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Short title: Green light during chicken egg incubation  18 

 19 

Abstract: This study was conducted to evaluate the effect of a 12 hours light, 12 hours 20 

dark (12L:12D) photoperiod of green light during day 1 to day 18 of incubation time, on 21 

embryo growth, hormone concentration and the hatch process.  In the test group, 22 

monochromatic light was provided by a total of 204 green LEDs (522 nm) mounted in a 23 

frame which was placed above the top tray of eggs to give even spread of illumination.  24 
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No light-dark cycle was used in the control group.  Four batches of eggs (n=300 per 25 

group per batch) from fertile Ross 308 broiler breeders were used in this experiment.  26 

The beak length and crown-rump length of embryos incubated under green light were 27 

significantly longer than that of control embryos at day 10 and day 12, respectively 28 

(P<0.01).  Furthermore, green light exposed embryos had a longer third toe length 29 

compared to control embryos at day 10, day 14 and day 17 (P=0.02).  At group level 30 

(n=4 batches), light stimulation had no effect on chick weight and quality at take-off, the 31 

initiation of hatch and hatch window.  However, the individual hatching time of the light 32 

exposure focal chicks (n=33) was 3.4 h earlier (P=0.49) than the control focal chicks 33 

(n=36) probably due to the change in melatonin rhythm of the light group.  The results of 34 

this study indicate that green light accelerates embryo development and alters hatch 35 

related hormones (thyroid and corticosterone) which may result in earlier hatching. 36 

 37 

Key words: broiler incubation, green light, embryo growth, circadian rhythm, hatch 38 

process 39 

 40 

Implications 41 

Chickens are incubated commercially in darkness throughout the entire 21 days, which 42 

is different from nature incubation. Light exposure is important for embryos development 43 

and circadian rhythm establishment.  Our results recommend that application of green 44 

light during the first 18 days of incubation accelerated hatch of individual chick which 45 

may be due to the acceleration of embryo development and the alteration of hormone 46 

profiles.  47 

 48 
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Introduction 49 

Broiler chickens are often incubated commercially in complete darkness.  Under natural 50 

conditions, however, avian embryos would certainly receive some light stimulation 51 

during development.  Day-night (light-dark) rhythms, mediated by high concentrations of 52 

the hormone melatonin (MT) at night and low levels by day, are a universal feature of 53 

living organisms (Schultz and Kay, 2003). Avian embryos, developing outside the 54 

maternal organism and without direct endocrine signals from the mother, may develop 55 

early internal circadian systems to cope with the new life outside the egg. The circadian 56 

rhythm in birds is indeed established early on in embryonic development and requires 57 

external cues (Nichelmann et al., 1999, Zeman et al., 1999). Chicken pinealocytes, the 58 

brain cells that release melatonin, were shown to be very sensitive to light with an 59 

intensity of as little 10 lux in vitro and showed a circadian activity pattern (Faluhelyi and 60 

Csernus, 2007). Melatonin production starts early on in the incubation period: in chicken 61 

embryos from day 10, but no regular rhythm is detected until between day 16 and day 62 

18 provided an external day/night rhythm is imposed. The amplitude of the rhythm 63 

increases considerably during the last 2 days of incubation at the time of internal and 64 

external pipping and the beginning of lung respiration of the embryos (Starck and 65 

Ricklefs, 1998). However, in artificial incubation, eggs are handled under (almost) 66 

continuous darkness and a previous study showed that the hormone production of the 67 

pineal does not become rhythmic between day 15 and day 18 (high levels of MT release 68 

were experienced and showed apparently random alterations) (Csernus et al., 2007). 69 

This suggests that no circadian rhythm develops during incubation in completely dark 70 

conditions, because of the lack of appropriate environmental signals stimulating the 71 

embryo. Establishment of the embryonic circadian rhythm can have impact on the 72 
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functioning of the circadian clock of pre- and peri-natal chick. The circadian rhythm 73 

established in the embryo determines the timing of hatching and the hatchlings day-74 

night rhythm until at least three days after hatching (Zeman et al., 1999, Zeman and 75 

Gwinner, 1993). The rhythm of melatonin levels, which is established in the embryo, can 76 

also affect behavioural rhythmicity (Archer et al., 2009).  Melatonin has been shown to 77 

act as an anti-stress agent. Melatonin can suppress  stress-induced increases in rat 78 

plasma corticosterone concentrations, and animals subjected to stress showed altered 79 

circadian patterns in plasma melatonin with elevated corticosterone concentrations 80 

