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A B S T R A C T

Eimeria species parasites can cause the disease coccidiosis, most notably in chickens. The occurrence of cocci-
diosis is currently controlled through a combination of good husbandry, chemoprophylaxis and/or live parasite
vaccination; however, scalable, cost-effective subunit or recombinant vaccines are required. Many antigens have
been proposed for use in novel anticoccidial vaccines, supported by the capacity to reduce disease severity or
parasite replication, increase body weight gain in the face of challenge or improve feed conversion under ex-
perimental conditions, but none has reached commercial development. Nonetheless, the protection against
challenge induced by some antigens has been within the lower range described for the ionophores against
susceptible isolates or current live vaccines prior to oocyst recycling. With such levels of efficacy it may be that
combinations of anticoccidial antigens already described are sufficient for development as novel multi-valent
vaccines, pending identification of optimal delivery systems. Selection of the best antigens to be included in such
vaccines can be informed by knowledge defining the natural occurrence of specific antigenic diversity, with
relevance to the risk of immediate vaccine breakthrough, and the rate at which parasite genomes can evolve new
diversity. For Eimeria, such data are now becoming available for antigens such as apical membrane antigen 1
(AMA1) and immune mapped protein 1 (IMP1) and more are anticipated as high-capacity, high-throughput
sequencing technologies become increasingly accessible.

1. Introduction

Eimeria have been recognised as important intestinal parasites of
poultry for more than 100 years (Chapman, 2014). During this period
understanding of the parasite life-cycle, their global distribution and
environmental stability, has become well established (Shirley et al.,
2005). Risks associated with uncontrolled coccidial infection include
failure of chickens to thrive, increased susceptibility to diseases such as
necrotic enteritis, compromised feed conversion and, for some species
of parasite, high levels of mortality (Shirley et al., 2005; Williams,
1999). In response, prophylactic anticoccidial drugs are routinely used
to control Eimeria, and live parasite vaccines are popular in some sec-
tors of the industry (Blake and Tomley, 2014). Diagnosis commonly
relies on a combination of pathology (lesion scoring) and detection of
oocysts in faeces or litter and has not changed fundamentally in more
than 50 years (Nolan et al., 2015). Nonetheless, parasite identification
remains largely subjective and differentiation of strains and genotypes
is impossible without detailed laboratory analysis. Approaches con-
sidered routine for many bacterial pathogens to define drug resistance
profiles, or identify the presence of specific virulence factors (Cosentino
et al., 2010; Fluit et al., 2001), are not available for Eimeria. Oocysts
defined by genotypes that confer drug resistance, enhanced virulence or

even immunological escape from vaccine-induced protection, appear
identical to other oocysts, leaving the farmer, veterinarian and scientist
in the dark (Peek and Landman, 2003; Williams et al., 2009). At present
such variant parasites are identifiable only by expensive testing in vivo,
for example determining drug resistance profiles by anticoccidial sen-
sitivity testing (ASTs) (Naciri et al., 2003).

Attempts to develop next-generation recombinant anticoccidial
vaccines have led to the identification of many potential vaccine anti-
gens. However, until recently the extent of naturally occurring allelic
diversity in the genes encoding these antigens has been unknown (Blake
et al., 2015). The relevance of such diversity, and predicting the effects
it will have on immune escape and subsequent vaccine failure, is crucial
and can help to inform selection of the optimal antigens for inclusion in
recombinant vaccine formulations. Pre-existing antigenic diversity in
field populations of parasites can immediately limit vaccine efficacy
with those expressing allelic variants escaping full control, as has been
described in other apicomplexans such as Plasmodium falciparum with
the antimalarial vaccine candidates apical membrane antigen 1 (AMA1)
and merozoite surface antigen 1 (MSP1) (Arnott et al., 2014; Takala and
Plowe, 2009). Even where allelic diversity associated with immune
escape is low, or occurs/emerges at very low frequency, the selection
pressure to survive and replicate in the face of immunity is potent,
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favouring genetic diversity and the rapid emergence of resistance.
Selection pressure is particularly profound for Eimeria which infect

