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Hypercoagulability progresses to 
hypocoagulability during evolution 
of acetaminophen-induced acute 
liver injury in pigs
Karla Chui Luan Lee1,2, Luisa Baker1, Susan Mallett3, Anne Riddell4, Pratima Chowdary4, 
Hatim Alibhai1, Yu-Mei Chang5, Simon Priestnall6, Giacomo Stanzani1, Nathan Davies2, 
Rajeshwar Mookerjee2, Rajiv Jalan2 & Banwari Agarwal7

Increases in prothrombin time (PT) and international normalised ratio (INR) characterise acute liver 
injury (ALI) and failure (ALF), yet a wide heterogeneity in clotting abnormalities exists. This study 
defines evolution of coagulopathy in 10 pigs with acetaminophen (APAP)-induced ALI compared to 
3 Controls. APAP administration began at 0 h and continued to ‘ALF’, defined as INR >3. In APAP 
pigs, INR was 1.05 ± 0.02 at 0 h, 2.15 ± 0.43 at 16 h and > 3 at 18 ± 1 h. At 12 h thromboelastography 
(TEG) demonstrated increased clot formation rate, associated with portal vein platelet aggregates 
and reductions in protein C, protein S, antithrombin and A Disintegrin and Metalloprotease with 
Thrombospondin type 1 repeats–13 (ADAMTS-13) to 60%, 24%, 47% and 32% normal respectively. 
At 18 ± 1 h, INR > 3 was associated with: hypocoagulable TEG profile with heparin-like effect; falls in 
thrombin generation, Factor V and Factor VIII to 52%, 19% and 17% normal respectively; further decline 
in anticoagulants; thrombocytopenia; neutrophilia and endotoxemia. Multivariate analysis, found 
that ADAMTS-13 was an independent predictor of a hypercoagulable TEG profile and platelet count, 
endotoxin, Protein C and fibrinogen were independent predictors of a hypocoagulable TEG profile. INR 
remained normal in Controls. Dynamic changes in coagulation occur with progression of ALI: a pro-
thrombotic state progresses to hypocoagulability.

Acute liver injury (ALI) is characterised by coagulopathy, as assessed by elevation in Prothrombin Time (PT) and 
its derivative International Normalised Ratio (INR). Severe ALI, when complicated by hepatic encephalopathy is 
termed acute liver failure (ALF)1, 2. Traditionally, it has been believed that elevations in PT and INR in ALI/ALF 
patients are associated with a bleeding diathesis. However, a number of reports over the past 10 years have failed 
to demonstrate clinically significant bleeding (spontaneous or intervention related), some even suggesting an 
increased tendency to clot formation3–6. This observation supports the concept of dysregulated haemostasis with 
an increased thrombotic tendency and decreased haemostatic reserve with potential decreased bleeding tendency 
that was described initially in chronic liver disease7, but also observed in ALI and ALF8. The mechanisms for 
this phenomenon seem multifactorial: proportional decline in the procoagulants and the natural anticoagulants 
produced by the liver; enhanced endothelial production and activation of Factor (F) VIII and von Willebrand 
Factor (vWF); release of procoagulant microparticles from monocytes, platelets and endothelium; and dampened 
fibrinolytic capacity5, 6, 8–11.
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The studies of ALI/ALF patients indicate a wide heterogeneity in clotting abnormalities. In a study of 20 ALF 
patients, none had bleeding complications, but two had frequent thrombosis of continuous renal replacement 
therapy (CRRT) filters5. This is consistent with previous reports of short CRRT filter life in ALF patients12. In 
a study of 51 patients with ALF or ALI, nine had bleeding complications, but thrombosis was reported in nine 
including bowel ischaemia, limb ischaemia, portal vein thrombosis, and CRRT catheter thrombosis6. It is pos-
sible that the large heterogeneity in coagulation disturbances observed in ALI/ALF patients is due in part to the 
cross-sectional nature of study designs, resulting in inclusion of patients at the time of admission to the Intensive 
Care Unit, rather than at specific stages of liver failure or at the onset of specific complications of liver failure. 
Complications such as superimposed infection; endothelial dysfunction; and renal failure requiring extracorpor-
eal therapies and use of inotropes may all independently contribute to coagulation disturbances. Bacterial endo-
toxin is known to activate coagulation and fibrinolysis, initiated by cytokine-induced release of tissue factor (TF) 
from circulating monocytes13–16. Hepatic vascular endothelial injury in ALI leads to the release of endogenous 
heparinoids, e.g. heparan sulphate from the liver, leading to a heparin-like effect17, 18. Development of acute kid-
ney injury in ALI/ALF results in significant changes in platelet counts and concentrations of procoagulants and 
anticoagulants19. Epinephrine infusion results in dose dependent increase in FVIII clotting activity, vWF antigen 
(vWF Ag), tissue type plasminogen activator and platelets20. Therefore, at present, the evolution of coagulation 
disturbance in the various stages of ALI progression and the associated mechanisms are unknown.

