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Summary

Mortality data are routinely collected for many livestock and poultry species, and

they are often used for epidemiological purposes, including estimating transmission

parameters. In this study, we infer transmission rates for African swine fever virus

(ASFV), an important transboundary disease of swine, using mortality data collected

from nine pig herds in the Russian Federation with confirmed outbreaks of ASFV.

Parameters in a stochastic model for the transmission of ASFV within a herd were

estimated using approximate Bayesian computation. Estimates for the basic repro-

duction number varied amongst herds, ranging from 4.4 to 17.3. This was primarily

a consequence of differences in transmission rate (range: 0.7–2.2), but also differ-

ences in the mean infectious period (range: 4.5–8.3 days). We also found differ-

ences amongst herds in the mean latent period (range: 5.8–9.7 days). Furthermore,

our results suggest that ASFV could be circulating in a herd for several weeks

before a substantial increase in mortality is observed in a herd, limiting the useful-

ness of mortality data as a means of early detection of an outbreak. However, our

results also show that mortality data are a potential source of data from which to

infer transmission parameters, at least for diseases which cause high mortality.
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1 | INTRODUCTION

Mortality data are routinely collected for livestock and poultry

species, either as part of herd management practices (e.g., in pigs

and poultry) or as part of mandatory animal movement reporting

or monitoring of animals found dead on farm (e.g., in cattle).

These data have often been used for epidemiological purposes, for

example, as part of syndromic surveillance (Alba et al., 2015; Tap-

prest et al., 2016; Torres et al., 2015), for detecting outbreaks of

disease (Backer, Brouwer, van Schaik, & van Roermund, 2011; Bos

et al., 2007) or to assess the impact of an epidemic (Perrin et al.,

2010).
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For diseases which cause very high mortality, such as highly patho-

genic avian influenza, mortality rates provide a proxy for the incidence

of newly infected animals. In this case, back-calculation methods can

be used to estimate transmission parameters from mortality data (Bos

et al., 2009; Tiensin et al., 2007). Typically, these back-calculation

approaches assume that the latent and infectious periods are known

and fixed to facilitate implementation of the methods. This raises the

question of whether it is possible to estimate transmission parameters

from mortality data without needing to make such assumptions about

the latent and infectious periods. In this study, we explore this ques-

tion using African swine fever as a case study.

African swine fever (ASF) is one of the most important infectious

diseases of swine (Costard, Mur, Lubroth, S�anchez-Vizca�ıno, & Pfeiffer,

2013; S�anchez-Vizca�ıno, Mur, Gomez-Villamandos, & Carrasco, 2015).

It is caused by African swine fever virus (ASFV) and many strains result

in the death of almost 100% of infected pigs (Blome, Gabriel, & Beer,

2013; Guinat, Gogin, et al., 2016). African swine fever virus is endemic

to sub-Saharan Africa and, apart from in Sardinia where it is also ende-

mic, most previous incursions of the virus into Europe or the Americas

have been successfully controlled (Costard et al., 2009). Following an

incursion of ASFV to Georgia in 2007 (Rowlands et al., 2008), however,

the virus subsequently spread throughout the Caucasus, the Russian

Federation (RF), the Baltic States and into Eastern Europe (EFSA

Panel on Animal Health and Welfare, 2014; Guinat, Gogin, et al., 2016).

Here, we fit a stochastic model for the within-herd transmission

of ASFV to mortality data for nine pig herds in the RF affected by

confirmed ASFV outbreaks. Parameters were estimated using

approximate Bayesian computation (McKinley, Cook, & Deardon,

2009; Toni, Welch, Strelowa, Ipsen, & Stumpf, 2009), paying particu-

lar attention to the sensitivity of the estimates to the prior assump-

tions made. This allows us to address the question of what can be

inferred about ASFV transmission using mortality data.

2 | MATERIALS AND METHODS

2.1 | Mortality data

Incidence and testing data for ASFV in the RF are routinely collected

by the Federal Research Center for Virology and Microbiology

(FRCVM). Data on pig mortality were obtained for nine pig herds in

which ASFV was detected through routine surveillance between

2010 and 2014 (Table S1; see also Figure 1). These herds were

selected based on the availability and quality of the data collected

on pig mortality. All nine were industrial pig herds, implementing

intensive indoor production systems with stringent biosecurity mea-

sures. Herd sizes ranged from 600 to 2,145 fattening pigs, with a

median size of 1,614. They were located in south-west (herds 2, 3,

4, 5, 6, 7 and 8) and north-west (herds 1 and 9) regions of the RF.