chickens due to a combination of features of the parasite (functionally
haploid, highly fecund and rapid replication) and the host (high num-
bers, intense farming, rapid turnover), as amply demonstrated by the
speed with which resistance to chemical anticoccidial drugs emerges
(Chapman, 1997). In contrast, live coccidiosis vaccines have been used
for more than 50 years with little evidence of parasite evolution to-
wards resistance/immune escape. This is probably attributable to each
parasite expressing between 6000 and 9000 antigens during completion
of their life-cycle (Reid et al., 2014; Shirley et al., 2005), many of which
contribute to robust immune protection. Recombinant vaccines based
on small numbers of antigens are likely to exert considerably more
focused genetic selection pressure, as is the case for anticoccidial drugs,
and parasite genomes will require fewer mutations to achieve immune
escape. A key question is whether new anticoccidial vaccines will suffer
the same fate as most anticoccidial drugs, with swift selection for
vaccine-resistant parasite populations that undermine vaccine value?
Without such understanding, the decades of research into recombinant
anticoccidial vaccines may be undone within months of vaccine release.
In this targeted review we summarise the existing options for control of
Eimeria species parasites which infect chickens, explore the candidates
available for inclusion in sub-unit or recombinant anticoccidial vac-
cines and discuss the current understanding of genetic diversity for
these antigens.

2. Coccidiosis

Eimeria are protozoan parasites of the phylum Apicomplexa. Close
relatives of Toxoplasma gondii and the Plasmodium species, Eimeria can
cause the disease coccidiosis in all livestock although most species of
the genus are strictly host-specific (Kvicerova and Hypsa, 2013; Vrba
and Pakandl, 2015). Coccidiosis is a significant economic burden to
commercial cattle and sheep production, but the greatest losses occur
within the poultry industry, where the disease has been estimated to
incur annual deficits in excess of £2 billion (Dalloul and Lillehoj, 2006;
Lassen and Ostergaard, 2012; Williams, 1999). Clinical disease man-
ifests as a haemorrhagic or malabsorptive enteritis caused by Eimeria
tenella, Eimeria necatrix or Eimeria brunetti, and Eimeria acervulina, Ei-
meria maxima, Eimeria mitis or Eimeria praecox, respectively (Long et al.,
1976; Williams et al., 2009). Subclinical infection is common, influ-
encing key production parameters such as food conversion ratio (FCR),
average daily gain (ADG), and days to slaughter (Williams, 1999). All
Eimeria species follow homoxenous faecal-oral life-cycles, offering op-
portunities for control of transmission in the environment, as well as
replication in vivo. Husbandry measures including maintenance of dry
litter, influenced by variables such as stocking density, quality of
housing and ventilation, diet and occurrence of other enteric patho-
gens, can reduce Eimeria transmission, but additional anticoccidial
control is essential in modern poultry production.

3. Current anticoccidial control

Ten different active ingredients are currently available in antic-
occidial products licensed for prophylactic use with poultry in the
European Union, plus one additional therapeutic coccidiocide (http://
www.noahcompendium.co.uk/). In the UK between 240 and
300 tonnes of these active ingredients are sold for use in livestock
production every year, with the vast majority being used in the poultry
sector (Eckford et al., 2014). The drugs available can be divided into
chemical and ionophore groups, produced by synthesis or fermentation,
respectively (Blake and Tomley, 2014). At present the ionophores
dominate the anticoccidial market, representing more than 70% of the
drugs used (Eckford et al., 2014), although their status as antibiotics in
countries such as the US is beginning to restrict their application. The
success of the ionophores has been at least partially attributed to the

