR n/a 

SNP15 8 72,637,325 c.1371+455T>C T-Y-C 3:2:1 3'UTR n/a 

F; genotype frequency 234 

 235 

In Labrador retriever dogs, the non-synonymous SNPs were present at low frequency, similar 236 

to that seen in the crossbreed dogs (Fig. 1A). At SNP 7, only two dogs were homozygous for 237 

the minor G allele and 10 dogs were heterozygous, while at SNP 8 the minor T allele was 238 

only present in two heterozygous dogs. For SNPs 9-15, which are in linkage disequilibrium, 239 

more genetic variation was observed in this breed, with 22 dogs homozygous for haplotype 1 240 

(CGTAAAT), 40 heterozygous dogs (YRKRRMY) and 38 dogs homozygous for haplotype 2 241 

(TAGGGCC). These haplotypes were also found to be in Hardy-Weinberg equilibrium 242 

(P=0.074). When IL7R haplotype frequencies were analysed, no significant differences in 243 

haplotype or genotype frequencies (P>0.05) were identified comparing the different age 244 

groups (Fig. 1B and 1C). 245 

 246 

3.2 Polymorphisms in canine IL7R exon 8 are associated with sj-TREC values in 247 

Labrador retriever dogs 248 

Measurement of sj-TREC in the Labrador retriever samples, which had previously been used 249 

to sequence the IL7R exon 8 polymorphisms, revealed significant differences when 250 



comparing young and middle aged animals (P<0.0001), and also comparing middle aged and 251 

geriatric dogs (P<0.005), indicating an age-associated decline in sj-TREC levels (Fig. 2). 252 

 253 

The Labrador retrievers were further sub-divided as having high or low sj-TREC values 254 

compared to the median for that particular age group. Median sj-TREC values were 109.5, 255 

25.0 and 3.5 sj-TRECs/1×105 WBC for the young, middle aged and geriatric groups, 256 

respectively (Fig. 2). Significant differences were observed in the haplotype and genotype 257 

frequencies for IL7R SNPs 9-15 comparing dogs with high and low sj-TREC values in both 258 

the young (P=0.009 and P=0.0049) and geriatric (P=0.005 and P=0.026) age groups (Fig. 3A 259 

and 3B). In the young dogs, IL7R SNPs 9-15 haplotype 1 was associated with high sj-TREC 260 

values and IL7R SNPs 9-15 haplotype 2 was associated with low sj-TREC values. In contrast, 261 

in the geriatric dogs, IL7R SNPs 9-15 haplotype 2 was associated with having high sj-TREC 262 

values, while no association with having low sj-TREC values was found. This suggests that 263 

polymorphisms in the IL7R gene are associated with thymic output. 264 

 265 

3.3 Polymorphisms in canine IL7R 3'UTR influence post-transcriptional regulation by 266 

miRNA-185 267 

Since a number of the SNPs identified in the canine IL7R gene were located in the 3’UTR, it 268 

was decided to investigate whether these polymorphisms influence miRNA binding sites, 269 

potentially impacting on post-transcriptional regulation of mRNA expression. Analysis of the 270 

canine IL7R 3’UTR identified three putative canine specific miRNA binding sites (Table 2). 271 

One of these (cfa-miR-185) had its seed-region binding site in an area of the IL7R 3’UTR 272 

containing a SNP (SNP 14: c.1371+446A>C). 273 

 274 



Table 2. miRNA seed binding sites in canine IL7R 3’UTR. 275 

miRNA name Species miRNA sequence Seed region 

location in 

IL7R 3’UTR 

cfa-miR-185 Canine UGGAGAGAAAGGCAGUUCCUGA 1371+443 

cfa-miR-508a Canine UACUUGAGAGGGUGACAUUCAUAGA 1371+609 

cfa-miR-8793 Canine UCUGAAGCUUUAGCAGGCCCCGAGG 1371+189 

 276 

A dual luciferase reporter assay was employed to assess the functional consequences of the 277 

IL7R c.1371+446A>C polymorphism, in terms of miRNA regulation. Recombinant plasmid 278 

DNA constructs were designed that contained the target sequence for cfa-miR-185 279 