The outbreaks took place in summer (herds 1, 2, 3, 4 and 5) or win-

ter (herds 6, 7, 8 and 9). During the observation period, an increase

in the numbers of dead pigs and clinical signs suggestive of ASF (de-

pression, loss of appetite, redness of the skin and fever) was

reported by farmers. African swine fever virus infection was

confirmed in all nine herds by virus isolation from randomly collected

blood and tissue samples taken from dead pigs.

2.2 | Modelling approach

Although it is maintained in a sylvatic warthog–tick cycle in sub-

Saharan Africa, once introduced to domestic pigs, ASFV is transmit-

ted through direct contact and fomites (Costard et al., 2013).

Accordingly, the within-herd dynamics of ASFV were modelled using

a stochastic SEIR epidemic model (Keeling & Rohani, 2008). In the

model, the pig population is divided into three classes: susceptible

(i.e., uninfected), S, exposed (i.e., infected but not yet infectious), E,

and infectious, I. There is little evidence that pigs recover following

infection with ASFV strains circulating in the RF (Guinat, Gogin,

et al., 2016) and, consequently, all pigs were assumed to die at the

end of their infectious period (so the removed class, R, is not needed

for the model).

The force of infection is given by,

kðtÞ ¼ b
IðtÞ
NðtÞ ; (1)

where b is the transmission rate, I(t) is the number of infectious pigs

and N(t) is the total number of pigs at time t. This formulation

assumes homogeneous mixing (i.e., individuals uniformly and ran-

domly contact each other) and frequency-dependent transmission

(i.e., the number of contacts is independent of the population size)

(Keeling & Rohani, 2008). The durations of the latent and infectious

periods were assumed to follow gamma distributions with means lE

and lI and shape parameters kE and kI, respectively. This was incor-

porated in the model by subdividing the latent and infectious classes

into kE and kI stages each of mean duration lE/kE and lI/kI, respec-

tively (Anderson & Watson, 1980). Natural mortality (i.e., not associ-

ated with ASF) was included at a per capita rate rM for all classes in

the model.

Assuming that natural mortality occurs at a low rate, the basic

reproduction number (R0), defined as “the average number of sec-

ondary cases caused by an average primary case in an entirely

susceptible population” (Keeling & Rohani, 2008), is approximated

by,

R0 ¼ blI (2)

Population sizes in the model take integer values, while transi-

tions between compartments are stochastic processes (Table S2).

The number of transitions of each type during a small time interval

dt was drawn from a binomial distribution with population size n and

transition probability q (the appropriate per capita rate multiplied by

dt); (Table S2). However, binomial random variables are computation-

ally expensive to simulate and an approximating distribution was

used wherever possible. If: (i) nq(1 � q) > 25; (ii) nq(1 � q) > 5 and

0.1 < q < 0.9; or (iii) min(nq, n(1 � q)) > 10, an approximating normal

variate with mean nq and variance nq(1 � q) was used, while if

q < 0.1 and nq < 10, an approximating Poisson variate with mean nq

was used (Forbes, Evans, Hastings, & Peacock, 2011).
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2.3 | Approximate bayesian computation

The transmission rate (b), latent and infectious period parameters

(lE, kE, lI, kI) and natural mortality rate (rM) were estimated for each

herd independently. In addition, the time at which ASFV was intro-

duced to each herd (tintro) is unknown and was also estimated.

Accordingly, seven parameters were estimated by fitting the model

to the mortality data for each of the nine pig herds.

Parameters were estimated using approximate Bayesian compu-

tation sequential Monte Carlo (ABC-SMC) methods (McKinley et al.,

2009; Toni et al., 2009). Briefly, ABC-SMC combines a particle filter-

ing method with summary statistics and is ideal for stochastic mod-

els when the likelihood is difficult to define. Initial parameter sets (or

particles) are sampled from a multivariate prior distribution, and then

for subsequent SMC rounds with a perturbation kernel. After each

model replicate (where a replicate involves picking one set of param-

eters and one stochastic simulation), the model and data are com-

pared using a goodness-of-fit metric (defined below for the ASFV

model). A parameter set is accepted if the distance between the

model and data is less than a threshold defined by the previous

SMC round. The accepted parameter sets from the final SMC round

approximate the posterior distribution. The algorithm is described in

Appendix S1, including details of the number of SMC rounds and

the thresholds used.

