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Abstract 
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The present study was conducted to investigate the effect of omega-3 poly unsaturated 

fatty acid (PUFA), α-Linolenic acid (ALA; 18:3 n-3) on the in vitro maturation (IVM) of 

buffalo oocytes and subsequent embryonic development. Buffalo cumulus-oocyte complexes 

(COCs; n=2282) were in vitro matured in TCM-199 (0.6 % fatty acid free bovine serum 

albumin, 0.02 Units/mL FSH, 1 µg/mL 17-β-estradiol, 50 µg/mL gentamicin) supplemented 

with 0 (control), 25, 50, 100, 150 or 300 µM ALA under an atmosphere of 5 % CO2 in air at 

38.5 ºC for 22-24 h. The matured oocytes were then fertilized in Tyrode’s Albumin Lactate 

Pyruvate (TALP) medium and cultured in synthetic oviductal fluid (SOF) medium. 

Concentrations up to 100 μM ALA improves (P ≤ 0.05) the cumulus expansion compared to 

control. Higher percentage of oocytes reaching MII stage was observed at 50 μM and 100 μM 

of ALA compared to control (P ≤ 0.05). Concentrations of 150 and 300 µM ALA were 

detrimental both for cumulus expansion and nuclear maturation rate of buffalo oocytes. 

Moreover, supplementation with 100 μM ALA improves (P ≤ 0.05) cleavage rate compared to 

control and treatment with 50 μM and 100 μM ALA yielded significantly higher morulae 

compared to control. The results of present study indicate that the supplementation with 100 

μM to the IVM medium improves nuclear maturation rate of buffalo oocytes and subsequent 

early embryonic development. 

Key words: Buffalo, α-Linolenic acid, omega-3 PUFAs, nuclear maturation, embryonic 

development 

 

Introduction 

             The Nili-Ravi buffalo is considered to be one of the best milk producers among other 

breeds of buffaloes in the world (Warriach et al., 2008). Although, this breed has the potential 

of producing more than 5000 liters of milk /lactation (Bilal et al., 2006), the average milk yield 

is quite low, which raises the opportunities of genetic improvement through assisted 



reproductive technologies like artificial insemination, and multiple ovulation and embryo 

transfer (MOET). However, the implementation of these technologies is hampered due to some 

inherent reproductive problems in buffalo such as fewer primordial follicles, which results in 

smaller number of recruitable follicles, high level of atresia, poor estrus behavior detection and 

a poor response to superovulation protocols (Madan, 1990). Recently, the emphasis has now 

been shifted towards the in vitro production (IVP) of buffalo embryos (Hansen, 2006) utilizing 

germ plasm of both male and female animals simultaneously (Barakat et al., 2012).  

            In vitro maturation (IVM) is a key step during which oocytes undergo all the necessary 

changes required for successful fertilization and further embryonic development (Wang et al., 

1997). Therefore, the maturation medium is crucial, not only for the maturation of oocyte itself 

but also for its further competence after IVF (Bavister et al., 1992; Kharche et al., 2006). 

Previously, several studies have evaluated different types of media (Totey et al., 1993; Abdoon 

et al., 2001; Zicarelli et al., 2003), and its supplements including different sources of protein 

(Chauhan et al., 1998), hormones (Totey et al., 1993), thiol compounds (Gasparrini et al., 2006; 

Zicarelli et al., 2005), growth factors (Purohit et al., 2005) and antioxidants (Ullah et al., 2006) 

for in vitro maturation of buffalo oocytes with variable success rates and blastocyst production 

rate of no more than 10-20% (Kumar and Anand, 2012) which is relatively lower when 

compared to 30-40 % blastocyst production rate in cattle (Rizos et al., 2008).  