incomplete anticoccidial protection they provide, even against naïve
field isolates, at doses that are not toxic to chickens. This allows the
parasite to continue replicating at a low level in the face of treatment
(reviewed elsewhere (Chapman, 1999)). For example, in one early
study parasite replication and disease pathology caused by apparently
susceptible E. tenella was not completely blocked in chickens given
monensin or lasalocid treatment at 125 ppm. At this dose, equivalent to
concentrations used in current commercial applications such as Elan-
coban® G200 and Avatec® 150G, oocyst output was reduced by 82–97%
(monensin), while weight gain was reduced by 10% and 12% (mon-
ensin and lasalocid, respectively) and average caecal lesions of 1.2 per
group were still recorded (both ionophores) (Chapman, 1976). Subse-
quently, in trials with monensin at 125 ppm E. maxima oocyst output
was reduced by 40–92% compared to unmedicated controls (challenge,
doses 1000–10 sporulated oocysts per bird, respectively), and E. brunetti
by 53–98% (Chapman, 1978). Equivalent studies in modern field iso-
lates would be expected to reveal similar or even greater parasite es-
cape as a consequence of drug resistance (Djemai et al., 2016). Fur-
thermore, immunity was found to develop in medicated birds following
sequential trickle exposure to E. maxima, E. brunetti and E. tenella
(Chapman, 1978). While the comparison between many trials is hin-
dered by experimental variation, low-level parasite escape from iono-
phore treatment has been a frequent observation (Bafundo et al., 2008;
Karlsson and Reid, 1978; Ruff et al., 1980). Indeed, it is accepted that
the ‘leakiness’ of these important anticoccidial drugs is a key factor in
their success. Ionophores allow chickens to be exposed to low levels of
replicating Eimeria that induce natural immune protection that is of
huge value to the bird when drugs are withdrawn prior to slaughter, or
at the onset of egg production (Chapman, 1976, 1999). Incomplete
parasite killing also reduces selective pressure towards drug resistance
which probably has extended the active commercial life of the iono-
phores. Nonetheless, resistance has been described among Eimeria to
every drug currently available, often appearing within one year of re-
lease (Chapman, 1997). Such a swift response against the potent effect
of lethal drug selection suggests the occurrence of pre-existing genetic
diversity within Eimeria genomes and/or a high ability for genome
plasticity and diversification.

Anticoccidial vaccination using formulations of live Eimeria para-
sites offers an effective alternative to chemoprophylaxis. Robust im-
mune protection is achieved following ingestion and re-cycling of
controlled doses of vaccine oocysts. Anticoccidial vaccine uptake in the
poultry industry has been limited by the need for multiple vaccine lines
of parasites to be produced by independent passage in chickens. This
places some practical limitations on manufacturing capacity and means
that vaccines can cost significantly more than anticoccidial drugs (Blake
and Tomley, 2014). The first live anticoccidial vaccines such as Coc-
civac®, and more recently Immucox®, included oocysts of unmodified
wild-type Eimeria (Williams, 2002). Non-attenuated vaccines are widely
used in many parts of the world and offer good vaccine protection;
importantly their manufacturing yields are much higher than those of
live-attenuated vaccines, so they are considerably cheaper (Chapman
and Jeffers, 2014). Because they replicate with high efficiency, live
wild-type vaccine parasites also contribute to restoring anticoccidial
sensitivity to commercial poultry farms that have drug-resistant popu-
lations of Eimeria, thus extending the ‘life’ of several important drugs
(Chapman and Jeffers, 2015; Jenkins et al., 2010; Peek and Landman,
2006). However, there are significant drawbacks to the use of non-at-
tenuated vaccines; because the parasites are fully virulent, they carry
associated risks of vaccine-induced disease, which has limited their
uptake, most notably in Europe where they are not currently licensed.
Subsequently, a second generation of live attenuated vaccines was
produced, incorporating parasite lines that are selected for early (pre-
cocious) development or (in one example) adaptation to growth in
embryonic chicks (reviewed in detail by Williams (Williams, 2002)).
These second-generation vaccines replicate to lower levels and have
superb safety combined with efficacy. However, reduced replication
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results in higher vaccine production costs and practical considerations
limit the number of doses that can be produced. The success of the first
live attenuated vaccines such as Paracox® 8 and Livacox®, particularly
for breeding and layer chickens, has stimulated the more recent de-
velopment of additional attenuated vaccines such as Hipracox®, Hu-
veGuard® and Eimeriavax 4 M®.

For all live coccidiosis vaccines, whether virulent or attenuated,
vaccination requires chicks to ingest live oocysts which is achieved via
direct oral inoculation (rarely used), spraying of vaccine onto chicks
where oocysts are ingested by preening, incorporation of the vaccine
into edible gel that is distributed to batches of chicks at the hatchery or
other similar strategies (Jenkins et al., 2013). Importantly, for most
species of Eimeria a single round of vaccination does not result in im-
mediate or complete immune protection against a high dose challenge.
This requires anywhere between one and three rounds of re-infection
(Chapman and Shirley, 2003; Williams, 1998), which is achieved by the
re-cycling of vaccine parasites that continues for several weeks with
litter oocyst levels normally peaking at between three to five weeks
post-vaccination (Williams and Gobbi, 2002). Apart from live oocyst
vaccines, the only other coccidiosis vaccine to have reached the com-
mercial market is a killed parasite vaccine, CoxAbic®, which comprises
a partially purified preparation of E. maxima gametocyte antigens. This
product had some success (Sharman et al., 2010) but the requirement
for in vivo parasite production to prepare vaccine antigen, as well as
uncertainty with regards to the need for ‘boosting’ by exposure to
parasites in the field, remain limiting factors (Wallach et al., 2008).