The daily mortality data for each herd was used to define the

goodness-of-fit metric. Specifically, the residual sum of squares for

the daily mortalities was used as the goodness-of-fit metric for each

herd, that is,

F IGURE 1 Dynamics of African swine fever virus (ASFV) in nine pig herds in the Russian Federation. Each column shows the predicted
number of susceptible (S, cyan), exposed (E, magenta), infectious (I, red) and dead pigs (D, blue), respectively, as well as the observed number
of dead pigs. Predicted dynamics are shown as the median (solid black line), 25th and 75th percentiles (dashed black lines) and five percentile
bands (up to the 5th and 95th percentiles; shading). Observed daily mortalities are shown as black circles (last column). The grey shaded area
indicates the observation period for the mortality data, and the black dotted line indicates the day on which ASFV was confirmed in the herd.
Results are based on 1,000 replicates of the model sampling from the joint posterior distribution assuming informative priors for all
parameters
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D ¼
Xt2

t¼t1

ðMsimðtÞ �MobsðtÞÞ2; (3)

where Msim(t) and Mobs(t) denote the simulated and observed num-

ber of dead pigs in the herd on day t, respectively, with the observa-

tion period for the herd running from day t1 to day t2.

Informative priors were constructed based on data for ASFV

strains circulating in the RF (Guinat, Gubbins, et al., 2016; Gulenkin,

Korennoy, Karaulov, & Dudnikov, 2011; Hu, Gonzales, & Gubbins,

2017) (Table S3). Gamma distributions were used for the transmis-

sion rate, b (mean 2, shape 2), the mean duration of the latent per-

iod, lE (mean 6.25, shape 10), the shape parameter for the latent

period, kE (mean 19.39, shape 5), the mean duration of the infectious

period, lI (mean 9.12, shape 10), and the shape parameter for the

infectious period kI (mean 22.20, shape 5). An exponential prior was

used for the natural mortality rate rM (mean 0.0002, calculated from

daily mortality data obtained from 34 ASFV-free pig herds in the

areas surrounding the outbreak herds). Finally, a uniform prior was

used for the time at which ASFV was introduced to a herd, with a

range from 30 days before the first observation to the time at which

ASFV was confirmed in the herd (see Table S1). All priors were

assumed to be independent of one another.

A second, non-informative uniform prior with a wide range was

also constructed for each parameter (Table S3). To explore the sensi-

tivity of parameter inferences to prior assumptions, parameters were

estimated for each herd using a further five combinations of priors

(i.e., in addition to informative priors for all parameters): informative

priors for all parameters, except the transmission rate; informative

priors for all parameters, except the transmission and mortality rates;

informative prior for the transmission rate only; informative prior for

the mortality rate only; and non-informative priors for all parameters.

3 | RESULTS

3.1 | Dynamics of African swine fever virus

The observed and predicted number of dead pigs and the predicted

dynamics of ASFV are shown in Figure 1 for nine herds in the RF

with confirmed outbreaks. The model captures the overall trend in

mortality in each herd, and the observed daily mortalities lie within

the 95% posterior prediction intervals in all instances (Figure 1). The

predicted dynamics of ASFV underlying the observed mortality sug-

gest that the number of latently infected pigs either had yet to reach

or had just reached its peak at the time of culling in all herds (Fig-

ure 1). Similarly, the number of infectious pigs was predicted to be

still increasing when the herd was culled (Figure 1). In addition, the

number of dead pigs followed the number of infectious pigs with a

delay of around one infectious period. Finally, the model predicts

that ASFV was introduced to all these herds several weeks before

the start of the observation period for the mortality data and, hence,

several weeks before the day on which ASFV was confirmed in each

of the herds (Figure 2h).

3.2 | Parameter estimates

The basic R0 varied amongst the nine ASFV outbreaks, ranging from

4.4 to 17.3, and was significantly above one for all herds (Table 1;

Figure 2a). This between-herd variation in R0 is primarily a result of

differences amongst herds in the transmission rate (b); (range: 0.7–

2.2) but is also partly a consequence of differences in the mean

duration of the infectious period (lI); (range: 4.5–8.3 days); (Table 1;

Figure 2b,e). The mean duration of the latent period (lE) also dif-

fered amongst herds (range: 5.8–9.7 days); (Table 1; Figure 2c),

F IGURE 2 Transmission parameters for
African swine fever virus (ASFV) inferred
using mortality data for nine pig herds in
the Russian Federation with confirmed
outbreaks of ASFV. Plots show the
marginal posterior distributions for the
parameters for each herd: (a) basic
reproduction number (R0); (b) transmission
rate (b); (c) mean latent period (lE); (d)
shape parameter for latent period (kE); (e)
mean infectious period (lI); (f) shape
parameter for infectious period (kI); (g)
natural mortality rate (rM); and (h) time of
introduction (tintro). The violin plots show
the posterior density (shape), median
(circle) and interquartile range (line) for the
parameter (column) for the parameter. The
dashed and dotted lines indicate the mean
and 2.5th and 97.5th percentiles,
respectively, for the informative prior
distribution used for the parameter
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though this is of limited epidemiological importance. The shape

parameters for the latent and infectious periods (kE and kI) did not

differ greatly amongst herds (Table 1; Figure 2d,f). Finally, the natu-

ral mortality rate (rM) was similar in six of the herds, but somewhat

higher in the remaining three herds (Figure 2g).

