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Commentary
A recent paper from my laboratory highlighted the involve-
ment of the cholesterol ester cycle in response to amyloid-β 
(Aβ) oligomers, a key driver of pathogenesis in Alzheimer dis-
ease (AD).1 The study concentrated on events occurring at 2 
levels. At a cellular level, we demonstrated that manipulation of 
the cholesterol ester cycle affected Aβ-induced synapse dam-
age. The biochemistry and cell signalling associated with Aβ 
was also examined in isolated synaptosomes. To our knowl-
edge, this was the first study to show that changes in mem-
brane cholesterol concentrations mediated by the cholesterol 
ester cycle significantly affect a major cell signalling pathway.

Because cholesterol is such a key molecule involved in the 
regulation of membrane structure and function, it is not sur-
prising that disturbances in cholesterol homeostasis are associ-
ated with neurodegenerative diseases2 and more specifically 
with the pathogenesis of AD, as reviewed by Chang et al.3 The 
amyloid hypothesis, the prevailing theory explaining the patho-
genesis of AD, states that the accumulation of Aβ peptides 
within the brain is responsible.4 Although several studies have 
reported that cholesterol or cholesterol-binding proteins affect 
Aβ production, our study examined the role of cholesterol on 
the toxic effects of Aβ; primarily its effects on synapse degen-
eration as the loss of synapses and synaptic proteins shows a 
close correlation with the severity of dementia.5

The initial and key observation was that the addition of Aβ 
increased synaptic cholesterol concentrations, an observation that 
is consistent with reports of increased cholesterol concentrations 
in Aβ-positive synapses in the cortex of patients with AD.6 
Surprisingly, this was not due to cholesterol synthesis, rather the 

Aβ-induced increase in synaptic cholesterol concentrations was 
controlled by the cholesterol ester cycle; it was accompanied by a 
corresponding reduction in cholesterol ester concentrations indi-
cating the activation of a cholesterol ester hydrolase (CEH). 
Furthermore, selective CEH inhibitors blocked the Aβ-induced 
increase in synaptic cholesterol concentrations.

Cholesterol is highly enriched in synaptic membranes, and 
given that cholesterol concentrations in cell membranes are 
critical for the formation of signalling platforms in lipid rafts,7 
we argued that fluctuations in cholesterol concentrations could 
alter the functions of lipid rafts. Lipid raft formation is associ-
ated with the aggregation of the cellular prion protein (PrPC), 
identified as a receptor for Aβ,8 by Aβ oligomers.9 Notably, the 
increase in synaptic cholesterol concentrations was associated 
with the toxic Aβ oligomers10,11 rather than non-toxic Aβ 
monomers.12 Here, we speculate that Aβ oligomers, but not 
monomers have the ability to cross-link cellular receptors, a 
hypothesis consistent with observations that synaptic abnor-
malities are caused by the cross-linkage of PrPC with monoclo-
nal antibodies.13 Cellular prion protein acts as a scaffold protein 
that organises signalling complexes and in neurons the cluster-
ing of specific glycosylphosphatidylinositols attached to PrPC 
caused aberrant cell signalling and synapse degeneration.14

Cellular prion protein is associated with numerous cell sig-
nalling pathways including cytoplasmic phospholipase A2 
(cPLA2)15 which leads to the production of platelet-activating 
factor (PAF) and prostaglandins. The observations that concen-
trations of prostaglandin E2 (PGE2) and PAF are raised in the 
brains of patients with AD when compared with non-demented 
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controls16,17 suggest that aberrant activation of cPLA2 is associ-
ated with synapse degeneration and clinical symptoms.