4. Anticoccidial vaccine candidates—how protective to protect?

Live anticoccidial vaccines have proven highly advantageous for use
with chickens in the layer and breeder sectors (McDonald and Shirley,
2009) and demand for cheaper subunit or recombinant vaccines ap-
propriate for continuous use in the much larger broiler sector has be-
come intense. Since the early reports of recombinant vaccine develop-
ment in the 1980s several candidate antigens have been tried and tested
by multiple research groups (Blake and Tomley, 2014; Vermeulen,
1998). Small-scale vaccination trials using antigens in recombinant
protein, DNA or live-vectored formulations have been reported to

achieve 30–90% reductions in parasite replication and/or gut lesion
score, or comparable improvements in food conversion ratio and/or
body weight gain (e.g. Table 1 and Supplementary Table 1). However,
despite these encouraging successes no large-scale trials have been re-
ported and considerable variation persists in methodologies and chal-
lenge outcomes between laboratories. Additionally, many researchers
across both industry and academia continue to search for a ‘golden
bullet’ antigen, or antigen cocktail, that induces complete protection
against challenge with an Eimeria species parasite. Such a high standard
has proven impossible to achieve under experimental or field conditions
for apicomplexans such as P. falciparum and T. gondii (Arnott et al.,
2014; Gedik et al., 2016; Takala and Plowe, 2009) and, other than the
absence of antigenic switching, there is little reason that Eimeria should
be any different.

But are we being too stringent? Comparison between current (and
even original) ionophore efficacy and live coccidiosis vaccines indicates
that comparable levels of partial protection are achieved initially, then
this is boosted by subsequent re-cycling of parasites (Williams and
Gobbi, 2002). Similarly, formulations of vectored or recombinant vac-
cine antigens that induce initially incomplete immune protection would
also allow limited natural Eimeria re-cycling and may subsequently
achieve immune protection. Furthermore, the induction of incomplete
immunity is likely to reduce the selective advantage of genetic muta-
tions that confer vaccine resistance, improving prospects for long-term
vaccine efficacy. According to this rationale, we may already have
antigens appropriate for use in combinations as anticoccidial vaccines.

Many Eimeria proteins identified as anticoccidial vaccine candidates
have roles in host/parasite interaction, probably because these are
naturally exposed during parasite invasion/replication and are there-
fore amenable targets for the host immune response. Among the most
widely investigated are proteins secreted from the micronemes, orga-
nelles located at the apical tip of apicomplexan parasites whose con-
tents are critical for parasite gliding motility and attachment to host
cells, as well as for entry to/exit from infected cells (Rugarabamu et al.,
2015). Examples include AMA1, a key component of the parasite-host
moving junction (Blake et al., 2011; Blake et al., 2015; Hoan et al.,
2014; Jiang et al., 2012), and microneme proteins (MIC)1
(Subramanian et al., 2008; Tomley et al., 1991), MIC2 (Sathish et al.,

Table 1
Examples of the effects of (A) an ionophore and (B) anticoccidial vaccine candidates on parasite replication (percentage reduction in oocyst output by treated vs mock- or non-treated

chickens). A more detailed summary of anticoccidial vaccine candidates and the experimental conditions applied to their testing are presented in Supplementary Table 1.

(A) Ionophore Species Concentration Reduction (Oocyst dose) Reference

Monensin E. tenella 125 ppm 82% (100,000) (Chapman, 1976)
97% (10) (Chapman, 1976)

E. maxima 125 ppm 40% (1000) (Chapman, 1978)
92% (10) (Chapman, 1978)

E. brunetti 125 ppm 53% (1000) (Chapman, 1978)
98% (10) (Chapman, 1978)

(B) Vaccine candidate Species Formulation Reduction (Oocyst dose) Reference

Apical membrane antigen 1 E. maxima DNA 42% (250) (Blake et al., 2011)
E. tenella rProtein 66% (300) (Pastor-Fernandez et al., under review)

gam56 E. maxima DNA 54% (5000) (Xu et al., 2013)
gam82 E. maxima rProtein ~50% (2000) (Jang et al., 2010b)
Immune mapped protein 1 E. maxima rProtein 45% (250) (Blake et al., 2011)