3.3 | Sensitivity to prior assumptions

The choice of prior distributions (i.e., non-informative vs informa-

tive) has some influence on the fit of the model, with less infor-

mative combinations generally resulting in a slightly better fit to

the data (Fig. S1). In addition, when a non-informative prior is

used for the natural mortality rate, the baseline level of mortality

is typically higher than when an informative one is used

(Fig. S1).

Estimates for all parameters show sensitivity to prior assump-

tions, with some general trends for each parameter, but ones which

do not necessarily apply to all herds (Fig. S2). The basic R0 is typi-

cally higher for any combination of priors which include at least one

non-informative prior. Transmission rates are often, though not

always, much higher when a non-informative compared with an

informative prior is used for that parameter. Posterior estimates for

the mean latent period are typically higher when a non-informative

prior is used. By contrast, posterior estimates for the mean infec-

tious period are often lower if a non-informative prior is used. If a

non-informative prior is used, the shape parameters for either the

latent or the infectious periods are much higher. Finally, the poste-

rior estimates for the natural mortality rate when a non-informative

prior is used can be markedly higher than if an informative prior is

used. In these cases, more of the observed mortality is ascribed to

natural background mortality rather than to ASFV-related mortality

(compare, e.g., Fig. S1).

4 | DISCUSSION

Despite ASF being one of the most important transboundary dis-

eases of swine, relatively few studies have estimated transmission

parameters for this disease (Guinat, Gogin, et al., 2016). In those

studies which have estimated parameters, data from both transmis-

sion experiments (de Carvalho Ferreira, Backer, et al., 2013; Guinat,

Gubbins, et al., 2016; Hu et al., 2017; Nielsen, Karsen, Halasa, &

Christiansen, 2017; Pietschamnn et al., 2015) and field data (Gulen-

kin et al., 2011; Korennoy, Gulenkin, Gogin, Vergne, & Karaulov,

2017) have been used. This relative paucity of data is reflected in

the ASFV modelling literature, where the models (see, e.g., Barongo,

Bishop, F�evre, Knobel, & Ssematimba, 2016; Halasa, Boklund,

Bøtner, Toft, & Thulke, 2016; Mur et al., 2017) typically rely on

parameters derived from three studies (Gulenkin et al., 2011; de Car-

valho Ferreira, Backer, et al., 2013; de Carvalho Ferreira, Weesen-

dorp, Quak, Stegeman, & Loeffen, 2013; Guinat, Gubbins, et al.,

2016).

TABLE 1 Transmission parameters for African swine fever virus estimated using mortality data from outbreaks in nine pig herds in the
Russian Federation

Parameter

Herd

1 2 3 4 5 6 7 8 9

Basic reproduction number (R0)

Median† 16.2 6.7 17.3 4.4 12.2 15.9 6.9 12.6 5.6

95% CI‡ (4.3, 41.7) (1.9, 32.3) (3.5, 45.5) (2.0, 13.4) (3.5, 40.5) (4.5, 58.7) (3.7, 41.3) (3.7, 23.7) (2.4, 18.4)

Transmission rate (b)

Median† 2.0 1.0 2.2 0.7 1.6 2.1 1.6 2.2 0.8

95% CI‡ (0.5, 4.8) (0.3, 4.0) (0.5, 5.3) (0.3, 1.6) (0.5, 5.1) (0.7, 6.1) (0.7, 6.4) (0.6, 4.0) (0.4, 2.8)

Mean latent period (lE) (days)

Median† 7.9 7.7 9.0 6.1 8.3 5.8 8.6 9.7 7.0

95% CI‡ (4.3, 11.3) (3.6, 13.0) (4.7. 12.8) (3.2, 9.3) (4.4, 12.2) (2.6, 9.1) (5.9, 11.2) (6.5, 12.9) (3.5, 12.2)

Latent period shape (kE)