              Fatty acids are essential for numerous physiological functions (Wathes et al., 2007), 

such as membrane biosynthesis (Sturmey et al., 2009), signal transduction and gene expression 

(Sampath and Ntambi, 2005). They also provide a potent energy source and prevent the 

lipotoxic effects result in from increased cellular contents of saturated fatty acids through lipid 

storage and β-oxidation (Dunning et al., 2014). Fatty acids are also precursors for 

prostaglandins and progesterone synthesis and therefore play an important role in the regulation 

of normal reproductive function (Abayasekara and Wathes, 1999; Mattos et al., 2000). 



Polyunsaturated fatty acids (PUFAs) play a significant role in increasing the number (Lucy et 

al., 1991) and size of ovarian follicles (Zeron et al., 2002), level of LH (Lucy et al., 1991) and 

progesterone in follicular fluid (Ryan et al., 1992), oocyte quality (Zeron et al., 2002), 

regulation of ovulation, CL function (Abayasekara and Wathes, 1999; Mattos et al., 2000) and 

pregnancy rate (Bellows et al., 1999).  

            PUFAs must be provided by diet, since their in vivo synthesis is not possible due to 

absence of proper enzymes (Gurr et al., 2002). Change in the composition of dietary fatty acids 

not only modifies fatty acid composition in the blood plasma but also of the reproductive tissues 

including, follicular fluid, cumulus cells and the oocytes (Zeron et al., 2002; Ferguson and 

Leese, 1999; Bilby et al., 2006; Child et al., 2008; Fouladi-Nashta et al., 2009; Wonnacott et 

al., 2010), which can directly influence the competence of oocytes for further development 

and/or fertility (Wonnacott et al., 2010; Armstrong et al., 1990; Burke et al., 1997; Petit et al., 

2001). For instance, dietary fish oil supplementation has been shown to alter the specific n-3 

and n-6 fatty acids in follicular fluid, cumulus cells and oocytes in both beef heifers (Childs et 

al., 2008) and ewes (Zeron et al., 2002; Wonnacott et al., 2010). Such changes in the fatty acid 

profile may improve oocyte maturation, which is essential for successful fertilization and 

further embryo development (Marei et al., 2009) Fatty acids supplemented into IVM medium 

yielded positive effects on oocyte maturation, fertilization, and embryonic development in the 

rat (Khandoker and Tsujii, 1999), goat, sheep (Veshkini et al., 2015) and cattle (Kim et al., 

2001).  

Alpha-Linolenic acid (ALA; C18:3) is the dietary precursor for the long-chain omega-

3 PUFAs (Brenna et al., 2009). It plays an important role in folliculogenesis, developmental 

competence of oocyte (Moallem et al., 2013), fertilization rate and embryo quality (Thangavelu 

et al., 2007). As ALA is produced by the ovarian follicles and the amount of ALA increases as 

the ovarian follicles enlarge (Veshkini et al., 2015); a role of specific unsaturated fatty acids 



like ALA may be speculated in the oocyte maturation and/or follicular growth. In fact, ALA 

has been shown to improve the fertility rate in both cattle and sheep by improving 

folliculogenesis and fertilization rate in vivo (Moallem et al., 2013). When supplemented in the 

in vitro maturation medium it was reported to regulate the molecular mechanism leading to 

increased number of MII stage oocytes and improved their subsequent development into early 

embryos in both cattle (Fouladi-Nashta et al., 2009; Marei et al., 2009) and sheep 

(Ghaffarilaleh et al., 2014). However, the role of ALA supplementation of IVM media for Nili 

Ravi buffalo oocytes has not been studied yet. In this study we hypothesized that the 

supplementation of ALA in IVM media improves the quality of in vitro matured buffalo 

oocytes and their subsequent development post-fertilization. The main objective of the study 

was to evaluate the effects of ALA supplementation of the IVM media on the in vitro oocyte 

maturation and subsequent embryonic development in buffalo.  