E. tenella rProtein 78%, 88% (2000) (Yin et al., 2013)
Lactate dehydrogenase E. acervulina rProtein 53% (120,000) (Song et al., 2010)
Microneme protein 1 E. tenella Yeast 74–79% (6000) (Chen et al., 2015)
Microneme protein 2 E. tenella rProtein ~38% (10,000) (Ding et al., 2005)

Yeast 74% (3000) (Sun et al., 2014)
Microneme protein 3 E. tenella rProtein ~50% (250) (Lai et al., 2011)
Profilin (3-1E) E. tenella rProtein 40% (20,000) (Lee et al., 2011)
Rhomboid-like protein E. tenella DNA 76% (30,000) (Liu et al., 2013)
SO7 E. tenella DNA ~44% (50,000) (Song et al., 2015c)
TA4 E. tenella DNA 68% (50,000) (Xu et al., 2008)
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2011; Tomley et al., 1996), MIC3 (Labbe et al., 2005; Lai et al., 2011),
MIC4 (Tomley et al., 2001; Witcombe et al., 2004), MIC5 (Brown et al.,
2000; Zhang et al., 2014), and a putative MIC7 (Huang et al., 2015).
Proteins putatively linked to MIC processing such as a rhomboid-like
protease (gene ETH_00032220 in the E. tenella genome assembly, most
similar using comparative homology to T. gondi sporozoite-specific
protein ROM3 (Shen et al., 2014)) have also shown value as vaccine
candidates when delivered in recombinant protein, DNA or Myco-
bacterium bovis-vectored formulations (Li et al., 2012; Liu et al., 2013;
Wang et al., 2014; Wang et al., 2009).

Antigen TA4, later identified as the sporozoite-specific glycosyl-
phosphatidylinositol (GPI) anchored surface antigen (SAG)1, one of an
extensive set of Eimeria surface proteins encoded by multi-gene fa-
milies, has been widely investigated as a vaccine antigen. SAG1 is able
to bind cultured epithelial cells and potentially plays a role in parasite
attachment to the host prior to invasion (Reid et al., 2014). SAG1 has
been reported to induce partial protective immunity when used as a
recombinant protein, DNA or Salmonella Typhimurium-vectored vac-
cine (Brothers et al., 1988; Jahn et al., 2009; Pogonka et al., 2003; Song
et al., 2015a; Song et al., 2015b; Song et al., 2009; Xu et al., 2008).
More recently, immune mapped protein 1 (IMP1) has been identified as
an anticoccidial vaccine candidate, first for E. maxima and subsequently
for E. tenella (Blake et al., 2011; Yin et al., 2015). IMP1 is localised to
the sporozoite cell membrane, although its function remains unclear
(Jenkins et al., 2015).

Possibly the most widely tested anticoccidial subunit vaccine can-
didate is profilin, named as 3-1E in many studies (Ding et al., 2004; Min
et al., 2001; Song et al., 2000). Profilin is an actin-binding protein in-
volved in microfilament turnover and it is essential in T. gondii for
parasite gliding motility (Plattner et al., 2008). It is also a ligand for
toll-like receptors (TLRs) 5, 11 and 12 which play key roles in initiating
immune responses against many intracellular microbial pathogens in-
cluding T. gondii (Koblansky et al., 2013; Plattner et al., 2008; Salazar
Gonzalez et al., 2014), suggesting that profilin may act as a novel
mucosal adjuvant. Indeed, administration of Eimeria profilin enhances
the resistance of mice, but not hamsters, to acute phlebovirus infection
(Gowen et al., 2006) and increases mouse immune responses to T. gondii
challenge (Hedhli et al., 2009). Most recently it was shown that in ovo
administration of combined Eimeria profilin, Clostridium perfringens
NetB protein and Montanide IMS adjuvant provides enhanced protec-
tion against necrotic enteritis in an experimental E. maxima/C. per-
fringens challenge model (Lillehoj et al., 2017). Interestingly TLR5 is
known to be present in the chicken and is upregulated during E. tenella
infection (Keestra et al., 2013; Zhang et al., 2012). This led to the
testing of flagellin (a TLR5 agonist) as a fusion partner with vaccine
candidate E. tenella IMP1 with a resultant enhanced protection com-
pared to the use of unfused IMP1 (Yin et al., 2013). Incorporating
profilin into this cocktail to further increase TLR5 (and TRR 11 and 12)
expression would be an obvious next step.