Median† 20.8 19.9 22.5 17.8 22.0 19.9 29.8 28.1 18.9

95% CI‡ (6.2, 40.9) (5.5, 39.7) (6.7, 43.0) (4.7, 37.6) (6.8, 42.6) (5.5, 41.2) (11.2, 51.5) (11.3, 50.0) (4.8, 40.5)

Mean infectious period (lI) (days)

Median† 8.3 7.7 7.9 6.9 7.4 8.2 4.5 6.0 7.2

95% CI‡ (3.9, 14.8) (3.3, 13.8) (3.9, 13.6) (3.0, 12.3) (3.2, 12.8) (2.9, 15.3) (2.2, 9.5) (3.0, 11.3) (3.3, 12.5)

Infectious period shape (kI)

Median† 22.0 20.3 22.2 20.0 21.5 21.1 23.4 24.8 20.3

95% CI‡ (6.3, 45.0) (5.4, 41.5) (6.2, 44.5) (4.7, 43.6) (5.9, 43.5) (5.3, 44.9) (7.9, 46.9) (9.0, 47.8) (4.8, 43.6)

†Posterior median.
‡95% credible interval.
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Our estimates for R0 of outbreaks in nine pig herds ranged from

4.4 to 17.3 (Table 1). Similar values have been reported previously

for the strains of ASFV currently circulating in the RF, whether from

outbreaks (9.8 in Gulenkin et al., 2011) or transmission experiments

(5.3 in Guinat, Gubbins, et al., 2016; 24.1 in Hu et al., 2017). In addi-

tion, similar values have been reported for other ASFV strains: 7.5

for Ukraine 1977 (Korennoy et al., 2017); 18.0 for Malta 1978 (de

Carvalho Ferreira, Backer, et al., 2013); and 4.9 for Netherlands

1986 (de Carvalho Ferreira, Backer, et al., 2013). Our estimates for

transmission rates (Table 1) are also similar to those reported for the

Georgia 2007 (Guinat, Gubbins, et al., 2016; Hu et al., 2017; Nielsen

et al., 2017) and other (de Carvalho Ferreira, Backer, et al., 2013;

Korennoy et al., 2017) strains.

Previous studies of ASFV have either assumed durations for the

latent and infectious periods (Guinat, Gubbins, et al., 2016; Gulenkin

et al., 2011; Korennoy et al., 2017) or inferred them using virus iso-

lation data from transmission experiments (de Carvalho Ferreira,

Backer, et al., 2013; Hu et al., 2017). Our estimates (Table 1) are the

first ones based on field data from ASFV outbreaks. These suggest

that the mean latent period is longer by 1 or 2 days (Figure 2c), and

the mean infectious period is shorter by 1–4 days (Figure 2e) than

was inferred from transmission experiments (Hu et al., 2017).

Most of the parameters differed amongst herds (Table 1; Fig-

ure 2). Differences in transmission rates will reflect the impact of

behaviours of stockmen or others who may be able to introduce

virus or influence the risk of transmission, as well as the effect of

herd management practices on spread (Evans, Medley, Creasey, &

Green, 2010; Lurette et al., 2008). However, the small number of

herds in the study means that it is not feasible to identify particular

behaviours or practices associated with higher (or lower) transmis-

sion rates (cf. Bos et al., 2009). In addition to transmission rates, the

mean latent and infectious periods also differed amongst herds

(Table 1; Figure 2). Such differences are unlikely to reflect breed or

other genetic differences amongst pigs in the outbreak herds, as all

breeds (and wild boar) are similarly susceptible to virulent ASFV iso-

lates. Low doses of ASFV have been reported to result in prolonged

incubation periods (Howey, O’Donnell, de Carvalho Ferreira, Borca,

& Arzt, 2013; Pietschamnn et al., 2015) and, consequently, farm

management practices or behaviours which influence the dose to

which pigs are exposed could help account for the differences

amongst herds.

Inferences about the transmission parameters drawn from the

mortality data are sensitive to prior assumptions (Fig. S2). The infor-

mative priors used in this study (Table S3) represent the best infor-

mation currently available for the strains of ASFV currently

circulating in the RF (and more widely in eastern Europe). Further-

more, even though the priors are informative, they do still include

substantial uncertainty (Figure 2).