 

Materials and Methods 

 

Collection of Oocytes from Buffalo Ovaries 

 

Buffalo ovaries (n = 2500) were collected from the local abattoir and within two hours 

of collection transferred to the laboratory in a thermos containing sterilized phosphate buffered 

saline (PBS) kept at 33-35 °C. Fresh PBS was used to wash the ovaries immediately after 

arrival. Sterile disposable plastic syringe (10 mL) fitted with 18 gauge needle was used to aspire 

cumulus-oocyte complexes (COCs) from antral follicles (2-8 mm). Searching for COCs was 

done under stereomicroscope in PBS and was classified as grade A, B, C and D, on the basis 

of their cumulus investment and ooplasm homogeneity (Sabasthin et al., 2013). Number of 



COCs (n = 2282) with homogenous ooplasm and more than 4 compact layers of cumulus cells 

were selected for the experiments.  

 

 In vitro Maturation (IVM) of Oocytes 

 

COCs were in vitro matured in 100 µL drops covered with sterile mineral oil for 24 h 

at 38.5 ºC in 5 % CO2 in air with 95 % humidity. All the media and culture dishes were 

equilibrated at 38 °C in CO2 incubator for at least 1-2 h before experiment. 

 

Assessment of cumulus cell expansion  

After 24 h of maturation, cumulus cell expansion was assessed by visual assessment using 

stereomicroscope as 1) not expanded (No expansion observed in cumulus cells) 2) Partially 

expanded (Expansion of outer layers of cumulus cells only) or 3) Fully expanded (Expansion 

of all layers of cumulus cells) (Azam et al., 2017).  

 

Oocyte staining and determination of stage of nuclear maturation  

For determination of nuclear stage in meiosis, COCs were completely denuded.  Denuded 

oocytes were washed twice in PBS and fixed overnight in aceto-ethanol. Oocytes were placed 

on a grease free glass slide and covered with a cover slip. Oocytes were slightly compressed 

onto the glass slide with a needle until drop containing oocytes touched the cover slip. The 

oocytes were then stained with 1% aceto-orcein and de-stained with aceto-glycerol as described 

by Azam et al. (2017). Oocyte’s nuclear maturation was evaluated with a phase contrast 

microscope at 200X to 400X magnification. 



Based on morphology, nuclear maturation was categorized as described by Azam et al. (2017). 

Oocyte nucleus with a nucleolus and filamentous chromatin is at germinal vesicle (GV) stage. 

Oocyte without nucleolus, nuclear membrane and shortening of chromosomes is at germinal 

vesicle breakdown (GVBD) stage. At MI stage chromosomes look as thick dots arranged at 

metaphase plate. The segregation of chromosomes start at anaphase-I and at Telophase-I, 

complete segregation of chromosomal sets occur. First polar body is released at M-II. 

 

In vitro Fertilization (IVF) of Oocytes  

 

            Frozen semen was used for in vitro fertilization (IVF). Three 0.5 mL straws of 

cryopreserved buffalo semen were thawed in water bath at 37 °C for 30 seconds. Thawed semen 

was placed in a 15 mL conical tube. Spermatozoa with maximum motility were collected by 

swim up technique (Parrish et al., 1986). About 250 µL of thawed semen was deposited at the 

bottom of four 15 mL tubes containing 3 mL of pre warmed sperm wash medium (TALP: 

modified calcium-free Tyrode’s Albumin Lactate Pyruvate with 6 mg/ml BSA fraction-V). 

Tubes were incubated at 45° angle for 30 minutes. Supernatant from each tube was removed 

and transferred into another 15 mL conical tube and centrifuged at 1600 rpm for 10 minutes. 

The pellet obtained after centrifugation of supernatant was assessed for sperm motility, and 

concentration was determined in an improved Neubauer counting chamber. Subsequently, 

sperm suspention was resuspended in pre-warmed fertilization TALP (supplemented with 

0.1mM hypotaurine, 0.2mM penicillamine, 0.01mM epinephrine, 10 μg/mL heparin) to a final 

concentration of 2 x 106 cells mL−1.  