Subunit vaccine development has also used proteins that are not
obviously located exclusively at the host/parasite interface during in-
vasion. Antigen SO7, also named RB1 and GX3262, localises to the
sporozoite refractile bodies and induces partial protective immunity
when delivered using recombinant protein, DNA or Salmonella
Typhimurium-vectored strategies (Crane et al., 1991; Klotz et al., 2007;
Konjufca et al., 2008; Pogonka et al., 2003; Song et al., 2013; Song
et al., 2015a; Song et al., 2015c). Lactate dehydrogenase, used in iso-
enzyme profiling to differentiate Eimeria strains (Shirley, 1978), was
shown to induce partial protection against homologous challenge with
E. acervulina, as well as conferring some heterologous protection against
E. maxima and E. tenella (Schaap et al., 2004; Song et al., 2010). The
development of CoxAbic as a subunit vaccine derived from E. maxima
gametocytes has led to component antigens such as gametocyte anti-
gens gam56 and gam82 to be tested (Jang et al., 2010b; Sharman et al.,
2010; Xu et al., 2013).

Several anticoccidial vaccine candidates have been combined with a

range of cytokines to adjuvant, and thus enhance, the outcome of
vaccination. In the broadest study profilin was tested as a DNA vaccine
alongside plasmids expressing interleukin (IL)-1β, IL-2, IL-8, IL-15, in-
terferon (IFN)α, IFNγ, tumour growth factor (TGF) b4 or lymphotactin
(Min et al., 2001). The addition of IFNα and lymphotactin were found
to improve weight gain during E. acervulina challenge, while IL-1β, IL-8,
IL-15, IFNy, TGFb4 and lymphotactin decreased parasite replication.
However, it was noted that cytokine gene dose and type influenced the
quality of the local immune response. Subsequently, co-delivery of IL-2
has been shown to enhance the neutralising antibody response to an
infectious bursal disease virus VP2 DNA vaccine (Li et al., 2004). More
recently IL-2 has been combined with Eimeria antigens such as TA4
(Song et al., 2009; Xu et al., 2008), SO7 (Song et al., 2013) and E.
acervulina antigen cSZ-2 (Shah et al., 2011), indicating that co-admin-
istration of this cytokine can enhance DNA vaccine-induced protective
immunity. The CD40 ligand has also been combined with IMP1 to
improve antigen presenting cell activation and downstream T-cell-
mediated effector functions (Yin et al., 2015). A range of water-in-oil
adjuvants have also been used widely in recombinant protein vacci-
nation, including Titermax Gold, Freund's complete and incomplete
adjuvants (reviewed in more detail elsewhere (Ahmad et al., 2016)), as
well as the Montanide™ series of adjuvants (Jang et al., 2010a).

5. Antigenic diversity with relevance to recombinant vaccines

Understanding the occurrence and extent of genetic diversity across
parasite genomes is highly relevant to the study of pathogen persistence
and evolution. As selective pressures change, the speed of adaptation
can be essential for survival, often influenced by the extent of pre-ex-
isting genetic diversity. Levels of intra-specific diversity have been as-
sessed for very few Eimeria, but considerable variation has been de-
tected between those species that have been sampled. Comparison of
fixation indices (FST) produced using 248 Eimeria ITS1-5.8S-ITS2 se-
quences including E. acervulina, E. mitis and E. tenella indicated sig-
nificant intra-specific diversity, with evidence of possible allopatric
variation for E. tenella, but not the other two species (Clark et al., 2016).
More detailed assessment of diversity for E. tenella using a genome-wide
panel of 52 informative SNPs revealed 93 distinct haplotypes from 244
field samples (flocks), but the calculation of linkage disequilibrium (LD)
revealed profound differences between geographical regions (Blake
et al., 2015). Most notable were differences in the levels of diversity in
E. tenella populations from farms in India, where northern parasite
isolates presented restricted diversity (eight haplotypes detected across
86 flocks with seven unique to the region) compared to parasites from
southern India (50 haplotypes from 53 flocks with 49 being unique).
While measures of overall genome-wide diversity and population
structure are helpful parameters for predicting the flow of drug- or
vaccine-resistant alleles throughout parasite populations, they offer
little direct evidence of the likely success of a recombinant anticoccidial
vaccine at the time of launch, or over the subsequent years. To assess
this, sequencing diversity at the locus which encodes the vaccine can-
didate(s) is required.