(pmirGLO/miR-185; positive control), or a 280 bp region of each of the IL7R 3’UTR 280 

haplotypes (pmirGLO/IL7R 3’UTR Hap1 and pmirGLO/IL7R 3’UTR Hap2), located 281 

downstream of the firefly luciferase coding sequence and within its 3’UTR. 282 

CHO cells transfected with recombinant pmirGLO constructs and/or miRNA mimics were 283 

assayed for both Renilla luciferase activity (Fig. 4A), to estimate transfection efficiency, and 284 

firefly luciferase activity (Fig. 4B), which is the primary reporter gene. Compared with the 285 

negative control miRNA mimic, there was a reduction in firefly luciferase activity when 286 

pmirGLO/miR-185 and pmirGLO/IL7R 3’UTR Hap1 were co-transfected with the miR-185 287 

mimic (Fig. 4B), which suggests this miRNA is capable of binding to the target sequences in 288 

these particular constructs. When firefly luciferase activity was normalised against renilla 289 

luciferase activity, the observed effect was more pronounced for the positive control 290 

construct (pmirGLO/mir-185; P=0.001) and the construct containing the IL7R 3’UTR 291 

haplotype 1 (P<0.05), whereas there was no significant reduction for the construct containing 292 

haplotype 2 (Fig 4C). This suggests that miRNA-185 preferentially binds to the IL7R 3'UTR 293 

http://mirdb.org/cgi-bin/mature_mir.cgi?name=cfa-miR-185
http://mirdb.org/cgi-bin/mature_mir.cgi?name=cfa-miR-508a
http://mirdb.org/cgi-bin/mature_mir.cgi?name=cfa-miR-8793


sequence containing the haplotype 1 polymorphisms, impacting on mRNA half-life and 294 

causing reduced expression of the reporter protein. 295 

 296 

4. Discussion 297 

This study was designed to characterise polymorphisms in the canine IL7 and IL7R genes, 298 

and to examine the influence these might have on thymic output as estimated by measuring 299 

sj-TREC values in a population of Labrador retriever dogs. There was limited variability in 300 

the canine IL7 gene, however sequencing of the canine IL7R gene revealed a number of 301 

SNPs. Of particular interest were a group of polymorphisms, located in exon 8 and the 302 

3’UTR of the canine IL7R gene, which were found to be in linkage disequilibrium. Haplotype 303 

and genotype frequencies for this group of SNPs (9-15) were found to be associated with sj-304 

TREC levels in both young and geriatric Labrador retriever dogs. One of the SNPs identified 305 

in the 3'UTR of the IL7R gene was found to alter a miRNA binding site, which, by use of a 306 

luciferase reporter assay, was shown to influence protein expression. 307 

The polymorphisms in the IL7R gene consisted of 9 SNPs located in non-coding intronic 308 

regions and six in the coding region, two of which were non-synonymous (SNP7 and SNP8). 309 

SNP7 (c.956A>G) was found to cause an amino acid change from glutamic acid to glycine at 310 

residue 319, while SNP8 (c.1145C>T) caused a change from serine to phenylalanine at 311 

residue 382. Since both of these changes occur at the C-terminus of the intracellular domain 312 

of the IL-7R it is possible that they might affect downstream signalling of the receptor. 313 

Mutations in the Box 1 motif of the intracellular domain have been shown to effect the 314 

binding and function of the tyrosine kinase JAK1 (Jiang et al., 2005). However, as it is the 315 

membrane-proximal part of the intracellular domain which appears to be most important for 316 



signalling in cytokine receptors (Jiang et al., 2005), it seems unlikely that SNPs 7 and 8 will 317 

have any influence on signalling. In addition, given the relatively low minor allele frequency 318 

of these particular SNPs in the Labrador retriever population, this suggests that they are 319 

unlikely to be making a substantial contribution to the variability seen in thymic output in 320 

age-matched dogs of this particular breed. 321 

No polymorphisms were identified within exon 6 of the IL7R gene. Polymorphisms in this 322 

particular exon have been reported to be associated with susceptibility to human autoimmune 323 

diseases, such as multiple sclerosis, rheumatoid arthritis and type 1 diabetes mellitus 324 

(Mazzucchelli et al., 2012), through an amino acid change at residue 244 from isoleucine to 325 

threonine. In multiple sclerosis, this polymorphism has been shown to have a functional 326 

effect on receptor expression, caused by alternative splicing of exon 6, leading to exon 327 

skipping (Gregory et al., 2007). It is possible that the canine IL7R exon 6 is less variable than 328 

its human orthologue, or that polymorphisms were not identified in the relatively small 329 

number of crossbreed dogs used for the initial SNP discovery phase of the study. Crossbreed 330 

dogs were selected because they are likely to demonstrate increased genetic diversity 331 

compared with pure-breed dogs (Kennedy et al., 2002). However, crossbreed dogs are not 332 

necessarily representative of the dog population as a whole (Kennedy et al., 2002) and there 333 

might be polymorphisms which are only present in some pedigree breeds. Sequencing of 334 