We hypothesised that progression of coagulation disturbances would be associated with endotoxemia and sys-
temic inflammation and that coagulation changes in the systemic circulation may not reflect changes in the portal 
circulation due to gut derived endotoxin and portal vein blood flow. The aim of the current study was therefore to 
investigate the evolution of coagulopathy in a well-described paracetamol (acetaminophen, APAP)-induced pig 
model of ALF prior to onset of multi-organ failure and without bacterial infection. Coagulopathy and underlying 
mechanisms for coagulation disturbance were assessed longitudinally in systemic and portal blood from the time 
of induction of liver injury up to the development of full-blown liver failure.

Results
Acetaminophen (APAP) treatment leads to acute liver injury (ALI) and failure (ALF) associ-
ated with elevation in International Normalised Ratio (INR). APAP treatment in 10 pigs resulted 
in non-significant increases in INR (calculated from a bedside prothrombin time (PTCoagDx) analyser) from 
1.05 ± 0.02 at 0 h to 1.26 ± 0.05 at 12 h (p = 0.265) and to 1.34 ± 0.07 at 14 h (p = 0.137). However by 16 h, a signif-
icant increase in INR to 2.15 ± 0.43 (p < 0.001) was seen and at 18 ± 1 h INR exceeded 3 (p < 0.001), indicative of 
‘ALF’ (Fig. 1). Total dose of APAP administered to achieve ‘ALF’ was 46.0 ± 2.9 g. In three Control pigs, placebo 
treatment resulted in no change in INR from 0 h to 20 h.

In the APAP group, APAP-induced hepatotoxicity at the time INR exceeded 3 was further confirmed by 
demonstrating significant elevation in total serum high-mobility group box-1 protein (HMGB1)21. In the APAP 
group total HMGB1 was 1.4 ± 0.1 ng/ml and 5.0 ± 1.0 ng/ml at 0 h and ‘ALF’ respectively (p = 0.003). Whereas, in 
the Control group total HMGB1 was 1.5 ± 0.1 ng/ml and 1.2 ± 0.1 ng/ml at 0 h and 20 h respectively. In addition, 
liver histopathology at death or sacrifice, which occurred within 20 h of ‘ALF’, revealed acute centrilobular and 
midzonal hepatocyte degeneration and necrosis in all APAP pigs.

Progression of ALI in APAP pigs is associated with significant neutrophilia and thrombocy-
topenia, but no evidence of blood loss. Red blood cell count (RBC) decreased significantly in the 
Controls from 5.3 ± 0.1 × 1012/l at 0 h to 4.3 ± 0.1 × 1012/l (p < 0.001) at 20 h. This was likely due to hemodilu-
tion by intravenous fluid therapy dictated by the study protocols. Conversely RBC increased significantly in the 
APAP group from 5.7 ± 0.1 × 1012/l at 0 h to 5.9 ± 0.1 × 1012/l at ‘ALF’ (p < 0.001), likely due to hemoconcen-
tration as a result of capillary leak with progression towards ‘ALF’. Platelet count, confirmed by blood smears, 
declined significantly (p < 0.001) in both Controls (from 350 ± 44 × 109/l at 0 h to 205 ± 33 × 109/l at 20 h) and 
the APAP group (from 417 ± 39 × 109/l at 0 h to 125 ± 29 × 109/l at ‘ALF’). To account for differential hemocon-
centration/hemodilution between groups, platelet count was expressed as platelets per red blood cell (platelet 
count/RBC) for group comparisons (Fig. 1). For Controls, platelet count/RBC decreased significantly from 0 h 
to 12 h (p = 0.001), but remained stable thereafter. For the APAP group, platelet count/RBC decreased signifi-
cantly from 0 h to 12 h (p = 0.001) and continued to decrease thereafter to ‘ALF’ (p < 0.001), resulting in a lower 
platelet count/RBC in the APAP group compared to Controls (p = 0.049) suggesting potential consumption of 
platelets in the APAP group. APAP pigs demonstrated significant progressive increases in total white blood cells 
(from 14.5 ± 2.1 × 109/l at 0 h to 28.6 ± 3.2 × 109/l at ‘ALF’, p < 0.001), neutrophils (from 7.6 ± 1.6 × 109/l at 0 h 
to 21.2 ± 2.9 × 109/l at ‘ALF’, p < 0.001) and band neutrophils (from 0.0 ± 0.0 × 109/l at 0 h to 1.4 ± 0.5 × 109/l at 
‘ALF’, p < 0.001). Significant changes in white blood cell counts were not seen in Control pigs.