Antigenic diversity has been found to undermine efficacy for many
experimental vaccines targeting apicomplexans such as P. falciparum
(Arnott et al., 2014; Takala and Plowe, 2009). For Eimeria, immune
escape as a consequence of apparent antigenic diversity has been re-
cognised among strains of E. acervulina (Joyner, 1969; Wu et al., 2014),
E. maxima (Smith et al., 2002), E. mitis (McDonald et al., 1985), and E.
tenella (Awad et al., 2013), although the level of escape is commonly
believed to be low in outbred chicken lines. Parasite genetic mapping
studies using two strains of E. maxima indicate that for this parasite
species at least six independent parasite genomic loci are strongly im-
plicated in strain-specific immune protection and/or immune escape,
along with additional minor contributions from a large panel of par-
tially protective loci (Blake et al., 2011). Consequently, detailed defi-
nition of global diversity in the genes that encode potential vaccine
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antigens is a pivotal step towards selection of the most optimal candi-
dates.

To date, detailed sequence analysis to define diversity has been
carried out for only a tiny number of candidate vaccine antigens.
Eimeria maxima AMA1 induces robust protection against homologous
challenge when administered as DNA or bacterial-expressed re-
combinant protein vaccines; it is also a well-studied antigen in other
closely related apicomplexan parasites (Arnott et al., 2014; Blake et al.,
2011). Using AMA1 to vaccinate chickens under experimental condi-
tions consistently reduces parasite replication (defined here as total
oocyst output compared to mock immunised chickens) by 40–80%
depending on the vaccination platform used (Blake et al., 2011).
Moreover, analysis of the EtAMA1 coding sequence from 56 field
samples of E. tenella, derived from China, Egypt, Germany, India, Japan,
Libya, Nigeria, UK, USA, and Venezuela, revealed a modest level of
polymorphism, in striking contrast to the genome-wide diversity de-
scribed for E. tenella (Blake et al., 2015). In total, just seven amino acid
isoforms were detected across the 56 sequences. Comparison between
countries, and even individual farms, indicated the absence of allopatric
selection with multiple AMA1 sequences detected on several farms, and
only two found to be constrained by geographical location. Analysis of
coding sequence polymorphisms using Tajima's D and Fu and Li′s F*
tests of neutrality identified no significant signatures of balancing or
directional selection, indicating a largely neutral evolution (Blake et al.,
2015). While not sampled to such depth, comparison of E. tenella IMP1
coding sequences from parasites in China, India, USA, and UK also in-
dicated a low level of diversity, including expansion/contraction of a
CAG triplet repeat and five substitutions, two of which were non-sy-
nonymous. As for AMA1, no significant evidence of signatures of se-
lection was detected (Kundu et al., 2017). Low diversity and lack of
selection in two key vaccine candidates is in sharp contrast to what has
been reported for several leading vaccine candidates in Plasmodium
species and seems likely to reflect the fact that Eimeria parasites have a
relatively simple monoxenous life-cycle with direct faecal-oral oocyst
transmission, suggesting that there is no requirement for them to persist
within the host for an extended period of time. The relatively short pre-
patent period for Eimeria species that infect chickens (between 84 and
138 h, depending on species; ~138 h for E. tenella (Long et al., 1976)) is
likely to have co-evolved with the speed of the protective host immune
response. After primary infection with natural eimerian oocysts, a
predominantly T cell-mediated/IFNγ driven adaptive immune response
can be detected as early as 96 h (peaking by 144 h post infection for E.
tenella (Cornelissen et al., 2009; Yun et al., 2000)). The rates of parasite
development compared to the timing of expression of protective host
immune responses permit completion of the parasite life-cycle in the
presence of minimal or incomplete immunity. This suggests a limited
role for host immunity in driving selection of natural Eimeria antigen
evolution, and it is likely to be particularly weak for proteins such as
AMA1, which are expressed exclusively during the early (sporogenic)
phases of the parasite life-cycle (Blake et al., 2015). Concurrent selec-
tion by routine chemoprophylaxis may also reduce signatures of se-
lection.