We have ignored the potential impact of herd structure on trans-

mission in the model. This is principally a consequence of the limited

availability of data on how pigs were managed within the farms

included in the study. Transmission experiments have shown that

spread of ASFV between adjoining pens does occur and at rates

sufficient to sustain an outbreak (i.e., the between-pen R0 > 1),

though the rates are lower than within a pen (Guinat, Gubbins, et al.,

2016; Hu et al., 2017). In addition to transmission through direct and

indirect contact between adjoining pens, there would be other means

of transmission between groups of pigs some distance apart, for

example via fomites (Costard et al., 2013) or airborne spread (de Car-

valho Ferreira, Weesendorp, et al., 2013). Estimating the transmission

rate for each route using only mortality data would be challenging

(any decrease in one route could be compensated for by an increase

in another). Consequently, it is difficult to assess what impact

neglecting herd structure would have on the estimates of transmis-

sion rates.

Our results have important implications for the control of ASFV.

Given that there is currently no vaccine available against ASFV, con-

trol of ASF in countries in which housed commercial pig production

systems predominate relies on biosecurity, movement restrictions and

rapid detection and stamping out of affected herds (Costard et al.,

2009; Guinat, Vergne, et al., 2016). In a recent survey of ASF experts,

one of the preferred surveillance options for ASFV was syndromic

surveillance of pig mortality (Guinat, Vergne, et al., 2016). Yet, our

results suggest that ASFV could be circulating in a herd for nearly a

month before it causes a marked increase in mortality (Figure 2h). This

raises the question of how effective monitoring pig mortality would

be as a method of early detection of ASFV, particularly during the ear-

lier stages of an epidemic when farmer awareness may be limited.

Such a long delay in detection could result in substantial within-herd

transmission (Figure 1), and mean a herd could pose a transmission

risk to neighbouring herds for a substantial period of time (Porphyre

et al., 2017). Inferences about the time of introduction are useful,

however, as they help inform backward tracing of contacts between

infected and susceptible herds (Elbers et al., 2001) and help improve

predictions of epidemic characteristics (Porphyre et al., 2016).

An objective of the present study was to explore the feasibility

of using mortality data to estimate transmission parameters, while

making as few assumptions as possible. Our results show that this

can be done: the posterior distributions for most model parameters

differ from their prior distributions (Figure 2 and Fig. S2), indicating

that there is information about them in the mortality data. Moreover,

it is possible to draw inferences even using non-informative priors,

although any inferences are likely to be more reliable if there are

data available to construct informative priors. Accordingly, the meth-

ods developed in this study could be applied to other high mortality

diseases, notably highly pathogenic avian influenza. It would also be

of interest to explore what level of mortality a disease must cause

for mortality data to be useful when inferring transmission parame-

ters and, hence, to which other diseases our approach could be

applied.

ACKNOWLEDGEMENTS

The authors are grateful to the FRCVM for providing the data. They

also thank Milen Georgiev (RVC, UK) and Svetlana Buzdugan (RVC,

UK) for translating the outbreak reports from Russian to English.

6 | GUINAT ET AL.



CONFLICT OF INTEREST

The authors declare no competing financial interests.

ORCID

S. Gubbins http://orcid.org/0000-0003-0538-4173

REFERENCES

Alba, A., D�orea, F. C., Arinero, L., Sanchez, J., Cord�on, R., Puig, P., &

Revie, C. W. (2015). Exploring the surveillance potential of mortality

data: Nine years of bovine fallen stock data collected in Catalonia

(Spain). PLoS One, 10, e0122547.

Anderson, D., & Watson, R. (1980). On the spread of a disease with

gamma distributed latent and infectious periods. Biometrika, 67, 191–

198.

Backer, J. A., Brouwer, H., van Schaik, G., & van Roermund, H. J. W.

(2011). Using mortality data for early detection of classical swine

fever in The Netherlands. Preventive Veterinary Medicine, 99, 38–

47.

Barongo, M. B., Bishop, R. P., F�evre, E. M., Knobel, D. L., & Ssematimba,

A. (2016). A mathematical model that simulates control options for

African swine fever virus (ASFV). PLoS One, 11, e0158658.

Blome, S., Gabriel, C., & Beer, M. (2013). Pathogenesis of African swine

fever in domestic pigs and European wild boar. Virus Research, 173,

122–130.

Bos, M. E. H., Nielen, M., Koch, G., Bouma, A., De Jong, M. C. M., &

Stegeman, A. (2009). Back-calculation method shows that within-

flock transmission of highly pathogenic avian influenza (H7N7) in the

Netherlands is not influenced by housing risk factors. Preventive

Veterinary Medicine, 88, 278–285.