No bleeding complications were observed in any animal. However, the portal vein catheters thrombosed in 4 
out of 10 APAP pigs by 12 h in 3 pigs and by 14 h in 1 pig.

Progression of ALI is associated first with a hypercoagulable thromboelastography (TEG) pro-
file followed by a hypocoagulable TEG profile with a heparin-like effect. Thromboelastography 
was used to monitor global changes in coagulation in portal vein and arterial blood samples with progression of 
ALI. Results are given in Tables 1 and 2. Representative traces for APAP pigs are shown in Fig. 2. Overall TEG 
results were significantly affected by time (p < 0.001) and the use of heparinase (p < 0.001) for both arterial and 
portal vein blood. However, there was no significant difference in the TEG results from portal vein samples com-
pared to arterial samples.

At 0 h TEG profiles without heparinase demonstrated significant differences from normal suggestive of hypo-
coagulability, but these differences were abrogated with heparinase (Tables 1 and 2). As time 0 h was prior to 
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APAP dosing and the observed changes were no longer apparent by 12 h, the TEG profiles at 0 h probably repre-
sented contamination with exogenous heparin used during catheter placement.

At 12 h hypercoagulability was evidenced by significant reduction in time required for clot formation (K) 
in both arterial and portal blood and an increase in rapidity of fibrin build-up and cross-linking (α) in arterial 
blood. This was however, a transient state with progression to hypocoagulability being demonstrated as early 
as 12 h on analysis of ultimate strength of the fibrin clot (MA), which showed a significant steady decline from 
baseline to ‘ALF’ in both arterial and portal blood. Significant increase in time to initial fibrin formation (R) 
and reduction in α were only seen once INR exceeded 3 at ‘ALF’ in both arterial and portal blood. Addition of 
heparinase affected TEG results significantly in both arterial and portal blood at 14 h and at the time of ‘ALF’. At 
14 h mean K was 45% and 58% lower in the presence of heparinase for arterial and portal blood respectively and 
at ‘ALF’ mean R was 64% and 53% lower in the presence of heparinase for arterial and portal blood respectively. 
These results suggest an endogenous heparin-like effect component to hypocoagulability.

Progression of ALI is associated with dynamic changes in clotting times, thrombin generation, 
procoagulants (Factor V, Factor VIII, von Willebrand Factor) and anticoagulants (A Disintegrin 
and Metalloprotease with Thrombospondin type 1 repeats–13, Protein C, Protein S and 
Antithrombin). Femoral arterial blood samples were collected and stored at 0 h, 12 h, 16 h and ‘ALF’ from 3 
Controls and 8 APAP pigs. Additionally, portal vein blood samples were collected and stored from 2 Controls and 
3 APAP pigs at the same times, except that portal vein blood was collected at 14 h instead of 16 h. Prothrombin 
time (PTIL) and activated partial thromboplastin time (APTT) increased with progression of ALI in stored sam-
ples from APAP animals (p < 0.001), but not from Controls (Fig. 1). Changes in INR calculated from stored 
samples mirrored those calculated immediately from a bedside analyser. From 0 h to ‘ALF’, there was a 3.9-fold 
increase in PTIL (p < 0.001) and 4.7-fold increase in APTT in arterial blood (p < 0.001).