(Mocchegiani et al., 1999, Barriga et al., 2002). Melatonin is able to modulate stress at 81 

both the central and peripheral levels by exerting its inhibitory role in the hypothalamic-82 

pituitary-adrenal (HPA) axis in chicks and by suppressing corticosterone production 83 

(Saito et al., 2005).  84 

Melatonin rhythms during incubation can affect the behaviour, stress and hatch 85 

performance of poultry. However, there has been relatively little systematic work 86 

assessing the pattern and type of light stimulation needed to produce these effects or 87 

the mechanism underlying them. In the wild, an incubating hen generally comes off her 88 

nest once a day between 11:00 and 14:00 h, occasionally as early as 9:25 and as late 89 

as 15:00, presumably when the eggs would be least subject to heat loss and are 90 

completely exposed to daylight. The time spent off the nest seems fairly consistent and 91 

averages 38.7 ± 1.2 min (Duncan et al., 1978).  In addition, when turning the eggs, the 92 

hen usually stands up, thereby exposing the eggs to more light and to lower ambient 93 

temperature.  The temporary exposure to light means that the full spectrum of radiation 94 

may potentially reach the surface of the avian eggs.  Depending on the nest 95 

environment, eggs will experience light from the heating infra-red wavelengths to the 96 
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potentially mutagenic ultra-violet light.  However, base colour pigments of eggshell are 97 

likely to control the light that reaches the embryo by blocking light of harmful infrared 98 

and UV wavelengths but admitting beneficial wavelengths (Maurer et al., 2011).  99 

Previous studies have investigated the impact of light in the incubator environment. 100 

Exposing eggs to green light (1340-1730 lux) from 5 to 15 days of incubation increased 101 

embryo growth and hatchability by 4.8% (Shafey and Al-mohsen, 2002). An overall 102 

improvement in the embryo/hatchling survival rate was also observed following a near-103 

infrared (630-1000 nm) light-emitting diode (LED) exposure. There were also increases 104 

in mean body weight, crown–rump length, liver weight and decrease in hatchling 105 

residual yolk weight (as a function of post-hatch survival time and increased nutrient 106 

utilisation during development) (Yeager et al., 2005). Continuous green light (1340-1730 107 

lux) during the first 18 days of incubation accelerated hatching times by about 24 hours 108 

in meat-type breeder eggs (Hybro). Far-red (670nm) LED-exposure once per day from 109 

0-20 days of incubation resulted in chickens pipping (breaking the shell) 2.92 hours 110 

earlier and there was a 2.91 hours shorter duration between pip and hatch. 111 

Incandescent light (12L:12D) accelerates hatching times (P<0.01) without affecting 112 

hatchability, weight at hatching, liver or heart growth in turkey eggs (Fairchild and 113 

Christensen, 2000, Shafey and Al-mohsen, 2002, Yeager et al., 2005). Therefore, light 114 

intensity can play an important role in the speed of development of the avian embryo 115 

and hatchability, at least in the domestic broiler chicken. Furthermore, light exposure 116 

and the source of light could prove to be important factors in achieving synchrony or 117 

significantly reducing the spread of hatch under artificial rearing conditions. Bird and 118 

human perception of colour differs. Human beings have 3 type of cones and birds have 119 

four which are responsible for seeing frequency (colours). Therefore, chicks can see 120 
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much broader spectrum than human (Osorio et al., 1999).  A broader range of studies is 121 

available for the effect of wavelength, but the average wavelength of the most sensitive  122 

light for chicken embryos is about 550-560nm (Rogers et al., 1998) and green light 123 

seems to be the most effective in stimulating embryonic growth and development, as 124 

well as post-hatch growth in chickens (Halevy et al.,2006, Rozenboim et al., 2013).  125 

It would appear that light can have significant impact on the developing chick embryo, 126 

however it is far from clear what the optimal light intensity for embryonic development in 127 

the wild is, thus it is difficult to predict which lighting regimes have the most benefit in the 128 

incubator setting. Based on the natural incubation behaviour of mother hens, tightly 129 

controlled light intensities and wavelengths and natural patterns of illumination were 130 

applied in this study.  The purpose was to examine the effect of green light during 131 

incubation upon the hatch process and to determine whether a melatonin rhythm would 132 

be established by such light stimulation, and the subsequent impact on thyroid and 133 

corticosterone hormone production which potentially regulates the hatching process.    134 

