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ABSTRACT 29	
 30	

One of the most economically important areas within the Russian agricultural sector is dairy 31	

and beef cattle farming contributing about $11 billion to the Russian economy annually. Trade 32	

connections, selection and breeding have resulted in the establishment of a number of breeds 33	

that are presumably adapted to local climatic conditions. Little however is known about the 34	

ancestry and history of Russian native cattle. To address this question, we genotyped 274 35	

individuals from 18 breeds bred in Russia and compared them to 135 additional breeds from 36	

around the world that had been genotyped previously. Our results suggest a shared ancestry 37	

between most of the Russian cattle and European taurine breeds, apart from a few breeds that 38	

shared ancestry with the Asian taurines. The Yakut cattle, belonging to the latter group, was 39	

found to be the most diverged breed in the whole combined dataset according to structure 40	

results. Haplotype sharing further suggests that the Russian cattle can be divided into four 41	

major clusters reflecting ancestral relations with other breeds. Herein, we therefore shed light 42	

on to the history of Russian cattle and identified closely related breeds to those from Russia. 43	

Our results will facilitate future research on detecting signatures of selection in cattle genomes 44	

and eventually inform future genetics-assisted livestock breeding programs in Russia and in 45	

other countries. 46	

 47	

Keywords: Russian native cattle breeds, adaptation, breed formation, SNP genotyping, 48	

admixture, European cattle, Asian cattle   49	



	 3	

INTRODUCTION 50	
 51	

Thousands of years of artificial selection coupled with human-driven migration and adaptation 52	

to diverse environmental conditions resulted in ~1000 cattle breeds worldwide, which are 53	

tailored to local economic needs, aesthetic demands and possess unique genetic profiles 54	

(Mason, 1969). During the last two centuries, some cattle populations were further improved 55	

resulting in several commercial breeds demonstrating outstanding productivity when properly 56	

handled (Boichard and Brochard, 2012). Currently there is a tendency to replace or ‘improve’ 57	

local breeds with the genetic material from superior commercial ones, meaning that genetic 58	

diversity, signatures of adaptations to local conditions, and the history of formation encoded in 59	

native breed genomes often diminish before being recorded and properly studied (Gaouar et 60	

al, 2015). On the other hand, genomes of native breeds could be mined for combinations of the 61	

genetic variants invaluable in the development of a new generation of commercial breeds that 62	

would better fit into a range of environmental conditions (Gao et al, 2017). The first step 63	

towards uncovering this information is to understand the origin, structure and admixture events 64	

involving the native breed populations and to place them into the context of a wider set of 65	

world breeds (Beynon et al, 2015; Bovine HapMap Consortium, 2009; Matukumalli et al, 66	

2009).  67	

The genetic diversity of domestic cattle stems from the two main sources of 68	

domestication of the ancient Bos subspecies: B. taurus and B. indicus originating from the 69	

Fertile Crescent and the Indus Valley respectively, and adapted to distinct environments 70	

(Loftus et al, 1994). Some extant breeds originate from old and/or recent interbreeding between 71	

the B. taurus and B. indicus resulting in a wide geo-climatic adaptation of the hybrids (Larkin 72	

and Yudin, 2016). 73	

According to a recent study involving the whole-genome genotyping of 129 bovine 74	

breeds (Decker et al, 2014), the European cattle breed pool consists mainly of animals of B. 75	
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taurus ancestry without a great deal of contribution from B. indicus genes, with the exception 76	

of Turkish breeds. In addition, the Iberian populations of cattle also have a significant genetic 77	

component tracing back to the African taurines (Decker et al, 2014). This comprehensive study, 78	

however, did not include breeds from Russia, despite some of them expressing unique 79	

adaptations (e.g. the ability to live above the polar circle expressed by the Yakut cattle). Other 80	

recent studies of native European cattle did however include a limited number of samples from 81	

several Russian native breeds (Iso-Touru et al, 2016; Upadhyay et al, 2017; Zinovieva et al, 82	

2016) but did not carry out a comprehensive comparison between the Russian cattle and the 83	

world breeds. A high divergence of the Yakut cattle (Iso-Touru et al, 2016) was suggested as 84	

well as distinct genetic profiles of several Russian breeds placing some of them apart from the 85	

European Holstein-Friesian population (Zinovieva et al, 2016).  86	

Due to Russia’s unique geographic position in both Europe and Asia, its large territory, 87	

diverse climate conditions and its rich history, it is expected that Russian native cattle will 88	

demonstrate a variety of adaptations and are likely to form a link between the European and 89	

Asian cattle populations. According to historical records, the extant Russian cattle breeds 90	

originate from the ancient Eurasian cattle, including the steppe cattle (Li and Kantanen 2010) 91	

and later (starting from the early 18th century) were affected by ‘uncontrolled’ interbreeding 92	

with multiple European cattle populations (Dmitriev and Ernst, 1989). Currently there are 16 93	

native breeds recognised in Russia (Dunin and Dankvert, 2013) with even more being extinct 94	

(DAD-IS, 2017). The Russian cattle breeds can be classified as the breeds of Eastern European 95	

origin (e.g. Kholmogory and Yaroslavl), crossbred Eastern European breeds (e.g. Istoben, and 96	

Kazakh Whiteheaded), and Asian/Siberian/Turano-Mongolian breeds (e.g. Yakut, Buryat) 97	

(Buchanan and Lenstra, 2015). A comprehensive molecular genetic study of the Russian cattle 98	

is missing or limited to the studies based on mitochondrial DNA and a small number of 99	
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autosomal (Li and Kantanen, 2010), and Y-chromosome microsatellite markers (Edwards et 100	

al, 2011).  101	

The aim of this study therefore was to analyse of a dataset composed mostly of Russian 102	

and native breeds from neighbouring countries in the context of the dataset of world breeds. 103	