After 24 h of IVM, buffalo oocytes were washed in fertilization media and were placed 

in fertilization droplets (5 COCs / 50 µL droplet) of pre warmed fertilization media under 

mineral oil. Oocytes and spermatozoa were co-incubated for 20 h at 38.5 °C under 5 % CO2 



with maximum humidity (Gasparrini et al., 2008). The day of fertilization was defined as Day 

0. 

 

In vitro Culture (IVC) of embryos 

 

Following fertilization, presumptive zygotes were denuded by vigorous pipetting in 

PBS and transferred to 25 µL drops containing IVC media (SOF) supplemented with BME, 

MEM and 5% fetal calf serum (FCS). Embryo culture was performed at 38.5 °C in a humidified 

incubator with 5 % CO2 in air. On day 2 the cleavage rate (number of oocytes cleaved/total 

COCs incubated × 100) was evaluated. Further developmental stages (4-8 cell stage, > 8 cell 

stage and morula) were evaluated and recorded every other day.  

 

Experimental Design 

 

Linolenic acid (ALA; Stock solution in DMSO) was added at different levels (0 µM 

(control), 25 µM, 50 µM, 100 µM, 150 µM, 300 µM) to the oocytes in maturation medium 

(TCM-199) supplemented with 0.6 % fatty acid free-bovine serum albumin (FAF-BSA), 0.02 

IU/mL FSH, 1 µg/mL estradiol-17β (E2) and 50 µg/mL gentamicin.  

 

Experiment 1  

 

Oocytes (1200) were randomly allocated to the experimental groups as described: 1) 0 µM 

ALA (control); 2) 25 µM ALA (25); 3) 50 µM ALA (50); 4) 100 µM ALA (100); 5) 150 µM 

ALA (150); or 6) 300 µM ALA (300). The experiment was replicated for seven times.  

 



Experiment 2 

 

Oocytes (1082) were matured as in the Experiment 1. Matured oocytes were fertilized 

and cultured. The experiment was replicated seven times. Embryonic development was 

assessed as cleaved, 4-8 cell stage, > 8 cell stage and morula formation.  

 

Statistical Analysis  

 

To compare the effect of different doses of ALA data on COCs expansion, MII stage, 

cleavage rate and developmental stages (2 cell stage, 4-8 cell stage, > 8 cell stage and morula) 

were recorded and analyzed by one-way analysis of variance (ANOVA).  Results were 

considered significant at (P<0.05). Duncan’s multiple range test (DMRT) was used to compare 

the treatment means.  

 

Results 

 

Experiment 1 

 

The data on the effect of ALA supplementation of maturation media on cumulus 

expansion are shown in Fig. 1 and Fig. 2. The addition of 25 μM ALA in maturation media did 

not show improvement (P > 0.05) in cumulus expansion compared to control. However, 

supplementation with 50 and 100 μM ALA resulted in increased rate of cumulus expansion (P 

≤ 0.05) compared to control. The higher levels of ALA, i.e., 150 and 300 μM resulted in 

significant decrease (P < 0.05) in  expansion of cumulus cells compared to other groups (Fig. 

1 and 2). 



Data of the effects of ALA supplementation in maturation media on percentage of 

oocytes at different stages of nuclear maturation are shown in Fig. 3. The higher percentage of 

oocytes reaching MII stage (P ≤ 0.05) was observed with 50 μM ALA (67.0% ± 2.2) compared 

to control (57.4% ± 2.5) and 25 μM ALA (60.3% ± 1.9) in IVM medium. Further improvement 

(P ≤ 0.05) was observed with 100 μM ALA (76.3% ± 2.5). The higher concentrations of ALA 

i.e., The ALA concentrations of 150 µM (51.3% ± 1.8) and 300 µM (29.8% ± 2.3) resulted in 

a dose dependent decrease in percentage of oocytes reaching MII stage compared to 100 µM 

ALA. The percentage of oocytes remaining at GVBD and MI stage were recorded higher in 

300 μM ALA (26.2% ± 2.2 and 39.1% ± 1.4) compared to control (17.7% ± 3.1 and 20.7% ± 

2.4), respectively. Percentage of degenerative oocytes was higher (p < 0.05) with 300 µM ALA 

(4.9% ± 2.5) compared to control, 25 µM ALA and 150 µM ALA (1.9% ± 1.2, 1.8% ± 1.2, 

1.0% ± 1.0) respectively. No degenerative oocytes were observed with 50 µM ALA and 100 

µM ALA.  