IL7R in pedigree dogs affected with autoimmune disease, or in an autoimmune high risk 335 

breed (such as the Cocker spaniel) might identify further polymorphisms. 336 

A series of seven SNPs (SNPs 9-15), located in the coding region and 3’UTR of IL7R exon 8, 337 

which were found to be in linkage disequilibrium and had a higher minor allele frequency 338 

than the non-synonymous SNPs, were considered more suitable for further investigation into 339 

the relationship between IL7R and thymic output. Since the formation of sj-TREC occurs 340 



specifically in the thymus and this DNA does not replicate, sj-TREC has been used as a 341 

biomarker for thymic output/RTEs in a wide range of species, including humans (Douek et 342 

al., 1998), mice (Sempowski et al., 2002), primates (Sodora et al., 2000), chickens (Kong et 343 

al., 1999) and pigs (Vallabhajosyula et al., 2011). In Labrador retriever dogs an age-344 

associated decline in sj-TREC values was observed which appear to be bi-phasic in nature, 345 

with differences occurring between different age groups, and has been previously described 346 

(Holder et al., 2016). This is similar to that seen in humans, where the greatest decline in sj-347 

TRECs occur between the teenage years and middle age (40-50 years) (Geenen et al., 2003), 348 

subsequently, sj-TREC values show a slow decline between the 6th and 9th decades of life 349 

before decreasing significantly in the 10th decade (Mitchell et al., 2010). 350 

When Labrador retrievers were further sub-divided according to sj-TREC values, an 351 

association with the IL7R haplotype and genotype frequencies was identified in both the 352 

young and geriatric dogs. Polymorphisms in the coding region of the human IL7R gene have 353 

previously been shown to be associated with the frequency of RTEs (as measured by sj-354 

TREC) in patients affected with multiple sclerosis (Broux et al., 2010). In the current canine 355 

study, the polymorphisms associated with sj-TREC are located in the 3'UTR and might 356 

therefore be regulating receptor expression through epigenetic mechanisms. Studies 357 

investigating polymorphisms in the genes for interleukin-23 receptor (Zheng et al., 2012) and 358 

tumour necrosis factor alpha receptor 2 (Puga et al., 2005) have demonstrated that SNPs in 359 

the 3'UTR are capable of reducing receptor expression by altering post-transcriptional 360 

regulation leading to increased degradation of mRNA transcripts. 361 

The association between sj-TREC and IL7R genotypes also suggests a relationship between 362 

IL-7R expression and thymic involution. Human longitudinal studies have shown that sj-363 

TREC values decline by an average of 3% of the baseline level per year (Kilpatrick et al., 364 



2008), while a recent study in dogs suggests that differences in sj-TREC levels observed 365 

between individual young Labrador retrievers might be indicative of the rate of thymic 366 

involution (Holder et al., 2016). In mouse strains which undergo rapid thymic involution, as 367 

determined by an earlier decline in sj-TREC values, developing thymocytes were found to 368 

have increased expression of IL-7R, compared to those mouse strains demonstrating a slower 369 

rate of thymic involution (Wang et al., 2006). 370 

The associations between sj-TREC values and IL7R haplotypes were not consistent for the 371 

young and geriatric Labrador retrievers, which suggests that the influence of the IL-7/IL-7R 372 

system on thymic output in the dog changes with age. This might be expected, since in 373 

laboratory rodents expression of IL-7 in the thymus declines with age (Andrew and Aspinall, 374 

2002; Ortman et al., 2002), such that, following thymic involution, there will be reduced 375 

amounts of IL-7 available for T cell development. Therefore, with advancing age, high 376 

expression of IL-7R might play a role in ensuring thymocytes are sensitive to the limited 377 

supply of IL-7 in the thymus, so that some level of thymic output is maintained. However, 378 

without longitudinal data from individual dogs it is not possible to determine the exact 379 

influence of the polymorphisms on sj-TREC values. 380 

If the polymorphisms identified in the 3'UTR of the canine IL7R gene have a biological 381 

impact on receptor expression, this is likely due to differences in post-transcriptional 382 

regulation of the mRNA, possibly by miRNAs. Therefore, the IL7R 3’UTR sequence was 383 

interrogated for miRNA seed-region binding sites. The seed region of a miRNA (nucleotides 384 