We used the GGP HD150K and Illumina Bovine 50K arrays to genotype individuals from 18 104	

breeds bred in Russia, combined our data with the dataset containing additional 129 cattle 105	

breeds collected from around the world (Decker et al, 2014) and samples from ten breeds from 106	

Russia and Europe genotyped previously (Iso-Touru et al, 2016). We aimed at building on 107	

these established resources to use them as a reference to reveal the genetic structure and history 108	

of Russian native cattle and to develop hypotheses about their relationships with breeds 109	

worldwide. To reveal the complex history of Russian cattle breeds, multiple complementary 110	

methods of population genetics were applied to the datasets, and hypotheses pertaining to the 111	

origin and structure of the extant breeds were built based on integration of the results.       112	
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MATERIALS AND METHODS 113	

 114	

Sample collection 115	

We used breed society and herdbook information to locate the herds of nine native cattle breeds 116	

bred in Russia and the Siberian population of Herefords. Collection of blood (maximum 117	

volume = 10 ml) was carried out by superficial venepuncture using sterile 10-ml BDK2EDTA 118	

Vacutainers® (Wellkang Ltd, London, UK). In addition, sperm samples from bulls of seven 119	

breeds were purchased from breeding companies, and sperm samples from six breeds were 120	

obtained from Russian Research Institute of Farm Animal Genetics and Breeding (St. 121	

Petersburg, Russia). Additional DNA samples for three breeds were identified from the Russian 122	

Cattle Genomic Diversity Panel v.1.0 (Yudin et al, 2015). Where pedigree details were 123	

available, we attempted to avoid sampling of individuals known to be closely related (e.g. 124	

siblings, parent and offspring). Additionally, a balanced combination of the same breed 125	

samples from different sources/locations was selected for genotyping (Table 1), however for 126	

seven breeds the number of samples collected was <10 with as few as two for the Red Pied 127	

cattle suggesting that sampling may not account completely for the breed’s genetics. Whole 128	

blood and sperm were both stored at -80°C until further use.  129	

DNA extraction and genotyping of single nucleotide polymorphisms (SNPs) 130	

DNA from blood samples was extracted using cell lysation followed by phenol-chloroform 131	

extraction (Sambrook et al, 2006). The semen samples were pretreated with guanidinium 132	

thiocyanate (AppliChem, Darmstadt, Germany) and DNA was extracted using a salting out 133	

method (Miller et al, 1988). DNA quality and quantity were determined using a NanoDrop 134	

2000c (Thermo Scientific, Wilmington, DE, USA). High quality samples (i.e. having DNA 135	

concentrations of at least 50 ng/µl and A260/280 ratios of ca. 1.8) were then subjected to array 136	

genotyping. When the number of DNA samples from purebred unrelated animals of the same 137	
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or different source/location (Table 1) exceeded ten for a breed, genotyping was performed on 138	

the GeneSeek Genomic Profiler High-Density (GGP HD150K) array containing ~139,000 SNP 139	

markers with plans to include this dataset into the follow-up studies on detecting signatures of 140	

selection in bovine genomes which would benefit from a higher number/density of SNPs being 141	

genotyped. Otherwise, samples were genotyped on the BovineSNP50 Analysis BeadChip 142	

(BovineSNP50K) array containing ~54,000 SNP markers compatible with many previously 143	

published datasets, which is a number sufficient for the present study. Each genotyping set 144	

contained several duplicated DNA samples (three for GGP HD150K and two for 145	

BovineSNP50K) to control for the quality of genotyping and to identify potentially problematic 146	

SNP markers. 147	

Genotypes were called using the GenomeStudio 2 software (Illumina, San Diego, USA), and 148	

samples with call rates of < 95% were excluded from the further analyses. A pedigree (.ped) 149	

file containing the genotype calls, sample and family identifiers and a map (.map) file 150	

containing the chromosomal location and identifier for each SNP were generated using 151	

GenomeStudio 2 and imported into the PLINK whole genome analysis toolkit (Purcell et al, 152	

2007) for further processing. 153	

Data merging and filtering 154	

To identify relationships between the Russian cattle breeds and worldwide breed collections 155	

our GGP HD150K and BovineSNP50K genotyping sets were combined with a set of 48 156	

samples originating from the Ukrainian Grey cattle (Boussaha et al, 2015) applying the PLINK 157	

--merge command and a common set of ~43,000 SNP markers shared between the GGP 158	

HD150K and BovineSNP50K arrays. To the merged set we added the genotyping sets 159	

generated by Decker et al. (2014) (128 additional breeds) and Eurasian breeds from Iso-Touru 160	

et al. (2016) (10 breeds). The latter two datasets contained a total of 1,836 individuals. The 161	

datasets were combined with the PLINK --merge command using only SNP with unique IDs 162	
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and chromosomal positions as identified by the SNPchiMp v.3 software (Nicolazzi et al, 2015) 163	

and custom Python scripts. The combined dataset was further filtered to exclude duplicate 164	

samples, poorly genotyped individuals (< 95% of SNPs), loci genotyped in < 99% of 165	

individuals and rare alleles (MAF < 0.001) in PLINK:  --geno 0.01 --mind 0.05 --maf 0.001 166	

resulting in a subset of 26,740 SNP that were used for the analyses described below. 167	

Population structure and phylogenetic analyses 168	

Population structure was characterised using: 1) individual distance-based phylogenetic 169	

analysis, 2) model-based clustering and 3) assumption-free Principal Component Analysis 170	