Figure 1. Change in (a) bedside PTCoagDx and (b) platelet count (expressed as a ratio of red blood cell count 
(platelet count/RBC)) with progression through acute liver injury to acute liver failure (ALF), which was 
defined as international normalised ratio (INR) of 3 or more and change in (c) prothrombin time (PTIL) and 
(d) activated partial thromboplastin time (APTT) in stored samples at 0 h, 12 h, 16 h and ALF. Mean ( ± se) for 
each parameter is plotted for acetaminophen (APAP) treated pigs (solid lines) and control pigs (broken lines). P 
values are given above significant differences between the APAP and Control groups.



www.nature.com/scientificreports/

4SCIeNTIFIC RepoRts | 7: 9347  | DOI:10.1038/s41598-017-09508-3

Endogenous thrombin potential (ETP) in arterial and portal blood decreased significantly from 0 h to ‘ALF’ 
in both the Control and APAP groups, but the decline in the APAP group was greater, resulting in significantly 
lower ETP in the APAP group compared to Controls at ‘ALF’ (p < 0.001, Fig. 3). At 0 h, ETP in arterial and por-
tal blood from the Control group was 461 ± 16 nM min and 400 ± 56 nM min respectively and from the APAP 
group was 339 ± 23 nM min and 409 ± 21 nM min respectively. Whereas at ‘ALF’, ETP in arterial and portal blood 
from the Control group was 347 ± 39 nM min and 340 ± 73 nM min respectively and from the APAP group was 
177 ± 17 nM min and 137 ± 11 nM min respectively. Peak Height also decreased significantly in arterial and portal 
blood with progression to ‘ALF ‘resulting in significant differences between Control and APAP groups at 16 h and 
ALF (p ≤ 0.001, Fig. 3). At 0 h, Peak Height in arterial and portal blood from the Control group was 121 ± 9 nM 
and 108 ± 1 nM respectively and from the APAP group was 97 ± 8 nM and 106 ± 2 nM respectively. Whereas at 
‘ALF’, Peak Height in arterial and portal blood from the Control group was 93 ± 7 nM and 91 ± 17 nM respectively 
and from the APAP group was 23 ± 2 nM and 17 ± 1 nM respectively.

A significant decrease in mean Factor V (FV) activities was seen between time 0 h and 12 h in Controls and 
APAP animals with no significant difference between groups (Fig. 4). Decrease in Controls was likely due to 
aforementioned hemodilution. Mean activities at 12 h compared to 0 h were 47% (p < 0.001), 45% (p < 0.001), 
59% (p = 0.002) and 38% (p = 0.001) in arterial Controls, arterial APAP samples, portal vein Controls and portal 
vein APAP samples respectively. However, after 12 h, FV activities continued to decrease in APAP samples, but 
not in Controls, leading to significantly lower arterial FV activities at 16 h (p < 0.001) and ‘ALF’ (p < 0.001) in 
APAP animals compared to Controls. Mean activities at 16 h and 20 h compared to 0 h were 59% and 63% respec-
tively in arterial Controls and 24% and 19% respectively in arterial APAP samples. A similar change in Factor 
VIII (FVIII) activities was seen (Fig. 3), leading to significantly lower (p < 0.001) arterial FVIII activities at ‘ALF’ 
in APAP animals (mean FVIII activity of 17% compared to 0 h) compared to Controls (mean FVIII activity of 
70% compared to 0 h).

Overall there was a significant effect of time on arterial and portal vein vWF Ag concentrations (p < 0.001) 
evidenced as decline primarily between 0 h and 12 h (Fig. 4). However, vWF Ag concentration did not differ 
significantly between the APAP group and Controls at any time. For A Disintegrin and Metalloprotease with 
Thrombospondin type 1 repeats–13 (ADAMTS-13) activity there was also a significant decline between 0 and 
12 h in the APAP group and Controls (Fig. 4). However, the decline in the arterial APAP samples was significantly 
greater than in the arterial Control samples at 12 h: in APAP and Control samples mean ADAMTS-13 activities 
at 12 h were 32% and 71% that at 0 h respectively (p = 0.022). This decline continued in the arterial APAP samples 
to mean activities at ‘ALF’ of 6% that at 0 h.