 

Experiment 2  

 

 Data on the effect of ALA supplementation on percentage of cleavage, 4-8 cells, > 8 

cells and morula are presented in Table 1. Supplementation with 25, 50 and 150 µM ALA (49.7 

to 56.9%) did not improved (P > 0.05) the cleavage rate compared to the controls (50.4% ± 

2.0). The addition of 100 µM ALA (49.7% to 57.8%) raised (P < 0.05) the cleavage rate 

compared to the controls and 150 µM ALA, but did not do so when compared to 25 and 50 µM 

ALA. A significant decrease (P < 0.05) in cleavage rate was recorded when maturation media 

was supplemented with 300 µM ALA (21.0% ± 2.5).  

Embryos reaching 4-8 cell stage were higher (P ≤ 0.05) when the oocytes were matured 

in the presence of ALA at 100 µM (47.0 ± 2.9) compared to control (34.0 ± 1.1) and to 25 µM 



ALA (36.6 ± 3.8). At 50 µM ALA (42.3 ± 1.5) embryos developed up to 4-8 cell stage differ 

significantly (P < 0.05) with control and to 150 µM ALA (31.2% ± 0.8), while did not differ 

(P > 0.05) from 25 µM and 100 µM. The higher concentration used in this study, 300 µM (14.3 

± 1.8) resulted in the worst decrease (P ≤ 0.05) on number of 4-8 cell embryos. 

Recorded number of embryos that reached more than 8 cell stage was higher (P ≤ 0.05) 

when the oocytes matured in media supplemented with 100 µM ALA (38.0% ± 2.2) followed 

by 50 µM ALA (31.1 ± 1.6) and by control (22.2 ± 2.9) and 25 µM ALA (23.1 ± 2.4).  The 

increase in ALA supplementation up to 150 µM (14.4 ± 1.8) and 300 µM (1.2± 1.2) 

compromised (P ≤ 0.05) the embryo development to >8 cell embryos compared to other groups.  

The percentage of morulae was increased (P < 0.05) with the supplementation with 50 

µM ALA (17.8 ± 2.3) and 100 µM (21.0 ± 2.6) compared to control (P ≤ 0.05) percentage of 

morulae compared to the control (11.2 ±2.6) and 25 µM ALA (12.1 ± 2.1), while 150 µM ALA 

(7.8 ± 0.2) in maturation media resulted in decreased (P ≤ 0.05) number of morulae. None of 

the embryos developed to morula stage (P > 0.0) when the oocytes were matured with 300 µM 

ALA. 

 

Discussion 

 

The fatty acid content of developing oocytes changes depending on the environment in 

which they develop (Wakefield et al., 2008). Changing the micro-environment of oocyte also 

changes intra-cytoplasmic concentration of fats. Therefore, PUFAs in the micro-environment 

may replace saturated FAs in the oocyte cytoplasm and make the oocyte membrane 

comparatively more permeable for sperm entry and increase fertilization rate and 

developmental competence of the oocyte. Present study shows that supplementation of 

maturation media with 100 µM ALA increased the number of fully expanded oocytes. 



Supporting our current findings, a previous study (Marei et al., 2009) demonstrated that 

supplementation of maturation medium with ALA at a concentration of lower than 100 µM 

had no adverse effect on cumulus cell expansion in cattle. The deleterious effect of ALA at a 

concentration of 150 and 300 µM in the present study is consistent with the previous studies 

(Coyral- Castel et al., 2010; Ghaffarilaleh et al., 2014; Veshkini et al., 2015) that reported 

decreased viability of granulosa cells with higher concentration of ALA after 24 h of 

maturation. In the present study, high levels of ALA in maturation medium might have been 

outside the tolerance threshold of the cells, exerted toxic effect leading to a reduction in cell 

viability (Andrade et al., 2005). 