(PCA). To ensure that analyses would not be distorted by the presence of SNPs in a strong 171	

linkage disequilibrium (LD), the --indep command in PLINK was used to prune the SNPs that 172	

passed the initial filtering step. This was achieved by removing one locus from each pair for 173	

which LD (r2) exceeded 0.1 within 50 SNP blocks resulting in 16,645 remaining SNPs. To 174	

estimate and test the phylogenetic relationship of different breeds we constructed a neighbour-175	

joining (NJ) tree (Saitou and Nei, 1987) based on individual genotypes in FastNJ software (Li, 176	

2015). Tree topology was tested with 1,000 bootstrap replications. Nodes with < 70% support 177	

were collapsed and the resulting tree was visualised using FigTree software (Rambaut and 178	

Drummond, 2012). To evaluate the fractions of putative ancient populations in the modern 179	

genetic pool we used the fastSTRUCTURE (v1.0) clustering and stratification program (Raj et 180	

al, 2014). The program runs were carried out assuming between one and 40 groups (K) for 181	

both global set and Russian breed (including also closely related world breeds with more than 182	

five sampled individuals identified from the global NJ tree) sets. The cluster membership 183	

matrixes of the fastSTRUCTURE outputs were visualised using PONG software (Behr et al, 184	

2016). We used model complexity that maximises marginal likelihood to infer the putative 185	

optimal number of genetic clusters. As an assumption-free illustration of the differentiation 186	
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between breeds, PCA, was performed using the SNPrelate Bioconductor package (Zheng et al, 187	

2012). 188	

Single nucleotide polymorphism diversity, linkage disequilibrium and haplotype sharing 189	

An estimate of expected heterozygosity (He) at each locus was calculated using the --hardy 190	

command in PLINK and the mean value was calculated for each breed. The proportion of 191	

polymorphic loci (Pn) in each breed and the mean inbreeding coefficient (F) values were 192	

calculated using the PLINK commands --freq and --het, respectively. To calculate pairwise 193	

differentiation (FST) between different breeds we used smartpca software from the Eigensoft 194	

package (v 6.1.4) (Patterson et al, 2006).  195	

Runs of homozygosity (ROH) represent long stretches of haplotypes identical by 196	

descent (IBD) and provide valuable information about past and recent demographic events 197	

which accompanied the history of populations. To calculate ROH we used the methodology of 198	

(Purfield et al, 2012) with stringent settings suitable for low-density genotype samples: ≥ 1 199	

SNP per 80 Kbp region, > 30 SNPs per region, with no more than one heterozygous SNP 200	

(PLINK commands: --homozyg-density 80 --homozyg-snp 30 --homozyg-het 1). To investigate 201	

the relationship and to infer signatures of recent gene flows between pairs of populations we 202	

used the method based on the detection of IBD-shared haplotypes according to (Ralph and 203	

Coop, 2013). Briefly, the genotypes of the global dataset were split by chromosome and phased 204	

using SHAPEIT 2 software (Delaneau et al, 2013) with 400 conditioning states (--states 400) 205	

and the effective population size (Ne) equal 15,000 as a safe provisional estimate for our diverse 206	

dataset. We used a high-density genetic map of the cattle genome (Ma et al, 2015) to correct 207	

for local variations in recombination rate during the haplotype inference. The haplotype sharing 208	

analysis was conducted using BEAGLE 4.1 software (Browning and Browning, 2013) based 209	

on phased haplotypes with LOD score ≥ 2.5 (ibdlod=2.5), the length of shared haplotypes ≥ 210	

100 Kbp (ibdcm=0.01) and the number of markers trimmed from the end of the shared 211	
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haplotypes when testing for IBD equalled three (ibdtrim=3). The inferred shared haplotypes 212	

were binned into three categories according to the size (< 3 Mbp, 3-5 Mbp, > 7 Mbp) and 213	

plotted using the R libraries igraph and ggcorrplot (R Development Core Team, 2008). 214	

To further reveal traces of genetic admixtures and their directions between the Russian 215	

and closely related breeds, and between the Russian and breeds of B. indicus origin, we applied 216	

the maximum-likelihood algorithm implemented in the Treemix software (Pickrell and 217	

Pritchard, 2012) which models migration events on the phylogenetic tree. Two datasets 218	

analysed separately were: 1) Russian and closely related world breeds as defined from the NJ 219	

analysis, 2) Russian breeds and breeds of known B. indicus and B. javanicus origin from 220	

Decker et al. 2014 with at least five sampled individuals per breed. The Treemix analysis was 221	

performed with 1 SNP per block for estimation of the covariance matrix (k=1) and gradual 222	

addition from one to 15 migration events with the step equal to one for the first dataset and 223	

from three to 18 migration events with the step equal to three for the second dataset. We rooted 224	

the trees on the Yakut cattle and B. javanicus for the first and second datasets, respectively. 225	

The optimal number of migration events was determined after examining the difference 226	

between the likelihoods of the tree after each migration step being added and the tree’s previous 227	

step likelihood (Δ Likelihood). 228	

To estimate the historical and recent effective population sizes (Ne) in Russian breeds 229	

we applied a method based on the relationship between the extent of LD, Ne and the 230	

recombination rate within the populations implemented in the SNeP software (Barbato et al, 231	

2015). The calculations were performed on SNPs with MAF >= 0.05, with sample size 232	

correction (-samplesize), and with minimum and maximum distances equal to 5,000 bp and 233	

2,000,000 bp respectively. The recombination correction was applied according to (Sved and 234	

Feldman, 1973). LD values for size bins in the range from 28 Kbp to 600 Kbp were extracted 235	

from the SNeP output and plotted to estimate the LD decay for Russian cattle breeds.   236	
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RESULTS 237	

 238	

Single nucleotide polymorphism, diversity, inbreeding and linkage disequilibrium within 239	

the Russian breeds 240	

Both the GGP HD150K and BovineSNP50K SNP arrays were found highly informative for 241	

the Russian cattle breeds (Suppl. Table 1). The proportion of loci polymorphic (Pn) in at least 242	

one breed for the overlapping set of 26,701 SNPs shared between the arrays varied from 0.650 243	

for the Red Pied to 0.977 for the Black Pied breeds with a mean of 0.891 (Table 1). The mean 244	