Activities of the natural anticoagulants, Protein C (PC), Protein S (PS) and Antithrombin (AT) all demon-
strated similar patterns of decline in arterial and portal vein samples (Fig. 5). Whilst there was a decline in all 3 
activities in Control and APAP samples between 0 h and 12 h, the decline in the APAP samples was significantly 
greater at 12 h (p < 0.005). At 12 h mean arterial Control activities of PC, PS and AT were 85%, 55% and 74% that 
at 0 h respectively. Whereas at 12 h mean arterial APAP activities of PC, PS and AT were 60%, 24% and 47% that 

Time

Femoral artery Portal vein

Natural cup Heparinase cup Natural cup Heparinase cup

R (min)

Normal 18.2 ± 1.6, n = 9 13.5 ± 1.1, n = 9

0 h 20.1 ± 1.9, n = 9 13.0 ± 0.7, n = 9 19.9 ± 1.6, n = 10 16.7 ± 1.6, n = 10

12 h 15.7 ± 1.4, n = 8 11.7 ± 0.9, n = 8 18.1 ± 4.0, n = 6 13.8 ± 2.5, n = 7

14 h 23.1 ± 1.9, n = 9 12.7 ± 1.1, n = 9 24.1 ± 4.3, n = 6 15.0 ± 1.8, n = 7

16 h 25.0 ± 0.9, n = 7 14.7 ± 0.8, n = 7 24.4 ± 4.0, n = 5 17.0 ± 0.8, n = 5

18 h 26.4 ± 5.6, n = 3 16.8 ± 1.5, n = 4 38.1 ± 5.7, n = 2 21.6 ± 0.6, n = 4

‘ALF’ 46.5 ± 17.4, n = 9, 
p < 0.001 17.0 ± 1.1, n = 9 p < 0.001 46.1 ± 12.5, n = 6, 

p < 0.001 21.8 ± 1.2, n = 6 p = 0.002

K (min)

Normal 9.2 ± 1.9, n = 9 7.2 ± 1.0, n = 9

0 h 15.8 ± 3.3, n = 9, 
p = 0.002 8.5 ± 0.9, n = 9 p = 0.001 13.2 ± 3.6, n = 10 8.7 ± 1.3, n = 10 p = 0.026

12 h 4.8 ± 0.3, n = 8, 
p = 0.036 4.6 ± 0.4, n = 8 6.1 ± 1.3, n = 6, 

p = 0.002 5.3 ± 1.6, n = 7

14 h 9.5 ± 1.8, n = 9 5.2 ± 0.5, n = 9 p = 0.040 9.6 ± 2.4, n = 6 4.0 ± 0.5, n = 7, 
p = 0.027 p = 0.036

16 h 8.1 ± 1.6, n = 7 4.9 ± 0.3, n = 7 8.2 ± 1.6, n = 5, 
p = 0.025 4.9 ± 0.7, n = 5

18 h 8.9 ± 0.7, n = 3 6.1 ± 0.4, n = 4 12.2 ± 2.6, n = 2 6.0 ± 0.4, n = 4

‘ALF’ 13.7 ± 1.5, n = 8, 
p = 0.050 10.6 ± 1.2, n = 9 14.3 ± 1.4, n = 5 10.8 ± 1.6, n = 6

Table 1. Thromboelastography (TEG) results from acetaminophen (APAP) treated pigs with progression of 
acute liver injury to acute liver failure (ALF). Parameters listed include: R, time to initial fibrin formation and K, 
speed of clot formation. Times listed are: Normal, prior to any intervention; hours from onset of APAP dosing; 
and ‘ALF’, time at which international normalised ratio exceeded 3. n represents sample number. p values given 
in same cell as data represent significant differences compared to Normal. p values given in column to the right 
of data represent significant differences between adjacent natural and heparinase cups.
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at 0 h respectively. Further decrease in arterial Controls was not seen. In arterial APAP samples, these factors con-
tinued to decrease: at ‘ALF’ mean arterial activities of PC, PS and AT were 8%, 1% and 7% that at 0 h respectively 
(Fig. 5).