 135 

Material and methods 136 

Eggs and incubation 137 

Animal experiments were performed with the ethics approval from the Royal Veterinary 138 

College Animal Ethics Committee. Four incubation trials were conducted. In each trial two 139 

incubators swapped between the control and light groups were used and each incubator 140 

was able to set 300 eggs in 2 trays (Petersime NV, Zulte, Belgium). In total, four batches 141 

of fertile Ross 308 eggs (600 each batch) were obtained from a local supplier (Henry 142 

Stewart & Co. Ltd, Lincolnshire, UK). The eggs were incubated using a standard 143 

incubation profile and the incubation conditions were continuously monitored and 144 
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controlled by the incubator controller (BIO-IRIS, PetersimeTM). All incubation conditions 145 

(machine temperature, humidity, CO2 concentration and ventilation rate) were identical in 146 

the two incubators.  147 

 148 

Light protocol 149 

A light-dark cycle (12L:12D) was provided using green light (460-580 nm) in the first 18 150 

days of incubation and no light-dark cycle in the last three days. The light cycle consisted 151 

of 12 hours darkness followed by 12 hours light period, which was controlled using a 152 

mechanical timer. The light period consisted of 4 hours of low intensity (100-130 lux) green 153 

light, followed by one hour continuous illumination at a high intensity at 1200-1400 lux and 154 

the remaining 7 hours at the low intensity (100-130 lux) (Shafey and Al-mohsen, 2002, 155 

Shafey et al., 2005). In the light group, to produce an even spread of illumination on the 156 

surface of each egg and no extra heat produced by the light source, the monochromatic 157 

light was provided by a total of 204 green low power LEDs (0.5W Power PLCC4 SMT, 158 

AVAGO TECHNOLOGIES) mounted in a frame which was placed above the eggs. The 159 

light intensity at the egg surface was measured using a light meter (Testo luminous 160 

intensity measuring instrument 545, GmbH & CO. Germany). The light intensity could be 161 

guaranteed for the top tray, so only the eggs from top tray were sampled. However, the 162 

bottom tray was also set to ensure the other incubation parameters, such as heat 163 

production and CO2 concentration were not negatively affected. No light-dark cycle was 164 

provided in the control incubator.   165 

 166 

Monitoring of hatch window and hatching time 167 
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The onset of hatch (IP) and hatch window (HW), of each incubation, was determined by 168 

the incubator controller (Petersime BIO-IRISTM) (Tong et al., 2015). In total, 10 focal eggs 169 

in each incubator from the first two experiments and 20 focal eggs of each incubator from 170 

the last two experiments were randomly selected, weighted and individually labelled to 171 

determine the individual hatching time. During transfer to the hatchings baskets, each 172 

focal egg was placed in a specially constructed area within the top basket (using 8 x 8 x 173 

8 cm3 metallic mesh grid). The hatching time of each focal egg was determined using 174 

eggshell temperature (EST) as previously described by Romanini et al. (2013). The 175 

identification of hatching time is based on a registered EST drop (2-5 ºC) when the chick 176 

emerges from the egg.  177 

 178 

Hatch performance, embryo and blood parameters assessment 179 

All eggs were candled on 18 days and 12 hours of incubation time and those with evidence 180 

of a living embryo were transferred from the turning trays to hatching baskets within half 181 

an hour. Both incubators were stopped after 512 hours (21 days and 8 hours) of incubation. 182 

Hatchability (the percentage of fertile eggs that hatch), early death (ED) from day 0 to day 183 

7, middle death (MD) from day 8 to day 15, late death (LD) from day 16 to day 21, and 184 

mortality were determined at the end of incubation based on breakout results. All the 185 

hatched chicks from the top basket of each group were scored for quality using a 186 

standardised method (Tona et al., 2003) and chicks with full score (100%) were 187 

considered as first class chicks. Samples of three eggs or chicks were selected randomly 188 

from the top tray in each incubator and were collected at eight incubation stages: day 10, 189 

day 12, day 14, day 16, day 17, day 18, day 19 (internal pipping, IP), day 20 (external 190 

pipping, EP) and take-off (focal chick). Embryos or chicks were euthanized and blood was 191 
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collected from allantoic vein or the left ventricle, respectively. The chicks and organs (heart, 192 

liver and stomach) were dissected and weighed. The length of the beak and third toe as 193 