MAF was found highly consistent among the breeds ranging from 0.205 (Yakut) to 0.269 245	

(Black Pied and Kalmyk). Similarly, the expected heterozygosity (He) was relatively high in 246	

all Russian breeds (range 0.271- 0.352, mean 0.324) with the lowest values observed in the 247	

Red Pied (0.271) and Yakut (0.273) and the highest in the Black Pied (0.352) and Tagil (0.350).  248	

The inbreeding coefficient (F) demonstrated negative values for all the breeds, but the largest 249	

deviations from zero (>0.1) should be taken with caution because they were observed for the 250	

breeds with the lowest number of samples analysed (i.e. Istoben, Red Pied, Red Steppe, and 251	

Yurino; Table 1) suggesting that the genetic composition was likely not covered in full for 252	

these breeds. 253	

We estimated the recent and past effective population (Ne) sizes for the native breeds 254	

and plotted the results (Suppl. Figure 1). All of the Russian breeds demonstrated a highly 255	

similar pattern of Ne decay with an increased rate starting ~200 generations ago (Suppl. Figure 256	

1b) likely being caused by bottle necks associated with contemporary breed formation. The 257	

highest historical Ne sizes were observed for the Buryat and Kalmyk while the lowest Ne for 258	

the Yakut (Suppl. Figure 1a,b). The LD decay plot (Figure 1) suggested the presence of long 259	

haplotypes usually associated with low Ne size (e.g. Yakut, Kostroma and Kholmogory); the 260	
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most pronounced effect was observed for the Yakut cattle. The Buryat and Kalmyk cattle 261	

demonstrated a rapid LD decay consistent with the historically larger Ne sizes of these breeds. 262	

Consistent with the expectation of high inbreeding within Yakut, Kostroma, Kazakh 263	

Whiteheaded and Ukrainian Gray breeds, the presence of the longest and most frequent ROHs 264	

(>500 Kbp/>4 per animal) were observed within these breeds (Suppl. Figure 2). Tagil and 265	

Buryat demonstrated the shortest and the least frequent average number of ROHs in their 266	

genomes suggesting that these breeds could have been managed effectively to avoid excessive 267	

inbreeding. All other breeds expressed an intermediate level of ROHs consistent with the 268	

higher Ne and expected moderate level of inbreeding.    269	

Ancestry of Russian cattle breeds 270	

To identify ancestral relationships between native breeds from Russia and the cattle breeds 271	

distributed worldwide, we analysed our datasets with that of world breeds (Decker et al, 2014) 272	

and additional Eurasian breeds (Iso-Touru et al, 2016). As expected, the first two components 273	

of PCA differentiated the main clusters of breeds from Africa, Asia, and Europe representing 274	

mainly African taurine, cattle of Eurasian taurine origin and cattle of Asian indicine origin, 275	

with breeds expressing various levels of hybridisation found in between (Suppl. Figure 3). 276	

Breeds from the Americas clustered with the European and Asian breeds. The majority of 277	

Russian breeds followed the European taurine breed cluster with additional breeds found in the 278	

cluster of taurine Asian breeds (Suppl. Figure 3). These results were highly consistent with the 279	

fastSTRUCTURE analysis which suggested a close relationship between the breeds from 280	

Russia and other taurine breeds of European and several of Asian origin (Figure 2). However, 281	

at K=4 a separate cluster was formed by the Yakut cattle. The first other breed that formed a 282	

separate cluster was the British Shorthorn (K=5). 283	

The collapsed NJ tree grouped samples into the well-supported breed-specific nodes 284	

confirming the expected phylogenetic relationships within the breed populations (Figure 3). 285	
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The three major well-resolved branches of the tree separated the breeds of Asian, African and 286	

European/American origins consistent with the PCA and fastSTRUCTURE results. The 287	

majority of the breeds from Russia (N = 17) were distributed along the branch of the 288	

European/American taurine breeds with some of them forming well-supported clusters with 289	

other breeds indicating close relationships. The Yakut cattle was found in the same cluster with 290	

Hanwoo and Wagyu cattle from Korea and Japan respectively, near the Buryat cattle node. 291	

Other two well-resolved clusters involving Russian breeds and world breeds have grouped 292	

together the Kazakh Whiteheaded breed from Russia with Hereford samples from Russia and 293	

Wales; and the Ala-Tau and Kostroma with two breeds of European origin (Braunveih and 294	

Brown Swiss). Ukrainian Whiteheaded, Gorbatov Red and Istoben formed a separate cluster 295	

on the branch of the European breeds. Yurino formed a cluster with the Pinzgauer cattle from 296	

Austria. Kholmogoy, Black Pied, Tagil, Red Steppe formed a large cluster with the Holstein-297	

Friesian, French Red Pied and Lithuanian Light Grey breeds. 298	

The pairwise analysis of shared haplotypes between the Russian cattle breeds and 299	

taurine breeds of European and Asian origins has identified 39 breeds with a significant level 300	

of haplotype sharing with at least one breed from Russia (LOD>2.5; Figure 4, Suppl. Figure 301	

4). The top 10 world breeds that shared haplotypes at all three levels of the haplotype analysis 302	

were: Brown Swiss, Hereford, Holstein, Braunvieh, Senepol, French Red Pied, Beef Shorthorn, 303	