Low levels of anti-Xa activity were only detected at time 0 h in two arterial APAP samples (0.07 and 0.24 units/
ml) and one arterial Control sample (0.19 units/ml), consistent with TEG results and probably a reflection of 
exogenous heparin at this time point.

D-dimer concentrations in arterial and portal vein samples did not differ significantly between Controls and 
the APAP group. Mean fibrinogen concentrations were significantly lower in arterial APAP samples at 12 h com-
pared to Controls (p = 0.015) and all times thereafter to ‘ALF’ (p < 0.001, Fig. 3).

Portal vein platelet aggregates are observed during hypercoagulable phase of ALI. At 0 h, there 
was no significant difference in mean number of portal vein platelet aggregates detected per ×10 microscope 
field in APAP animals (0.81 ± 0.18 per field) compared to Controls (1.14 ± 0.18 per field). However, at 12 h a 
significant difference was detected with a greater number of portal vein platelet aggregates in the APAP group 
(1.3 ± 0.5 per field) compared to Controls (0.3 ± 0.2 per field) (Fig. 6). Platelet aggregates were also detected in 
hepatic sinusoids, but there was no significant effect of time, zone of the hepatic lobule or experimental group on 
abundance of sinusoidal platelet aggregates.

Plasma endotoxin increases with progression of ALI. In APAP pigs, plasma endotoxin concentration 
at ‘ALF’ was significantly higher compared to 0 h in both arterial (p = 0.004) and portal (p = 0.010) blood, but 
there was no significant difference in endotoxin concentration between portal and arterial blood at any time 
point. Endotoxin concentrations in APAP pigs were 2.6 ± 1.6 endotoxin units (EU)/ml and 14.3 ± 1.6 EU/ml in 
portal blood at 0 h and ‘ALF’ respectively and 2.9 ± 1.5 EU/ml and 13.4 ± 1.5 EU/ml in arterial blood at 0 h and 
‘ALF’ respectively. In Controls plasma endotoxin concentration was unaffected by time and independent of blood 
vessel sampled. Plasma endotoxin concentrations in Control pigs were 4.3 ± 2.0 EU/ml and 8.2 ± 2.0 EU/ml in 
portal blood at 0 h and 20 h respectively and 5.5 ± 2.1 EU/ml and 6.8 ± 2.1 EU/ml in arterial blood at 0 h and 20 h 
respectively.

Portal vein flow is unaffected by ALI. Portal vein flow (PVF) in APAP and Control groups did not 
change significantly with time and no significant difference was seen between these groups. PVF in Controls was 

Time

Femoral artery Portal vein

Natural cup Heparinase cup Natural cup Heparinase cup

α (°)

Normal 30.8 ± 4.8, n = 9 32.6 ± 4.1, n = 9

0 h 20.5 ± 3.3, n = 9, 
p = 0.010 26.7 ± 2.4, n = 9 27.3 ± 3.9, n = 10 28.6 ± 3.2, n = 10

12 h 40.1 ± 1.3, n = 8, 
p = 0.021

41.7 ± 1.7, n = 8, 
p = 0.025 37.3 ± 5.1, n = 6 41.2 ± 5.7, n = 7, 

p = 0.026

14 h 27.1 ± 3.8, n = 9 38.0 ± 2.8, n = 9 p = 0.008 29.9 ± 6.8, n = 6 46.1 ± 3.4, 
n = 7, p = 0.001 p = 0.001

16 h 26.6 ± 2.2, n = 7 37.9 ± 1.5, n = 7 p = 0.014 26.8 ± 2.6, n = 5 38.9 ± 3.3, n = 5 p = 0.026

18 h 22.2 ± 1.4, n = 3 31.4 ± 1.4, n = 4 16.6 ± 3.6, n = 2, 
p = 0.046 30.0 ± 1.1, n = 4 p = 0.041

‘ALF’ 14.1 ± 2.0, n = 9, 
p < 0.001

20.8 ± 1.8, n = 9, 
p = 0.005

12.0 ± 2.5, n = 6, 
p < 0.001

20.4 ± 2.4, n = 6, 
p = 0.014

MA (mm)

Normal 68.6 ± 2.0, n = 9 68.4 ± 1.5, n = 9

0 h 62.8 ± 2.5, n = 9, 
p = 0.033 68.9 ± 1.3, n = 9 65.4 ± 2.4, n = 10 65.9 ± 1.5, n = 10