well as the crown-rump length (CRL) were measured. 194 

The blood of three embryos or chicks was sampled at every three hours over an 18 hours 195 

period (from 18:00 of day 17 to 12:00 of day 18), at internal pipping on day 19, external 196 

pipping on day 20 and take-off on day 21. Different eggs or chicks were sacrificed at each 197 

time point of sampling. The blood sample was collected into a heparin tube and 198 

centrifuged at 3000 rpm for 10 min. The plasma was stored at -20ºC until hormones 199 

measurement. The blood samples from embryos or chicks collected at the same time 200 

point were pooled to measure MT and other hatching related hormones. Plasma 201 

hormones levels were measured using a commercial chicken melatonin (MT) ELISA kit, 202 

chicken Tri-iodothyronine (T3) ELISA kit, chicken thyroxine (T4) ELISA Kit (CUSABUO 203 

BIOTECH CO., Ltd, Wuhan, China) and Corticosterone HS EIA kit (IDS Ltd, Boldon, 204 

England). 205 

 206 

Statistical analysis 207 

Data was analysed using SPSS (PASW statistics 20) and was presented as the mean ± 208 

standard error of the mean (SEM). A linear mixed model was used to analyse the effect 209 

of light treatments (control and light) on hatchability, mortality (ED, MD and LD), HW, chick 210 

quality and chick weight:  211 

Y=µ + light treatment +incubator +batch + ε 212 

A second linear mixed model was used to analyse the effect of light treatments and 213 

incubation stage on embryonic parameters, blood values and plasma hormones 214 

concentrations. The model was:   215 
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Y=µ + light treatment + incubation stage + interaction (treatment ×incubation stage) 216 

+incubator +batch + ε 217 

The µ is the overall mean and ε is the residual error term. Light treatment, incubation stage, 218 

interaction, incubator were fixed effects; batch was a random effect. The interaction was 219 

removed from the original model when it was not significant.  When the effect was 220 

statistically different (P≤0.05), the means were further compared using Least Significant 221 

Difference (LSD) test or nonparametric statistics (only for chick quality).   222 

 223 

Results 224 

Hatch performance and embryo development  225 

There was no effect of incubator on hatchability and different stages of mortality taking 226 

into account the batch effect. However, the hatchability of the control group was 227 

significantly higher than the light group because of the combination of mortality from three 228 

stages (Figure 1; P=0.03) (78.2 versus 73.7%). No effect of light treatment was found on 229 

chick quality and chick weight for four batches. The egg weight at setting for the control 230 

and light groups were 59.96±1.7g and 59.58±1.7g, respectively. The light treatment had 231 

an effect on the heart weight (P=0.001), beak length (P=0.006), third toe length (P=0.024) 232 

and the crown-rump length (P=0.005) at specific stages but not throughout the incubation 233 

period. The differences in the heart weight, beak length, third toe length and the crown-234 

rump length between the control and light groups at each incubation stage are shown in 235 

Figure 2. 236 

 237 

Hatch window and hatching time 238 
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There was no effect of the light treatment and incubator on the initiation and the length of 239 

the hatch window of the entire batch (Table 1). Both groups started pipping around 467 240 

hours of incubation time. No difference in the hatching time of the first focal chicks in the 241 

control and light groups was observed, which was the same as the IP detected at the 242 

group level. However, the majority of focal chicks in the light group hatched earlier than 243 

the control focal chicks (P=0.049). The average hatching time of the focal chicks in the 244 

control and light groups were 487.4±1.2 hours and 484.0±1.1 hours respectively. The focal 245 

chicks of the light group hatched 3.4 hours earlier than the focal chicks of the control group.  246 

 247 

Melatonin and hatch related hormones 248 

Overall the mixed effects models, taking into account batch effect, showed that there were 249 

no effects of light treatment and incubator on MT, T3, T4 and the T3/T4 ratio. However, 250 

the individual sampling time point had a significant impact on the plasma hormone levels 251 