Maine Anjou, Norwegian Red, and Jersey (Figure 4, Suppl. Figure 4). This analysis has 304	

provided evidence for additional breed relations to the previously described results, and 305	

allowed us to distinguish between older and more recent relationships. Sharing of the short 306	

haplotypes (0-3 Mbp; presumably indicative of older relationships between populations) has 307	

formed two clear large clusters and two smaller clusters of breeds (Figure 4a). The largest 308	

cluster revealed the ancestral relationships between the Northern French, British, and Finnish 309	

breeds with the Yaroslavl, Bestuzhev, Black Pied, Tagil, and Kazakh Whiteheaded breeds from 310	
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our set. The second large cluster suggested further ancestral relationships between the South-311	

European breeds from South-East France, Italy, Switzerland with Kostroma and Ala-Tau 312	

breeds from our dataset. Ukrainian Grey cattle samples both from Russia and Serbia shared 313	

short haplotypes with Podolian cattle (Serbia) and Romagnola (Italy) breeds. The Yakut and 314	

Buryat breeds formed a separate small cluster with Japanese Wagyu cattle whereas the Kalmyk 315	

cattle had significant haplotype sharing only with the Beef Shorthorn from England.  316	

The longest shared haplotypes (>7 Mbp; likely indicative of recent introgression and 317	

admixture events, Figure 4b) revealed the recent admixture between the Ukrainian Grey 318	

sampled in Russia (Boussaha et al, 2015) and the Yakut cattle. The Ukrainian Grey breed 319	

sampled in Serbia (Iso-Touru et al, 2016) did not demonstrate this pattern. Both the Kostroma 320	

and Ala-Tau breeds had extensive haplotype sharing with the Brown Swiss and Braunvieh. 321	

Multiple Russian breeds (i.e. Bestuzhev, Black-Pied, Tagil, Yaroslavl, Kholmogory) shared 322	

haplotypes with Holstein-Friesian, Senepol, French Red-Pied Lowland and Normande breeds. 323	

To investigate more closely the genetic ancestry of the sampled Turano-Mongolian 324	

breeds (Yakut, Buryat, Kalmyk) we plotted the extent of pairwise haplotype sharing for each 325	

breed from highest to lowest value (Figure 5 and Suppl. Figure 5) for shortest haplotype 326	

segments (0-3 Mbp) including both taurine and indicine world breeds. The closest breeds (>1.5 327	

Mbp average total haplotype length shared per animal) to Yakut cattle were Hanwoo, Buryat, 328	

Wagyu, Qinchan, Mongolian cattle and Morucha demonstrating a pronounced signal on the 329	

plot. The Buryat breed was mostly related to Wagyu, Hanwoo, Yakut, Qinchuan, Ala-Tau and 330	

Mongolian cattle breeds. Thus, Yakut and Buryat breeds showed a close relationship with 331	

taurine Asian breeds (and with each other) confirming their shared ancestry. Our samples of 332	

the Kalmyk cattle demonstrated mostly low values of haplotype sharing with the strongest 333	

relationship to Beef Shorthorn and a much weaker sharing with Wagyu and Welsh Black 334	

breeds. Interestingly, another sampling of the Kalmyk breed (Iso-Touru et al, 2016) showed 335	
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some higher signal values, although it confirmed a relationship between the Kalmyk cattle and 336	

both taurine Asian (Hanwoo) and European (Simmental, Beef Shorthorn, Groningen 337	

Whitehead) breeds (Suppl. Figure 5). In our analysis breeds of known indicine origin did not 338	

demonstrate high degree of haplotype sharing with Turano-Mongolian breeds with signal 339	

values always much lower than the values observed for the top taurine breeds (Figure 5 and 340	

Suppl. Figure 5). 341	

 342	
The relationships between the cattle breeds from Russia and the closely related world 343	
breeds.  344	
 345	
To reveal the fine-structure relationship between the Russian cattle breeds and the set of closely 346	

related world breeds we performed a separate PCA and a fine-scale admixture analysis of the 347	

breeds from Russia and eight world breeds that formed well supported clusters with the Russian 348	

breeds on the collapsed NJ tree (see Figure 3). The first two components of PCA revealed four 349	

major clusters of the breeds (Suppl. Figure 6a). The largest cluster contained the Holstein-350	

Friesian cattle with the Black Pied and other European and Russian breeds that likely had been 351	

influenced by European dairy cattle genetics during their formation; the second cluster 352	

combined the Buryat, Kalmyk, Ukrainian Gray and Asian taurine breeds (Hanwoo and 353	

Wagyu). Another cluster combined the Kazakh Whiteheaded, Hereford cattle and the last one 354	

- the Yakut cattle. The third principal component of PCA separated the Ukrainian Gray cattle 355	

from the cluster of the taurine breeds of Asian origin and revealed a separate cluster formed by 356	

the Kostroma, Brown Swiss, Ala-Tau and Braunvieh breeds (Suppl. Figure 6b). The most 357	

likely number of populations according to the maximum likelihood estimation was equal to 11 358	

(Suppl. Figure 7). The fineSTRUCTURE results (Figure 6) suggest that the most distant breeds 359	

within this set were the Yakut and Kholmogory, separated from the other breeds at K=2, 360	

followed by the Hereford and Kazakh Whitehead group at (K=3). The next cluster was formed 361	

by Kostroma and Brown Swiss (K=4) followed by the Ukrainian Grey cattle (K=5). At K=6 it 362	
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becomes apparent that the Asian taurine breeds (Hanwoo and Wagyu) cluster with the Kalmyk 363	

and Buryat cattle; the genetic material represented by the Hanwoo had a larger contribution on 364	

the Kalmyk and Buryat breeds than on Wagyu. At K=7 a central cluster of mostly composite 365	

breeds with the influence of Holstein-Friesian/Black Pied genetic material becomes apparent 366	

with the Yaroslavl separating from this cluster at K=10. We cannot exclude the possibility that 367	

the number of optimal genetic clusters in our analysis has been influenced by the unequal breed 368	

sample size and, in particular, by a small number of individuals collected for the Yurino, Red 369	