A broader survey for inter-species signatures of genetic selection
comparing non-synonymous to synonymous mutation ratios for 5199 E.
tenella gene models across orthologues from the other six Eimeria that
infect chickens indicated pairwise mean Ka/Ks ratios to be 0.24 ± 0.21
(Reid et al., 2014). Ka/Ks ratios of less than 1.0 are indicative of pur-
ifying or stabilising selection. Specific Ka/Ks for vaccine candidates such
as AMA1 and IMP1, as well as proteins known to be involved in pa-
thogen locomotion, attachment, and/or invasion such as the micro-
neme proteins (MICs) 1–5 and 7, were within the same range or higher
than ‘reference’ genes such as β-tubulin (Fig. 1). This supports the hy-
pothesis that host immunity is not contributing significantly to genetic
selection, at least for this subset of genes.

Drivers underpinning the low level of diversity detected for antigens
such as AMA1 in Eimeria species compared to higher levels of genome-

wide diversity are unclear. It is tempting to speculate that rapid genome
evolution of an opportunistic parasite that replicates rapidly and exits
into an environment where it can survive for extended periods, is likely
to be strongly influenced by the swift host turnover in modern chicken
production that provides a limitless supply of naïve susceptible hosts.
As the parasites complete their endogenous development before the
induction of a significant lethal pathogen-specific immune response,
there is a reduced drive towards immune-mediated balancing selection.
Thus, genes that encode proteins that are essential or important for life
cycle progression, for example AMA1 and other invasion-related anti-
gens, could potentially be under selection for optimal biological func-
tion, rather than immune evasion, resulting in limited diversity and
enhanced prospects for vaccination. Whether correct or not, the limited
antigenic diversity discovered for E. tenella AMA1 and IMP1 supports
the ongoing development of these types of proteins for inclusion in
novel anticoccidial vaccines. Further evaluation of antigen-specific se-
lection induced by future subunit vaccination will be required to inform
on the likely longevity of efficacy for these vaccines.

6. Anticoccidial vaccine antigen delivery—the next big challenge?

The identification of antigens for use in novel anticoccidial vaccines
is a significant step towards the development of a novel recombinant
vaccine. While experimental monovalent vaccination can induce partial
immune protection against individual Eimeria species at levels within
the lower range of protection achieved by ionophores, it is likely that
combinations of two or more antigens will be required to induce pro-
tection that is directly comparable. Expanding the concept to multiple
Eimeria species indicates a requirement for combinations of multiple
antigens, preferably combined into a single formulation. The identifi-
cation of optimal antigen combinations will be driven by considerations
of efficacy and safety, and an assessment of pre-existing antigenic di-
versity should be included in the selection process. It will also be im-
portant to determine the nature of the immune responses stimulated by
such vaccines, comparing them with those stimulated by natural in-
fection to assess the most effective co-stimulatory molecules and routes
of delivery. The delivery of complex multivalent next-generation vac-
cines remains a massive challenge since multiple individual im-
munisations are not scalable to the broiler industry. Live replicating
vector systems such as transgenic bacteria or parasites offer opportu-
nities for automated single-shot vaccine delivery (Clark et al., 2012; Du
and Wang, 2005; Marugan-Hernandez et al., 2016; Tang et al., 2016),
while expression in plant or fungal systems can support direct milling of

Fig. 1. Average Ka/Ks (non-synonymous/synonymous mutation) ratios for sequences
encoding eight anticoccidial vaccine candidates from Eimeria acervulina, E. brunetti, E.
maxima, E. mitis, E. necatrix and E. praecox, using E. tenella for comparison. Actin and β-
tubulin included for comparison. Data derived from Reid and colleagues (Reid et al.,
2014).
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vaccines into commercial diets for poultry (Chen et al., 2015; Sun et al.,
2014; Zimmermann et al., 2009).

7. Conclusions

Several candidate antigens have been identified for use in re-
combinant anticoccidial vaccines. Levels of protection induced against
Eimeria challenge using some experimental vaccines have begun to
approach those achieved by ionophore-mediated prophylaxis, sug-
gesting that subunit vaccination is now realistic if appropriate combi-
nations can be defined. Consideration of the rather limited genetic di-
versity found in field populations of Eimeria species for candidate
antigens such as AMA1 and IMP1 encourages the use of these types of
targets for further vaccine development. The inclusion of additional
antigens in multivalent formulations is likely to increase the magnitude
of immune protection induced as well as delay or prevent the emer-
gence of vaccine-resistant parasite strains in a manner comparable to
the use of drug combinations in antibacterial and anticoccidial pro-
phylaxis and therapy (Fischbach, 2011). Further studies with additional
candidate antigens and a wider range of Eimeria species are now re-
quired if optimal multivalent vaccine formulations are to be established
and their longevity enhanced.
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