(P<0.01). The plasma MT in the control and light groups from day 17 to day 21 is shown 252 

in Figure 3. There was no statistically significant difference in MT between groups at any 253 

time point in the 18 hours period between days 17-18, however there were differences in 254 

the pattern. In the control (no light group) MT levels increase rapidly in the first 3 hours of 255 

the dark period (from 85.32 to 100.68 pg/ml) before levelling off at 6 hours and 256 

experiencing a more gradual increase up to a peak at 12 hours (109.07pg/ml), 257 

experiencing an overall 1.28-fold change. In contrast, the light group experienced a much 258 

more gradual increase in the first 6 hours (from 82.42 to 88.82 pg/ml), followed by a rapid 259 

increase at 9 hours, which was the peak plasma level (109.23 pg/ml). The total increase 260 

was similar at 1.33 times of the base level. The control group showed a rapid decrease in 261 

plasma MT levels between 12-15 hours (from 109.07 to 89.14 pg/ml) before returning to 262 
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a similar level at 0 hour (which was 85.32 pg/ml). In contrast the light exposed embryos 263 

experienced a gradual drop in MT levels from 9 hours, i.e. from the beginning of the dark 264 

period and continuing to drop to 94.55 pg/ml at 18 hours of the light period. This level had 265 

not returned to the level seen at 0 hour (which was 82.42 pg/ml) suggesting there would 266 

be further gradual decrease in plasma MT during the remainder of the light period.  Data 267 

obtained during days 19-21 was at a period when both groups of eggs were in dark 268 

conditions. At the beginning of IP the levels of plasma MT had increased in both groups, 269 

with the control being higher than the light group (149.18 versus 130.34 pg/ml). These 270 

levels increased rapidly during the next 24 hours, particularly in the control group (P=0.03), 271 

however the data did not show any significant differences between groups. At take-off 272 

(day 21), plasma MT levels decreased significantly and returned to the levels seen at day 273 

19 in both groups. 274 

Figure 4 shows the 18 hours pattern of the plasma CORT levels.  In the control group, 275 

CORT varied between 6 and 7.5 ng/ml throughout the dark and light periods; in the light 276 

group CORT decreased slightly in the first 3 hours of the dark period (from 7.61 to 6.10 277 

ng/ml), followed by a steady increase until peaking at 18 hours (8.94 ng/ml). Plasma 278 

CORT levels of the control chicks were numerically higher than those of the light 279 

stimulated chicks in the 12 hours dark period. This was reversed in the 12 hours light 280 

period, where the light group had significantly higher CORT than the control group in the 281 

first 3 hours of illumination (P=0.01). The plasma CORT levels increased in both groups 282 

from day 18 to EP. The higher trend was kept in the light group at IP and EP, but not 283 

statistically different between groups and then returned to the same level (11ng/ml) as at 284 

take-off.   285 
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Plasma T3 followed a similar trend to CORT (Figure 5). There was no significant difference 286 

between the control and light groups in the dark period. In both groups, T3 levels 287 

increased rapidly in the first 6 hours of the dark period, reaching the same levels (0.97 288 

ng/ml) before dropping slightly in the next 3 hours of the dark period. The light group 289 

increased further in the last 3 hours of the dark period, peaking at 12 hours (1.02 ng/ml), 290 

followed by being stable in the light period. The average T3 level in the light embryos was 291 

significantly higher than the control embryos (P=0.02) during this light period, indicating 292 

that light stimulation had an effect on T3 levels. The T3 levels increased significantly (more 293 

than doubled) from day 18 to IP in both groups, followed by another dramatic increase at 294 

EP which was the peak level (2.90 and 3.76 ng/ml in the control and light groups, 295 

respectively). However, the levels at take-off dropped significantly to the similar levels at 296 

days 17-18 in both groups. There were no differences in T3 concentrations between the 297 

control and light groups at IP and Take-off, but the light stimulated chicks had numerically 298 

higher T3 concentration than the control chicks at EP. The plasma T4 concentration is 299 

presented in Figure 6 and it showed a similar trend to MT between the control and light 300 

groups. The plasma T4 levels of the control embryos had an increase in the first 3 hours 301 

of the dark period (from 55.03 to 62.24 ng/ml) before being stable over the next 6 hours 302 

of the dark period and experiencing a slight increase up to a peak at 12 hours (65.24 303 

ng/ml). In contrast, the light group had a slight increase in the first 6 hours, followed by 304 

rapid increase at 9 hours, which was the peak plasma level (70.03 ng/ml), and 305 

experiencing a large drop at 12 hours. The control group showed a rapid decrease in 306 

plasma T4 levels between 12-15 hours (from 65.24 to 52.44 ng/ml) and had an increase 307 

at 18 hours before returning to the same level at 0 hour (58.27 ng/ml). However, the light 308 

exposed embryos experienced a small increase in T4 levels from the beginning of the light 309 
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period, followed by a minor drop into the same levels of the control group at 18 hours. 310 