Steppe, Red Pied, Gorbatov Red and Istoben breeds. A larger number of samples would be 370	

needed to confirm the genetic composition of these breeds. 371	

The Treemix results for the Russian cattle and most related other breeds (Suppl. Figure 372	

8) demonstrated the highest Δ likelihood increase for two migration events: the first one from 373	

the Yakut to the Ukrainian Gray breed collected in Russia and the second one from the Holstein 374	

to Tagil breed. Both results were in agreement with the observations made based on the 375	

haplotype sharing. For the Russian breeds combined with known B. indicus breed set (Suppl. 376	

Figure 9), the highest gain in likelihood was received for nine migration events without any of 377	

them suggesting migration links between the Russian and indicine cattle populations. 378	

The analysis of the FST distances between the Russian breeds and those breeds closely 379	

related to them (Suppl. Table 2) revealed a low level of genetic differentiation with the mean 380	

value equal to 0.096 and a range from 0.003 to 0.235. The strongest differentiation involving 381	

a Russian breed was observed between the Podolian and Yakut cattle breeds while the lowest 382	

values were observed between the Red Pied and Finnish Ayrshire (FST = 0.003). The Red Pied 383	

breed had a very low number of samples in our dataset (N=2, Table 1) and these results should 384	

be taken with caution. Apart from this, the lowest FST values were found between the samples 385	

of the Yaroslavl breed collected by us and by (Iso-Touru et al, 2016). Surprisingly, the 386	

differentiation between the Black Pied and Holsten breeds (FST = 0.020) was lower than the 387	
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FST observed between the Hereford samples from Russia and Wales (FST = 0.029). The Yakut 388	

cattle has consistently demonstrated higher FST values with other breeds, with the lowest 389	

differentiation observed with the Buryat cattle followed by the Kalmyk and Hanwoo breeds. 390	

Interestingly, the Wagyu breed, which had a high fraction of haplotypes shared with the Yakut 391	

cattle and was found next to it on the phylogenetic tree, had one of the highest degrees of 392	

differentiation with it (FST = 0.20), following the Hereford and Podolian cattle.   393	
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DISCUSSION 394	

 395	

The advent of cost-efficient genotyping SNP arrays has made it possible to reveal the genetic 396	

profiles of various breeds of domesticated species, develop informed strategies of their 397	

improvement on one hand, and learn about the genetic processes accompanying domestication 398	

and breed formation on the other. While most efforts are dedicated to studying popular 399	

commercial breeds, e.g. Texel in sheep (Mucha et al, 2015) and Holstein-Friesian in cattle (van 400	

Binsbergen et al, 2015), there is a growing interest in the genetics of smaller local breeds 401	

because of the unique adaptations found in their genomes and their potential to contribute to 402	

solving problems in agriculture related to environmental change (e.g. global warming) and 403	

local pathogen resistance (Beynon et al, 2015). To this end we performed genotyping of 18 404	

cattle breeds bred in Russia selected on the basis of a likely historical contribution of local 405	

cattle populations onto their contemporary genomes and compared them to commercial and 406	

native breeds previously collected from around the world (Decker et al, 2014; Iso-Touru et al, 407	

2016). Along with the highly popular abundant Russian breeds (e.g. Black Pied or 408	

Kholmogory) we included highly specialised breeds that demonstrate extensive adaptations to 409	

specific environments (e.g. Yakut) and/or were almost extinct (e.g. Buryat). Therefore, our 410	

current dataset represents the largest and most complete set of the cattle breeds from Russia 411	

available for population genetic studies so far. 412	

In agreement with the geographical position of Russia and its historical and trade links, 413	

the majority of the Russian cattle breeds demonstrated extensive common ancestry with the 414	

taurine cattle breeds from Europe. As expected to result from the ‘uncontrolled’ and/or 415	

complex breeding strategies started as early as in the 18th century (Dmitriev and Ernst, 1989), 416	

for most of the Russian breeds we could not clearly identify their sister foreign breeds on the 417	

phylogenetic tree, except for the European and the Russian cattle being found on the same wide 418	

polygenetic node. However, there were several examples when our data has confirmed the 419	
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known historical relationships among the Russian cattle and some foreign breeds 420	

demonstrating robustness of our results. The most profound of these links is between the 421	

Kazakh Whiteheaded and Hereford breeds from both Russia and Europe, well supported by the 422	

known recent breeding history of the Kazakh Whiteheaded. The breed was formed between 423	

1930 and 1950, by crossing of the Turano-Mongolian Kazakh and Kalmyk cattle with Hereford 424	

in the Kazakh Republic of the USSR (Dmitriev and Ernst, 1989). Another example of known 425	

relations and historical breed formation (Dmitriev and Ernst, 1989) was confirmed by 426	

clustering of Kostroma, Brown Swiss, Braunveih and Ala Tau consistently supported by the 427	

structure, phylogenetic, haplotype analysis and population differentiation levels (FST ranges 428	

0.032-0.069). A separate node on our phylogenetic tree formed by the Kholmogory, Holstein-429	

Friesian, Black Pied and several related European breeds further supported by haplotype 430	

sharing likely reflects the historical relations that trace back to the 17th century when the 431	

Kholmogory breed was formed and later interbred with “Dutch cattle” (Dmitriev and Ernst, 432	

1989). However, the structure analysis indicates that the genetic component of the 433	

contemporary Holstein-Friesian breed in Kholmogory is relatively small and that Kholmogory 434	

should be considered genetically distinct, supporting previous observations (Zinovieva et al, 435	

2016). On the other hand, our samples of the Russian Black Pied breed demonstrate a very low 436	

differentiation from the Holstein-Friesian (FST = 0.02, e.g. lower than between the two sets of 437	