12 h 61.2 ± 1.6, n = 8, 
p = 0.011 62.9 ± 1.1, n = 8 61.4 ± 1.3, n = 6, 

p = 0.029
59.9 ± 1.6, n = 7, 
p = 0.006

14 h 54.4 ± 1.8, n = 9, 
p < 0.001

57.6 ± 1.4, n = 9, 
p < 0.001

53.3 ± 2.5, n = 6, 
p < 0.001

57.9 ± 1.8, n = 7, 
p < 0.001

16 h 47.5 ± 2.1, n = 5, 
p < 0.001

51.0 ± 3.0, n = 7, 
p < 0.001

47.4 ± 2.1, n = 5, 
p < 0.001

52.7 ± 2.3, n = 5, 
p < 0.001

18 h 40.0 ± 3.1, n = 3, 
p < 0.001

44.9 ± 2.1, n = 4, 
p < 0.001

37.6 ± 1.9, n = 2, 
p < 0.001

43.0 ± 2.1, n = 4, 
p < 0.001

‘ALF’ 25.2 ± 3.3, n = 9, 
p < 0.001

28.8 ± 1.7, n = 9, 
p < 0.001

23.5 ± 4.4, n = 6, 
p < 0.001

29.3 ± 2.6, n = 6, 
p < 0.001

Table 2. Thromboelastography (TEG) results from acetaminophen (APAP) treated pigs with progression of 
acute liver injury to acute liver failure (ALF). Parameters listed include: α, rapidity of fibrin build-up and cross-
linking; and MA, ultimate strength of the fibrin clot. Times listed are: Normal, prior to any intervention; hours 
from onset of APAP dosing; and ‘ALF’, time at which international normalised ratio exceeded 3. n represents 
sample number. p values given in same cell as data represent significant differences compared to Normal. 
p values given in column to the right of data represent significant differences between adjacent natural and 
heparinase cups.
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690 ± 246 ml/min and 722 ± 107 ml/min at 4 h and 20 h respectively. PVF in APAP pigs was 896 ± 144 ml/min 
and 607 ± 120 ml/min at 4 h and ‘ALF’ respectively.

Platelet count, ADAMTS-13, endotoxin, fibrinogen and PC are independently associated 
with TEG in ALI. There were significant strong correlations between the activities/concentrations of all of 
the procoagulants and anticoagulants measured, platelet count, neutrophil count and endotoxin concentration. 
Platelet count, as expected, had a significant independent effect on α (estimate = 0.05 ± 0.02, p = 0.006), MA 
(estimate = 0.03 ± 0.01, p = 0.022) and K (estimate = −0.02 ± 0.01, p = 0.039) with a fall in platelet count being 
associated with trend to hypocoagulability. ADAMTS-13 activity had a significant independent effect on α (esti-
mate = −0.50 ± 0.17, p = 0.006) and K (estimate = 0.44 ± 0.17, p < 0.001) with a fall in ADAMTS-13 activity 
being associated with increased speed of clot formation, in agreement with the hypercoagulability and fall in 
ADAMTS-13 activity seen at 12 h. Endotoxin concentration had a significant independent effect on MA (esti-
mate = −1.21 ± 0.50, p = 0.024) and R (estimate = 3.19 ± 1.13, p = 0.008), emphasising the role of endotoxin in 
progression of hypocoagulability. Finally, fibrinogen (estimate = 12.10 ± 3.23, p = 0.001) and protein C (esti-
mate = 0.26 ± 0.08, p = 0.004) were independently associated with MA, emphasising the role of both procoagu-
lants and anticoagulants in determination of coagulation status.