Bos, M. E. H., Van Boven, M., Nielen, M., Bouma, A., Elbers, A. R. W.,

Nodelijk, G., . . . De Jong, M. C. M. (2007). Estimating the day of

highly pathogenic avian influenza (H7N7) virus introduction into a

poultry flock based on mortality data. Veterinary Research, 38, 496–

504.

de Carvalho Ferreira, H. C., Backer, J. A., Weesendorp, E., Klinkenberg,

D., Stegeman, J. A., & Loeffen, W. L. A. (2013). Transmission rate of

African swine fever virus under experimental conditions. Veterinary

Microbiology, 165, 296–304.

de Carvalho Ferreira, H. C., Weesendorp, E., Quak, S., Stegeman, J. A., &

Loeffen, W. L. A. (2013). Quantification of airborne African swine

fever virus after experimental infection. Veterinary Microbiology, 165,

243–251.

Costard, S., Mur, L., Lubroth, J., S�anchez-Vizca�ıno, J. M., & Pfeiffer, D. U.

(2013). Epidemiology of African swine fever virus. Virus Research,

173, 191–197.

Costard, S., Wieland, B., de Glanville, W., Jori, F., Rowlands, R., Vosloo,

W., . . . Dixon, L. P. (2009). African swine fever: How can global

spread be prevented? Philosophical Transactions of the Royal Society

of London B: Biological Sciences, 364, 2683–2696.

EFSA Panel on Animal Health and Welfare. (2014). Scientific opinion on

African swine fever. The EFSA Journal, 12, 3628.

Elbers, A. R. W., Moser, H., Ekker, H. M., Crauwels, P. A. A., Stegeman, J.

A., Smak, J. A., . . . Pluimers, F. H. (2001). Tracing systems used during

the epidemic of classical swine fever in the Netherlands, 1997-1998.

Revue Scientifique et Technique (International Office of Epizootics), 20,

614–629.

Evans, C. M., Medley, G. F., Creasey, S. J., & Green, L. E. (2010). A

stochastic mathematical model of the within-herd dynamics of por-

cine reproductive and respiratory virus (PRRSV): Fade-out and persis-

tence. Preventive Veterinary Medicine, 93, 248–257.

Forbes, C., Evans, M., Hastings, N., & Peacock, B. (2011). Statistical distri-

butions, 4th ed. Hoboken, NJ: John Wiley & Sons.

Guinat, C., Gogin, A., Blome, S., Keil, G., Pollin, R., Pfeiffer, D. U., &

Dixon, L. (2016). Transmission routes of African swine fever virus to

domestic pigs: Current knowledge and future research directions. The

Veterinary Record, 178, 262–267.

Guinat, C., Gubbins, S., Vergne, T., Gonzales, J. L., Dixon, L., & Pfeiffer,

D. U. (2016). Experimental pig-to-pig transmission dynamics for Afri-

can swine fever virus, Georgia 2007/1 strain. Epidemiology and Infec-

tion, 144, 25–34.

Guinat, C., Vergne, T., Jurado-Diaz, C., S�anchez-Vizca�ıno, J. M., Dixon, L.,

& Pfeiffer, D. U. (2016). Effectiveness and practicality of control

strategies for African swine fever: What do we really know? The

Veterinary Record, 180, 97.

Gulenkin, V. M., Korennoy, F. I., Karaulov, A. K., & Dudnikov, S. A.

(2011). Cartographical analysis of African swine fever outbreaks in

the territory of the Russian Federation and computer modelling of

the basic reproduction ratio. Preventive Veterinary Medicine, 102,

167–174.

Halasa, T., Boklund, A., Bøtner, A., Toft, N., & Thulke, H.-H. (2016). Simu-

lation of spread of African swine fever, including effects of residues

from dead animals. Frontiers in Veterinary Science, 3, 6.

Howey, E. B., O’Donnell, V., de Carvalho Ferreira, H. C., Borca, M. V., &

Arzt, J. (2013). Pathogenesis of highly virulent African swine fever

virus in domestic pigs exposed via intraoropharyngeal, intranasopha-

ryngeal and intramuscular inoculation and by direct contact with

infected pigs. Virus Research, 178, 328–339.

Hu, B., Gonzales, J. L., & Gubbins, S. (2017). Bayesian inference of epi-

demiological parameters from transmission experiments. Scientific

Reports, under review.

Keeling, M. J., & Rohani, P. (2008). Modeling infectious diseases in humans

and animals. Princeton, NJ: Princeton University Press.

Korennoy, F. I., Gulenkin, V. M., Gogin, A., Vergne, T., & Karaulov, A. K.

(2017). Estimating the basic reproductive number of African swine

fever using Ukrainian historical epidemics of 1977. Transboundary

and Emerging Diseases, 64(6), 1858–1866.

Lurette, A., Belloc, C., Touzeau, S., Hoch, T., Seegers, H., & Fourichon, C.