Hereford samples in our analysis) suggesting that the use of imported Holstein-Friesian 438	

sires/semen in Russia could have significantly affected the Black Pied’s genetics. Haplotype 439	

sharing analysis that was based on short haplotype blocks (presumably reflecting ancestral 440	

relationships) has further confirmed a complex history of the Russian cattle breeds of European 441	

origin but allowed to assign them to three major clusters based on predominantly shared 442	

haplotypes. While the largest cluster mostly contained Russian breeds with historical influence 443	

from highly commercial European breeds (e.g. Holstein-Friesian and Angus) and other breeds 444	
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that could also have been influenced by these multinational breeds, the second one was built 445	

around the related Kostroma, Brown Swiss, Braunveih and Ala Tau breeds with the addition 446	

of several other breeds from France, Italy and Germany. The Ukrainian Gray cattle formed the 447	

last separate cluster shared only with the Podolian and Romadnola breeds confirming the 448	

Ukrainian Gray’s position within the primitive Podolian group of cattle breeds (Kushnir and 449	

Glazko, 2009). 450	

In addition to extensive links to cattle of European ancestry, PCA suggested that there 451	

are breeds in Russia that have shared ancestry with cattle from Asia. In agreement with this, 452	

the Yakut, Buryat, and Kalmyk cattle clustered with the Turano-Mongolian and other Asian 453	

taurine breeds on the phylogenetic tree and structure plots. While on the structure global dataset 454	

the Yakut breed formed the first breed-specific cluster after the observed divergence of B. 455	

indicus and African taurines, on the phylogenetic tree, it was found on the same node with 456	

Buryat cattle and other taurine Asian breeds. The exact reason for the Yakut cattle being so 457	

divergent based on structure results is not currently clear but could be related to a combination 458	

of its low historical Ne combined with long isolation from other breeds. A closer relation of the 459	

Yakut cattle with other divergent Asian Turano-Mongolian breeds may imply their early 460	

separation from the rest of the taurine gene pool or even independent domestication in Asia 461	

(Mannen et al, 2004). Haplotype sharing results further confirm these relationships within the 462	

Turano-Mongolian breed set placing the Yakut cattle on the same cluster with Buryat and 463	

Wagyu and indicating links with Hanwoo and the Mongolian cattle. The Buryat cattle was 464	

considered to be extinct until quite recently when a herd had been discovered in Mongolia and 465	

imported back to Russia to start recovering the breed. Our results indeed demonstrated that the 466	

Buryat shares more haplotypes with Yakut and Wagyu cattle than with the breeds from 467	

Mongolia suggesting its separate origin from Mongolian cattle. Interestingly, the placement of 468	

the third Turano-Mongolian breed on our list, the Kalmyk remains unclear. While it formed a 469	
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separate cluster within the European cattle on the phylogenetic tree, structure results suggested 470	

a common ancestry with Buryat and Hanwoo breeds. Haplotype sharing showed a strong recent 471	

admixture with the Beef Shorthorn. The latter can be explained by the known use of Shorthorn 472	

to ‘improve’ the Kalmyk cattle in the USSR (Dmitriev et al, 1989). This likely had an impact 473	

on the genetics of this breed and affected its position of the phylogenetic tree masking the 474	

expected ancestral relationships that were picked up only by the structure analysis. Another 475	

example of a likely effect of a recent admixture on the genetics of a breed was observed during 476	

comparison of the Ukrainian Gray cattle samples originating from Serbia (Iso-Touru et al, 477	

2016) and from Russia (Boussaha et al, 2015). While these sample sets cluster together 478	

suggesting that they indeed belong to the same breed, the sample set from Russia demonstrated 479	

a clear evidence of a recent admixture with the Yakut cattle based on the haplotype sharing and 480	

confirmed by TreeMix analysis. The samples from Serbia had no traces of this event.  481	

Interestingly, we did not identify any significant evidence of admixture between any of 482	

the Russian breeds and the indicine cattle neither in haplotype sharing nor the Treemix 483	

analyses. However, the structure global plot (K=3) suggested some level of indicine ancestry 484	

in the Turano-Mongolian breeds. This observation may imply a very ancient and probably 485	

weak admixture event not detected by other methods. It is also possible that the 486	

BovineSNP50K array SNP loci (and, as a result, the set of SNPs used in the present work) bias 487	

to taurine and ancient SNPs shared by taurine and indicine populations (McKay et al, 2008) 488	

has affected our results to some extent and masked admixture with B. indicus. Both scenarios 489	

suggest that more detailed studies involving the whole-genome resequencing of Russian cattle 490	

genomes and their comparison to both the taurine and indicine genome references would be 491	

needed to resolve this issue and shed additional light on the reasons for observed divergence 492	

of the Yakut cattle.  493	
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When analysed individually or in the context of only the most related world breeds, the 494	

Russian cattle breeds demonstrated a modest level of genetic diversity and comparable 495	

estimates of effective population sizes with other Eurasian breeds (Iso-Touru et al, 2016). The 496	

Kholmogory and Yakut breeds are further confirmed as the most genetically distinct within the 497	

set of the breeds from Russia and related Eurasian breeds on the structure results, supported by 498	

high FST. Strong influence of Holstein-Friesian genetics became apparent in a separate cluster 499	

of breeds. Yaroslavl breed separated from this cluster at K=10 being the last Russian cattle 500	

breed that demonstrated unique genetics while other breeds including the Black Pied, Tagil, 501	

Bestuzhev, Istoben, Yurino, and Ukrainian Whiteheaded demonstrated different levels of 502	

Holstein-Friesian contribution to their genetics suggesting that these breeds might have left 503	

with a relatively small fraction of alleles from native populations. This was supported by a 504	

relatively low level of population differentiation within this group (FST range 0.020-0.094). 505	