Plasma T4 increased significantly from days 17-18 to IP in both groups with the control 311 

being higher than the light group (92.79 versus 80.00 ng/ml). These levels kept increasing 312 

until peaking at EP, particularly in the control group (P<0.01). In contrast to T3, the control 313 

EP chicks tended to have higher T4 than that of the light stimulated chicks.  However, the 314 

data did not show any significant differences between groups. At take-off (day 21), plasma 315 

T4 levels decreased significantly in the control group (P<0.05) before returning to the 316 

same levels of the light group (86 ng/ml). The plasma T3/T4 ratio of the control and light 317 

groups for the observed part of the incubation period is shown in Figure 7. The T3/T4 ratio 318 

during the 18 hours of days 17-18 was stable at 0.02 in both groups. However, this ratio 319 

started increasing before the onset of pipping and reached the maximum at EP in light 320 

group (0.04), whereas it remained at the same elevated level in the control group (0.03). 321 

These ratios at take-off in both groups returned to the same figure observed at days 17-322 

18. 323 

 324 

Discussion 325 

Green light stimulation during incubation has been reported to accelerate chick embryo 326 

development (Zhang et al., 2014). The results shown in this study also indicated that 327 

broilers incubated under a 12L:12D cycle using green light for the first 18 days not only 328 

hatch earlier, but grow faster as significant increases in beak length, third-toe length and 329 

CRL were found at some incubation stages. However, overall body weight did not increase. 330 

Poultry are usually incubated commercially in complete darkness due to concerns about 331 

potential adverse effects of light stimulation on performance and economics, for instance, 332 

decreased hatchability due to secondary heating (Archer et al., 2009). Previous published 333 
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studies have reported different effects of light stimulation during incubation on hatchability 334 

due to the spectral characteristics of light and the photoperiod. Archer and Mench (2014) 335 

demonstrated that there was no effect on hatchability when different photoperiods were 336 

applied using full-spectrum fluorescent light with the intensity of 550 lux throughout 337 

incubation. In addition, Zhang et al., (2014) reported no effect of continuous green light of 338 

15 lux during incubation on hatchability and hatching. However, in the current study a 339 

significant decrease in the hatchability was found in the green light incubation. This may 340 

be due to the absence of light-dark cycle from day 19 or the reduced heart weight 341 

observed in light exposure embryos. This has not been studied or reported before. 342 

Another study showed that the heart rate of chicken embryos responded to the injected 343 

melatonin (Höchel and Nichelmann, 2001). Therefore, the changed pattern of melatonin 344 

in the light incubation may also affect the cardiac function of chicken embryo. It has been 345 

reported that the rhythm of melatonin synthesis in embryos can be synchronised by 346 

ambient light-dark (LD) cycles and requires a photoperiod longer than 8 hours for its 347 

proper functioning (Zeman et al., 1999). Theoretically, the production of melatonin by the 348 

pineal gland is elevated by darkness and suppressed by the presence of light, respectively, 349 

which establishes the circadian rhythms. In the current study, although there were no 350 

significant differences, there were still different trends in the patterns of plasma MT levels 351 

in the 17-18 days old chicken embryos which were incubated under darkness compared 352 

to 12L:12D.  The plasma MT levels of 12 hours light exposed embryos experienced an 353 

increase until 9 hours of darkness when the increase in MT tailed off and subsequently 354 

the MT dropped during the light period. This confirms the theory that the light exposure 355 

suppressed the MT release during the light period. The significant rhythmic patterns of 356 

plasma MT have also been reported on day 19 or day 20 (Zeman et al., 1999, Archer and 357 
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Mench, 2014) under 12D:12L incubation. Archer and Mench (2014) have demonstrated 358 

that the plasma MT levels during the light period at day 19 broilers incubated under 359 

12L:12D were almost identical to dark incubated embryos, but it elevated during the dark 360 

period while the control birds still maintained at the same level. Their results confirm that 361 

the light period is required to trigger the increase during the dark period. Without this dark-362 

light rhythm there is only a somewhat steady MT concentration in the continuous dark at 363 

the same level as in the light condition. 364 

The rhythm of melatonin release may also influence the rhythms of other hormones 365 

(Starck and Ricklefs, 1998). However, little is known of the ontogeny of circadian patterns 366 

of secretion of other hormones in birds. A daily rhythm in plasma CORT has only been 367 

reported in adult birds and the peak occurs at the transition of dark to light (Sato and 368 