(2008). Modelling batch farrowing management within a farrow-to-

finish pig herd: Influence of management on contact structure and

pig delivery to the slaughterhouse. Animal, 2, 105–116.

McKinley, T., Cook, A. R., & Deardon, R. (2009). Inference in epidemic

models without likelihoods. The International Journal of Biostatistics, 5,

24.

Mur, L., S�anchez-Vizca�ıno, J. M., Fern�andez-Carri�on, E., Jurado, C.,

Rolesu, S., Feliziani, F., . . . Mart�ınez-L�opez, B. (2017). Understanding
African swine fever infection dynamics in Sardinia using a spatially

explicit transmission model in domestic pig farms. Transboundary and

Emerging Diseases, https://doi.org/10.1111/tbed.12636

Nielsen, J. P., Karsen, T. S., Halasa, T., & Christiansen, L. E. (2017). Esti-

mation of the transmission dynamics of African swine fever within a

swine house. Epidemiology and Infection, 145, 2787–2796.

Perrin, J.-B., Ducrot, C., Vinard, J.-L., Morignat, E., Gauffier, A., Calavas,

D., & Hendrikx, P. (2010). Using the National Cattle Register to esti-

mate excess mortality during an epidemic: Application to an outbreak

of bluetongue serotype 8. Epidemics, 2, 207–214.

Pietschamnn, J., Guinat, C., Beer, M., Pronin, V., Tauscher, K., Petrov, A.,

. . . Blome, S. (2015). Course and transmission characteristics of oral

low-dose infection of domestic pigs and European wild boar with a

Caucasian African swine fever virus isolate. Archives of Virology, 160,

1657–1667.

Porphyre, T., Boden, L. A., Correia-Gomes, C., Auty, H. K., Gunn, G. J., &

Woolhouse, M. E. J. (2016). Using national movement databases to

help inform responses to swine disease outbreaks in Scotland: The

impact of uncertainty around incursion time. Scientific Reports, 6,

20258.

GUINAT ET AL. | 7

http://orcid.org/0000-0003-0538-4173
http://orcid.org/0000-0003-0538-4173
http://orcid.org/0000-0003-0538-4173
https://doi.org/10.1111/tbed.12636


Porphyre, T., Correia-Gomes, C., Chase-Topping, M. E., Gamado, K., Auty, H.

K., Hutchinson, I., . . .Woolhouse, M. E. J. (2017). Vulnerability of the Bri-

tish swine industry to classical swine fever. Scientific Reports, 7, 42992.

Rowlands, R. J., Michaud, V., Heath, L., Hutchings, G., Oura, C., Vosloo,

W., . . . Dixon, L. K. (2008). African swine fever virus isolate, Georgia,

2007. Emerging Infectious Diseases, 14, 1870–1874.

S�anchez-Vizca�ıno, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L.

(2015). An update on the epidemiology and pathogenesis of African

swine fever. Journal of Comparative Pathology, 152, 9–21.

Tapprest, J., Borey, M., Dornier, X., Morignat, E., Calavas, D., Hendrikx,

P., . . . Sala, C. (2016). Assessment of fallen equine data in France and

their usefulness for epidemiological investigations. Research in Veteri-

nary Science, 104, 96–99.

Tiensin, T., Nielen, M., Vernooij, H., Songserm, T., Kalpravidh, W.,

Chotiprasatintara, S., . . . Stegeman, A. (2007). Transmission of the

highly pathogenic avian influenza virus H5N1 within flocks during

the 2004 epidemic in Thailand. The Journal of Infectious Diseases, 196,

1679–1684.

Toni, T., Welch, D., Strelowa, N., Ipsen, A., & Stumpf, M. P. H. (2009).

Approximate Bayesian computation scheme for parameter inference

and model selection in dynamical systems. Journal of the Royal Society

Interface, 6, 187–202.

Torres, G., Ciaravino, V., Ascaso, S., Flores, V., Romero, L., & Sim�on, F.

(2015). Syndromic surveillance system based on near real-time

cattle mortality monitoring. Preventive Veterinary Medicine, 119,

216–221.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Guinat C, Porphyre T, Gogin A,

Dixon L, Pfeiffer DU, Gubbins S. Inferring within-herd

transmission parameters for African swine fever virus using

mortality data from outbreaks in the Russian Federation.

Transbound Emerg Dis. 2017;00:1–8. https://doi.org/10.1111/

tbed.12748

8 | GUINAT ET AL.

https://doi.org/10.1111/tbed.12748
https://doi.org/10.1111/tbed.12748