 Cumulus cells are important for keeping the oocytes under meiotic arrest, inducing 

meiotic resumption and supporting cytoplasmic maturation. These functions have been 

attributed to their gap junctions and their specific metabolizing capabilities (Tanghe et al., 

2002). It is anticipated that cumulus cells mediate signals and regulate the synthesis of 

important cytoplasmic factors which support nuclear maturation (Albertini et al., 2001). 

However, it is not fully understood that expansion of cumulus cells is prerequisite for nuclear 

maturation or both processes are not inter-related. It has been reported in the ovine that cumulus 

cell expansion is prerequisite for nuclear maturation (Amini et al., 2016), at the same time no 

such connection has also been reported in the bovine (Khalil et al., 2013; Marei et al., 2010).  

Meiotic competence of oocytes determines the developmental capacity for subsequent 

embryo development. In the present study, supplementation of maturation medium with 100 

µM ALA increased the MII rate of buffalo oocytes. High doses of ALA in IVM medium 

inhibited maturation progression, manifested by high percentage of oocytes arrested at GVBD 

or MI stage and a concomitant decrease in percentage of oocytes that completed second meiotic 

division metaphase. Our results are in agreement with the results of Veshkini et al. (2015) who 

reported improved nuclear maturation in sheep oocytes at 100 µM ALA in maturation medium. 



The positive effect of ALA on oocyte’s meiotic competence may be mediated directly by 

improvement of cytoplasmic maturation via the mitogen-activated protein kinase pathway and 

indirectly through PGE2 synthesis (Marei et al., 2009). The PGE2 is a key paracrine and/or 

autocrine regulator of cumulus cell functions and has been proposed to play a major role in 

oocyte nuclear maturation (Elvin et al., 2000). An elevated concentration of PGE2 positively 

stimulated the extent of cumulus expansion and nuclear maturation by enhancing the 

phosphorylation of MAPK1 and MAPK2 in both oocytes and cumulus cells through the 

elevation of cAMP levels (Marei et al., 2009). 

In addition to the positive effects observed on cumulus expansion and oocyte nuclear 

maturation, improvement in all developmental stages of buffalo embryos was observed when 

oocytes were matured in the presence of 50-100 µM ALA in the maturation media. Similar to 

the findings of our study, an increased rate of embryonic development has been observed with 

supplementation of ALA in maturation media in the bovine (Marei et al., 2009), sheep 

(Ghaffarilaleh et al., 2014) and goat oocytes (Veshkini et al., 2015). Provision of ALA in 

maturation media might have improved the cellular processes during different phases of 

maturation, which in turn influenced the developmental competence of subsequent embryos 

(Krisher et al., 1998). In another study on the bovine, addition of ALA to the culture medium 

did not improve the cleavage and blastocyst rates (Al Darwich et al., 2010), however, the 

viability of the embryos was influenced in a positive manner by the presence of ALA in culture 

medium (Al Darwich et al., 2010). It is relevant to mention that the improvement in embryo 

development rate in present study can only be attributed to supplementation of ALA during 

oocyte maturation as maturation medium was serum free and there was no supplementation 

during in vitro embryo culture. These findings suggest that ALA might have been more 

important to the oocytes if added to the maturation medium rather than to the culture medium 

after fertilization. 