2 to 8 at the 5’end) determines binding of the miRNA to its target mRNA by Watson-Crick 385 

pairing to the regulatory sequence in the 3’UTR of the gene (Bartel, 2009). Several of these 386 

sites were identified in the canine IL7R 3’UTR, and one of these (cfa-miR-185) was found to 387 

be located in an area containing a polymorphism (SNP 14: c.1371+446A>C). 388 



To test the hypothesis that polymorphisms in the canine IL7R 3’UTR affect mRNA stability, 389 

via the action of miRNA, an in-vitro model system was established. Our results revealed that 390 

there was a significant reduction with the miR-185 mimic when cells were transfected with 391 

the IL7R 3’UTR haplotype 1 compared with haplotype 2, where no reduction was seen. This 392 

suggests that the miR-185 mimic is capable of binding to the IL7R 3’UTR haplotype 1 393 

sequence expressing the C allele of SNP14, where there is complete pairing with the miR-185 394 

seed site. However, in the haplotype 2 sequence expressing the A allele, where this change 395 

causes incomplete pairing with the seed site, the miR-185 mimic seemingly has no effect. 396 

These research findings indicate that the polymorphisms in the IL7R 3'UTR are potentially 397 

capable of altering protein expression, through post-transcriptional modification of mRNA by 398 

miR-185. 399 

It is important to acknowledge that this is a model system and does not necessarily indicate 400 

this interaction would occur in a canine cellular environment. Transfection of the reporter 401 

constructs into T cell lines might provide information on whether endogenous miRNAs are 402 

capable of acting on the IL7R 3'UTR sequences, while transfecting T cell lines with the miR-403 

185 mimic and measuring changes in endogenous IL-7R expression would also provide 404 

valuable functional evidence. However, in vivo studies or ex vivo analysis of T 405 

cells/thymocytes from dogs of defined genotype would be required to provide conclusive 406 

evidence that the IL7R 3'UTR polymorphisms are influencing expression of the receptor. 407 

In conclusion, this study has demonstrated that variation in the IL7R gene is associated with 408 

thymic output in the dog, and that this might be mediated through changes in mRNA 409 

stability, leading to altered receptor expression. This provides further evidence of the general 410 

premise that the IL-7/IL-7R pathway might be playing an important role in the regulation of 411 

thymic output, and therefore age-associated thymic involution. 412 



 413 

Figure captions 414 

Figure 1. Analysis of IL7R exon 8 polymorphisms in Labrador retriever dogs. Sequence-415 

based typing was used to genotype 100 Labrador retrievers for polymorphisms in exon 8 of 416 

the IL7R gene (A). The sequencing data was then analysed to generate haplotype (B) and 417 

genotype (C) frequencies for IL7R SNPs 9-15 in the Labrador retrievers categorised into 418 

young (<2 years, n=30) middle aged (5-7 years, n=30) and geriatric (≥10 years, n=40) age 419 

groups. Differences in the haplotype and genotype frequencies between the different age 420 

groups were compared using Fisher’s Exact Test, and found not to be significant. 421 

 422 

Figure 2. Measurement of sj-TREC values in Labrador retrievers by real-time qPCR. 423 

Sj-TREC values were determined in gDNA samples from 100 Labrador retrievers, previously 424 

used to sequence the IL7R exon 8. These values were normalised against white blood cell 425 

numbers, estimated by measuring the albumin copy number in each sample concurrently, in 426 

multiplex qPCR. The dogs were categorised into young (<2 years, n=30) middle aged (5-7 427 

years, n=30) and geriatric (≥10 years, n=40) age groups. Each dog is represented by a circle 428 

within their age group. A trend line is shown at the median for each age group. P values were 429 

calculated using the Mann-Whitney U test. 430 

 431 

Figure 3. Polymorphisms in IL7R exon 8 are associated with sj-TREC values in young 432 

and geriatric Labrador retrievers. Sequencing data was analysed to generate (A) haplotype 433 

and (B) genotype frequencies for IL7R SNPs 9-15 in Labrador retriever dogs. The dogs were 434 

categorised into young (<2 years, n=30), middle aged (5-7 years, n=30) and geriatric (≥10 435 



years, n=40) age groups, and then further subdivided into high or low sj-TREC groups based 436 

on their relationship with the median for that age group. P values were generated using a two-437 

tailed Fisher’s exact test. 438 

 439 

Fig 4. Polymorphisms in IL7R 3'UTR influence post-transcriptional regulation by 440 

miRNA-185. CHO cells were co-transfected with pmirGLO constructs and miRNA mimics. 441 

After 24 hrs, (A) renilla luciferase and (B) firefly luciferase activity was measured using the 442 

Dual-GLO luciferase assay system. Results are the mean ± SEM of triplicate wells. (C) 443 

Normalised luciferase activity (firefly/renilla) in cells co-transfected with miR-185 mimic 444 

was calculated relative to results obtained with the negative control mimic. A trend line is 445 

positioned at the percentage luciferase activity for transfections with the negative control 446 

mimic. P values were calculated using an independent two sample Student’s t test. *P<0.05, 447 

***P<0.001. 448 
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