We hypothesised that Aβ oligomers cross-linked PrPC lead-
ing to the activation of CEHs and increased cholesterol con-
centrations; these stabilise a signalling platform that included 
activated cPLA2 and led to increased production of PGE2 
(Figure 1). This hypothesis was supported by the close correla-
tions between the concentrations of cholesterol, raft-resident 
cPLA2, activated cPLA2, and PGE2 production following the 
addition of Aβ. Furthermore, pre-treatment with CEH inhibi-
tors prevented the formation of Aβ-PrPC complexes, the Aβ-
induced increase in cholesterol, the movement of cPLA2 to 
lipid rafts, the activation of cPLA2, and the production of 
PGE2. When tested on cultured neurons, CEH inhibitors 
reduced the Aβ-induced synapse damage indicating that these 
enzymes are critical for Aβ toxicity. This suggests that the 
events measured within synaptosomes relate to the process of 
Aβ-induced synapse degeneration.

Time course studies demonstrated that the Aβ-induced 
increase in cholesterol/reduction in cholesterol esters, PrPC-Aβ 
complexes, and the amounts of cPLA2 within lipid rafts were all 
transient. Notably, the return of cholesterol/cholesterol ester con-
centrations to basal levels following esterification was closely 
associated with the dissociation of Aβ-PrPC complexes and the 
return of cPLA2 to the cytoplasm. In addition, pre-treatment 

with selective inhibitors of acetyl-coenzyme A acetyltransferase 
(ACAT), an enzyme that esterifies cholesterol, resulted in 
increased Aβ-PrPC complexes, higher cholesterol concentrations, 
increased time that cPLA2 spent within lipid rafts, increased acti-
vation of cPLA2, and higher PGE2 concentrations.

Conditions in which signalling platforms fail to dissociate 
may lead to sustained activation of signalling pathways and 
lead to cell disruption and disease. Consequently, the dissocia-
tion of signalling platforms is thought to be an important 
physiological process that limits the intensity of cell signalling. 
An altered cholesterol ester cycle resulting in accumulation of 
cholesterol esters has been reported in patients with AD.18 In 
this Commentary, we speculate that high concentrations of Aβ 
could ‘break the cycle’ by reducing the esterification of choles-
terol and consequently preventing the dissociation of signalling 
platforms. In this respect, it was noteworthy that inhibition of 
ACAT in neuronal cultures significantly increased the Aβ-
induced synapse damage. Acetyl-coenzyme A acetyltrans-
ferases may affect different aspects of AD pathogenesis. For 
example, ACAT inhibitors have been proposed as treatments 
for AD because they reduced Aβ production in studies where 
they were used throughout the course of an experimental dis-
ease.19 However, this study shows that ACAT inhibitors can 
increase synapse damage in the presence of Aβ. Consequently, 
ACAT inhibitors might be able to prevent the development of 
AD but maybe contraindicated in the latter stages of AD 
where concentrations of Aβ are already raised.

In summary, our article demonstrated the role of the choles-
terol ester cycle in Aβ-induced cell signalling at synapses and 
synapse degeneration. The release of cholesterol stabilises the 
complexes formed between PrPC and Aβ that activate cPLA2. 
Conversely, the esterification of cholesterol facilitates the dis-
sociation of PrPC-Aβ complexes and deactivation of cPLA2.
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Figure 1. Putative control of synaptic signalosome created by Aβ 

oligomers: The binding of Aβ oligomers cross-links PrPC within lipid rafts 

(A) recruits and activates cPLA2. Subsequently, CEHs are activated 

causing the release of cholesterol into the membrane; (B) the increase in 

cholesterol stabilises signalling complexes. cPLA2 is activated within the 

signalling platform releasing PGE2 which at high concentrations causes 

synapse degeneration. (C) ACAT activity resulted in the esterification of 

cholesterol, reduced free cholesterol concentrations in the membrane, 

and caused the dispersal of lipid raft signalling complexes. Aβ indicates 

amyloid-β; ACAT, acetyl-coenzyme A acetyltransferase; cPLA2, 

cytoplasmic phospholipase A2; PGE2, prostaglandin E2; PrPC, cellular 

prion proteins.
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