In the present study, ALA at higher concentrations (300 µM ALA) resulted in reduced 

number of cleaved embryos and no morula stage embryos. It can be anticipated that 

supplementation of PUFAs (such as ALA) in the maturation medium resulted in their 

accumulation in oocytes cell membranes. Since PUFAs are more susceptible to peroxidation 

than monounsaturated and saturated fatty acids, supplementation at higher levels might have 

increased the oxidative stress (Song et al., 2000; Gladine et al., 2007). Higher levels of ALA 

might have disturbed the balance of unsaturated and saturated fatty acids, so it might be the 

ratio of saturated vs unsaturated FAs that is more critical in the oocyte’s micro-environment 

rather than a certain concentration of the unsaturated FAs per se. Therefore, one may speculate 

that the higher concentrations of ALA in our study might have generated oxidative stress after 

oxidative phosphorylation of ALA (Wakefield et al., 2008) which might have compromised 

the developmental competence of these oocytes and be responsible for the observed reduction 

of embryonic growth. Further studies may be suggested to investigate whether antioxidant 

supplementation of ALA-supplemented IVM medium could abrogate negative effects as 

observed for higher concentrations of ALA. In conclusion, the results of the present study have 

shown that supplementation of in vitro maturation media with ALA at 100 µM improves the 

in vitro maturation of buffalo oocytes that in turn improves early embryonic development.  
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µM                            Micro mole 
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Table 1: Effect of supplementation of IVM medium with different concentrations of α-

Linolenic acid on the cleavage rate and subsequent embryo development of buffalo oocytes 

after in vitro fertilization. 

 

    Developmental stages (Mean percentage ± SEM)    

α-Linolenic acid 

         

No. of   Cleavage 4-8 cell embryos >8 cell embryos   Morulae  

 COCs     N (%)  N (%) N (%)  N (%)  

         

0 µM 182 92 (50.4 ± 2.0)b 62 (34.0 ± 1.1)c 40 (22.2 ± 2.9)c 20 (11.2 ±2.6)b  

25 µM 180 92 (51.1 ± 2.5)ab 66 (36.6 ± 3.8)bc 42 (23.1 ± 2.4)c 22 (12.1 ± 2.1)b  

50 µM 180 102 (56.9 ± 2.0)ab 76 (42.3 ± 1.5)ab 56 (31.1 ± 1.6)b 32 (17.8 ± 2.3)a  

100 µM 180 104 (57.8 ± 1.0)a 84 (47.0 ± 2.9)a 68 (38.0 ± 2.2)a 38 (21.0 ± 2.6)a  

150 µM 180 90 (49.7 ± 2.8)b 56 (31.2 ± 0.8)c 26 (14.4 ± 1.8)d 14 (7.8 ± 0.2)b  

300 µM 180 38 (21.0 ± 2.5)c 26(14.3 ± 1.8)d 2 (1.2± 1.2)e 0 (0.0 ± 0.0)c  
 

 

Data were collected in seven independent repeats.  
a,b,c,d,e

The values with different superscripts in the same column differ significantly (P < 0.05). 

 

 

 

 

 

 



 

            Figure 1: Representative pictures of COCs (A: Fully expanded, B: Partially 

expanded, C: Not Expanded) after 24 h of maturation. 
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Figure 2: Cumulus expansion rate of buffalo COCs after 24 h of maturation in IVM medium 

supplemented with different concentrations of ALA. Data are shown as Mean 

percentage±SEM. Bars with different superscripts differ significantly (P<0.05). 0 

(Control), 25 (supplementation with 25 µM ALA in the maturation media), 50 

(supplementation with 50 µM ALA in the maturation media), 100 (supplementation 

with 100 µM ALA in the maturation media), 150 (supplementation with 150 µM ALA 

in the maturation media), 300 (supplementation with 300 µM ALA in the maturation 

media) 
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Figure 3: Nuclear maturation of buffalo oocytes after 24 h of maturation in IVM medium supplemented with different concentrations of  2 
            ALA. Data are shown as Mean percentage±SEM. Bars with different superscripts differ significantly (P<0.05). GV: Germinal    3 

           Vesicle, GVBD: Germinal Vesicle Breakdown, MI: Metaphase I, MII: Metaphase II, Deg: Degenerated.  4 
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