George, 1973). The present study showed that plasma CORT concentrations of 17-18 369 

days old embryos decreased during the dark period and increased during light period. 370 

This indicated that light stimulated the secretion of CORT in the embryo which is in 371 

agreement with previous reports that CORT response to light is opposite that of melatonin 372 

in broiler and human (Cutolo et al., 2006, de Jong et al., 2001). The underlying mechanism 373 

is the ability of MT is able to inhibit the hypothalamic-pituitary-adrenal (HPA) axis and thus 374 

suppresses the concentrations of CORT and ultimately thus reduces stress, potentially a 375 

significant factor for the rest/sleep phase in the dark period.  376 

It has been shown that administration of CORT to chicken embryos was followed by an 377 

increase of the plasma T3 levels and T3/T4 ratio (Jenkins and Porter, 2004). In this study, 378 

both plasma T3 and CORT showed the same increasing trend in light stimulated embryos 379 

conforming that CORT may affect T3 or vice versa through light stimulation. This 380 

suggested that thyroid hormone concentrations (T3 & T4) were affected by the circadian 381 
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rhythms of MT via photoperiod. The different opposed rhythmic patterns of T3 and T4, 382 

with plasma T3 concentrations decreasing during the night and increasing during the day 383 

and plasma T4 concentrations peaking during the night and lower at day, were also found 384 

in chicks during the first week post hatch, and were deemed to be controlled by the feeding 385 

pattern (Newcomer, 1974, Klandorf et al., 1978). The same patterns of plasma T3 and T4 386 

levels in chicken embryos were also found in our study when they were exposed to a 387 

photoperiod of 12D:12L.  388 

Light stimulation causing the alteration of hormones may in turn affect hatching 389 

behaviours. Our results showed that the concentrations of MT, T3, T4 and CORT 390 

increased significantly from the onset of pipping. It has been reported that the high plasma 391 

T3 levels occur when the pulmonary respiration initiates (Decuypere and Bruggeman, 392 

2007). Here, the T3 levels of embryos increased significantly from IP to EP in both control 393 

and light groups. Moreover, the control embryos had higher plasma MT and T4 levels, 394 

whereas the light exposed embryos had higher plasma CORT, T3 levels and T3/T4 ratio 395 

at EP. These different patters suggested that the first 18 days light stimulation seems 396 

likely to have a consequent impact on hormones levels during hatch. However, all returned 397 

to the same levels at take-off. Light exposed chicks hatched about 3.4 h earlier in this 398 

study probably due to the elevated levels of CORT, T3 and T3/T4 ratio which are 399 

considered important for stimulating a variety of developmental and metabolic process 400 

necessary for hatching (Carsia et al., 1987). However, it is still unclear that whether the 401 

early hatch is directly related to the change in hormones or the strengthened rhythms. 402 

This study was conducted to evaluate the effect of a 12 hours light, 12 hours dark 403 

photoperiod of green light during incubation on embryo growth, hatch performance and 404 

the hatch process. At the group level, light stimulation had no effect on chick weight and 405 
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quality at take-off, the initiation of hatch and hatch window, but with a reduced hatchability. 406 

However, the individual hatching time of the light stimulated focal chicks was 3.4 hours 407 

earlier than the control focal chicks. The results of this study indicated that green light 408 

accelerated embryo development and altered plasma MT, CORT, T3 and T4 409 

concentrations. Further work is required to understand if and how such altered hormone 410 

profiles impact upon hatching time.  411 
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Table 1 Mean (± SEM) time of onset of internal pipping (IP) and length of hatch window (HW) of 516 

the control group and light group from four batches. 517 

Group IPa HW (hour) 

Control 467.3±0.7 23.0±1.9 

Light 467.3±0.7 22.3±1.9 

P-value 1.0 0.78 

a hours of incubation time  518 
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Figure captions 519 

 520 

Figure 1 Mean of hatchability and mortality in the control group and the light group over four 521 

batches (n=1200 eggs at setting of each group, fertility varied from 82-96%). ED, early death from 522 

day 0 to day 7; MD, middle death from day 8 to day 15; LD, late death from day 16 to day 21. 523 

*Means significantly different between the control and light groups at P<0.05. 524 