However, we cannot exclude that both the SNP loci bias to a small number of taurine breeds 506	

and small sampling sizes for some breeds in our list could have influenced these results.  507	

The presence of long runs of homozygosity in the Yakut, Kostroma and Ukrainian Gray 508	

breeds might indicate either a high level of adaptation and specialisation or effects of 509	

inbreeding and low effective population size. Regardless of the reason, this information should 510	

be considered during the development of breeding programs for these populations. The genetic 511	

uniqueness of the highly adapted to harsh climatic conditions Yakut breed should stimulate 512	

and guide its recovery program. 513	

Herein we provide the first detailed view on the population genetics of a comprehensive 514	

list of the cattle breeds bred in Russia that potentially have arisen from local cattle populations 515	

and/or could be adapted to harsh environments and climate. Our results demonstrate that some 516	

of the breeds studied have distinct genetic profiles (e.g. Kholmogory, Yakut, Yaroslavl) 517	

making them priority targets for deeper studies to reveal signatures of selection and adaptations 518	



	 23	

related to local environments and for conservation purposes. We also observed that a large 519	

group of breeds had both old and recent influence from commercial European breeds (e.g. 520	

Kostroma, Kazakh Whiteheaded, Istoben) meaning that their genomes could potentially 521	

contain only a small fraction of ancestral alleles, but these could be important for surviving 522	

local conditions and can be used for admixture mapping programs aiming at economically 523	

important traits (Kassahun et al, 2015). The links between the Russian breeds and breeds from 524	

other countries presented in this study form a basis for future work on contrasting their genomes 525	

to reveal causative alleles or haplotypes using a right set of related and outgroup populations 526	

for the comparison to avoid ‘signal dilution’ or false positive signals. The uniqueness of the 527	

Yakut breed shown in this study makes it a priority for further detailed studies on one hand, 528	

but makes it difficult to identify the right breeds to contrast it to on the other; implying that 529	

additional, more detailed studies of Russian native cattle breeds of Asian origin in the context 530	

of a larger set of Asian taurine and indicine breeds might be required to fully benefit from their 531	

unique genetics.        532	
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TITLES AND LEGENDS TO FIGURES 752	

 753	

Figure 1. LD decay plot of the mean r2 values for Russian breeds with >10 sampled 754	

individuals. 755	

Figure 2. fastSTRUCTURE results for global cattle diversity and Russian breeds (YY – Yakut 756	

cattle). 757	

Figure 3. Individual-based neighbor-joining tree of global cattle diversity and Russian breeds. 758	

The nodes with less than 70% bootstrap support were collapsed. Yellow – Asian cattle 759	

(predominately B. indicus), green – African cattle (predominantly, taurines) blue – American 760	

cattle, brown – European cattle, red – Russian cattle. The names of Russian and their sister 761	

breeds from other regions are shown. In bold are names of the Russian cattle breeds shown on 762	

the images. 763	

Figure 4. Haplotype-sharing between the Russian and other taurine breeds for short (A, <3 764	

Mbp) and long (B, >7 Mbp) segments. 765	

Figure 5. Haplotype sharing between the Turano-Mongolian and all other studied breeds for 766	

short segments (<3 Mbp). Vertical lines indicate positons of B. indicus breeds. Sharing with 767	

the Ukrainian Grey was removed from the Yakut breed pairwise comparison due to pronounced 768	

signature of a very recent introgression from the Yakut breed, not identified for the Ukrainian 769	

Gray samples collected in Serbia. Breed names are shown for the largest number of shared 770	

haplotypes (>1.5 Mbp). 771	

Figure 6. fastSTRUCTURE results for Russian breeds and a set of closely related world 772	

breeds: Hereford, Braunvieh, Brown Swiss, Holstein, Red Pied Lowland, Pinzgauer, Waguy, 773	

Hanwoo.  774	
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TABLES 775	

 776	

Table 1. Single nucleotide polymorphism, diversity, inbreeding and effective population sizes 777	

within the Russian cattle breeds 778	

 

Breed  

      

No.a         He      F          Pn 

                     

MAF 

No.  

sampling 

locations 

Ala Tau 14 0.338 -0.014 0.937 0.258 2 

Bestuzhev 19 0.346 -0.048 0.955 0.265 1 

Black Pied 24 0.352 -0.026 0.977 0.269 1 

Buryat 24 0.340 -0.026 0.952 0.260 1 

Ukrainian Greyb 48 0.322 -0.034 0.935 0.244 1 

Hereford 9 0.313 -0.070 0.867 0.238 1 

Istoben 5 0.304 -0.165 0.812 0.232 1 

Kalmyk 23 0.351 -0.027 0.972 0.269 2 

Kazakh Whiteheaded 20 0.339 -0.038 0.948 0.259 2 

Kholmogory 34 0.343 -0.011 0.965 0.262 2 

Kostroma 18 0.315 -0.040 0.900 0.238 2 

Gorbatov Red 5 0.322 -0.093 0.855 0.246 2 

Red Pied 2 0.271 -0.331 0.650 0.218 1 

Red Steppe 4 0.323 -0.148 0.842 0.249 2 

Tagil 19 0.350 -0.060 0.967 0.268 1 

Ukrainian 

Whiteheaded 7 0.329 -0.066 0.889 0.252 1 

Yurino 3 0.292 -0.212 0.744 0.227 1 

Yakut 25 0.273 -0.039 0.818 0.205 1 

Yaroslavl 19 0.336 -0.047 0.949 0.256 2 

Total/Average 322 0.324 -0.079 0.891 0.248 1.42 
aNo. - number of samples, He -  expected heterozygosity, F - mean inbreeding coefficient, Pn  - 779	

proportion of polymorphic loci, MAF - minor allele frequency. 780	
bgenotypes obtained from (Boussaha et al, 2015) 781	