 525 

Figure 2 The heart weight, beak length, third toe length and crown-rump length of the control 526 

and light exposed embryos or chicks from day 10 to day 21 of incubation time. Dashed lines 527 

indicate the control group and solid lines indicate the light group. Asterisk indicates significant 528 

difference between groups at a given incubation stage (*P<0.05; ** P<0.01). Data are presented 529 

as mean ±SEM (12 samples of each group at each incubation stage). 530 

 531 

Figure 3 Plasma melatonin concentrations over an 18 hours period from day 17 to day 18, 532 

internal pipping (IP) at day 19, external pipping (EP) at day 20 and take-off at day 21 of broilers 533 

incubated under the control and light groups. Solid line indicates the light group with a 534 

photoperiod of 12 h of light and 12 h of darkness for the first 18 days of incubation and no light-535 

dark cycle for the last 3 days of incubation; the horizontal bars indicate the dark (closed) and 536 

light (open) periods of the photoperiod in the light group. Dashed line indicates the control group 537 

where eggs were incubated under darkness throughout the incubation. Data are presented as 538 

mean ±SEM of four samples and each was pooled blood from three embryos or chicks at each 539 

time point. ab/xy Means significant difference among the given time points within a group 540 

(P<0.05). 541 

 542 
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Figure 4 Plasma corticosterone concentrations over an 18 hours period from day 17 to day 18, 543 

internal pipping (IP) at day 19, external pipping (EP) at day 20 and take-off at day 21 of broilers 544 

incubated under the control and light groups. Solid line indicates the light group with a 545 

photoperiod of 12 h of light and 12 h of darkness for the first 18 days of incubation and no light-546 

dark cycle for the last 3 days of incubation; the horizontal bars indicate the dark (closed) and 547 

light (open) periods of the photoperiod in the light group. Dashed line indicates the control group 548 

where eggs were incubated under darkness throughout the incubation. Data are presented as 549 

mean ±SEM of four samples and each was pooled blood from three embryos or chicks at each 550 

time point. Asterisk indicates significant difference between groups at a given time point (** 551 

P<0.01). 552 

 553 

Figure 5 Plasma Triiodothyronine (T3) concentrations over an 18 hours period from day 17 to 554 

day 18, internal pipping (IP) at day 19, external pipping (EP) at day 20 and take-off at day 21 of 555 

broilers incubated under the control and light groups. Solid line indicates the light group with a 556 

photoperiod of 12 h of light and 12 h of darkness for the first 18 days of incubation and no light-557 

dark cycle for the last 3 days of incubation; the horizontal bars indicate the dark (closed) and 558 

light (open) periods of the photoperiod in the light group. Dashed line indicates the control group 559 

where eggs were incubated under darkness throughout the incubation. Data are presented as 560 

mean ±SEM of four samples and each was pooled blood from three embryos or chicks at each 561 

time point. abc/xyz Means significant difference among the given time points within a group 562 

(P<0.05). 563 

 564 

Figure 6 Plasma Thyroxine (T4) concentrations over an 18 hours period from day 17 to day 18, 565 

internal pipping (IP) at day 19, external pipping (EP) at day 20 and take-off at day 21 of broilers 566 

incubated under the control and light groups. Solid line indicates the light group with a 567 

photoperiod of 12 h of light and 12 h of darkness for the first 18 days of incubation and no light-568 
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dark cycle for the last 3 days of incubation; the horizontal bars indicate the dark (closed) and 569 

light (open) periods of the photoperiod in the light group. Dashed line indicates the control group 570 

where eggs were incubated under darkness throughout the incubation. Data are presented as 571 

mean ±SEM of four samples and each was pooled blood from three embryos or chicks at each 572 

time point. ab Means significant difference among the given time points within a group (P<0.05). 573 

 574 

Figure 7 Plasma T3/T4 ratio over an 18 hours period from day 17 to day 18, internal pipping (IP) 575 

at day 19, external pipping (EP) at day 20 and take-off at day 21 of broilers incubated under the 576 

control and light groups. Solid line indicates the light group with a photoperiod of 12 h of light 577 

and 12 h of darkness for the first 18 days of incubation and no light-dark cycle for the last 3 days 578 

of incubation; the horizontal bars indicate the dark (closed) and light (open) periods of the 579 

photoperiod in the light group. Dashed line indicates the control group where eggs were 580 

incubated under darkness throughout the incubation. Data are presented as mean ±SEM of four 581 

samples and each was pooled blood from three embryos or chicks at each time point. ab/xy 582 

Means significant difference among the given time points within a group (P<0.05). 583 

584 
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