Discussion
We describe for the first time the evolution of coagulation disturbance from health through ALI to established 
ALF, prior to the onset of multi-organ failure, in a pig model of APAP-induced ALF. TEG analysis clearly 
demonstrated early hypercoagulability at 12 h, progressing to hypocoagulability. In this study, a key independ-
ent event implicated in early hypercoagulability was a reduction in ADAMTS-13, which preceded the fall in 
the pro-coagulants (FV, FVIII) synthesised by the liver and occurred in the face of normal vWF Ag concentra-
tions. There is disproportionate decline in platelet count suggesting potential consumption and this is associated 
with presence of platelet aggregates in small intrahepatic portal vessels at 12 h. Notably, portal blood flow was 
unchanged and there was no evidence of enhanced fibrin breakdown, distinguishing the hypercoagulability of 
ALF from the syndromes of reduced blood flow and disseminated intravascular coagulation (DIC) respectively. 
The progression of hypercoagulability to hypocoagulability was demonstrated first by changes in TEG and later 
by changes in thrombin generation, PT, PTT and INR. Key independent events associated with hypocoagulability 
in this study were increase in endotoxin and decline in platelet count, PC and fibrinogen, demonstrating again the 
importance of concurrent decline in procoagulants and anticoagulants. These key events were also correlated with 

Figure 2. Change in thromboelastography (TEG) profiles with progression of acute liver injury to acute liver 
failure (ALF). Representative TEG traces for (a) normal pig blood and blood taken from an acetaminophen 
(APAP) treated pig at times related to onset of APAP dosing: (b) 0 h; (c) 12 h; (d) 16 h; (e) 18 h and (f) at ‘acute 
liver failure’. Insert demonstrates TEG parameters: R, reaction time; K, time from beginning of clot formation 
until amplitude reaches 20 mm; α, angle; and MA, maximum amplitude. Traces are colour coded: black, femoral 
arterial blood in natural cup; blue, femoral arterial blood in heparinase cup; red, portal vein blood in natural 
cup; and green, portal vein blood in heparinase cup.
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neutrophilia with left shift and presence of a heparin-like effect, which may result from endothelial injury due to 
primary APAP-related liver injury, response to systemic inflammation or local hypoxic response due to platelet 
aggregates. This study highlights ADAMTS-13 reduction, endotoxemia and platelet aggregates in the liver as key 
events in the evolution of the coagulopathy in ALI.

In this study we show for the first time an in vivo association between hypercoagulability and an increased vWF 
antigen to ADAMTS13 ratio, platelet aggregates in intrahepatic portal vessels and decline in natural anticoagu-
lants. This occurred at the 12 h time point. At this time, the greater number of intrahepatic portal platelet aggre-
gates in the APAP pigs compared to Controls was not associated with differences in portal flow. Inflammation 
and endotoxemia may have been contributory factors, as they are known to activate coagulation13–16. However, in 
this study increases in neutrophil count and endotoxin concentration were not yet apparent at 12 h. Endothelial 
changes secondary to ALI may also have contributed to platelet aggregation17, 18. ADAMTS-13 is synthesised pri-
marily by hepatic stellate cells and cleaves hyperactive multimeric or ultra-long forms of vWF into less active vWF 
fragments. This reduction in vWF activity appears to be greater in the presence of FVIII and platelet glycoprotein 
1bα. It has previously been reported that ADAMTS-13 activity is reduced in ALF/ALI patients and plasma taken 
from these patients resulted in increased aggregation of normal platelets ex vivo compared to plasma from normal 
controls22. We report now in vivo evidence of this observation, which was previously made ex vivo. This study 
does not allow us to determine whether platelet microthrombi were present in other organs apart from the liver, 
as no other tissues were biopsied at 12 h. However, a previous clinical study, which reviewed peroperative deaths, 
identified pulmonary platelet aggregates as a finding particular to liver transplant surgeries, despite the absence of 
other risk factors for thrombosis23. We now report a possible mechanism for this post-mortem finding.

The importance of other anticoagulants in ALF, including PC, has also been reported previously. PC is syn-
thesized by the liver and secreted into the circulation. It is localised to endothelial surfaces by the endothelial PC 
receptor. PC is activated by endothelium bound thrombomodulin (TM)-thrombin complexes and binds PS to 
inactivate activated FV and FVIII24. Reduction in hepatic PC synthesis combined with PC consumption and/or 
endothelial injury therefore results in a prothrombotic state. In ALF, Yamaguchi et al. (2006) showed increased 
plasma thrombin-AT complexes and free TM, decreased activated PC-PC inhibitor complexes and perhaps 
most importantly decreased ratio of activated PC-PC inhibitor complexes to PC25. They concluded that in ALF, 
endothelial cell injury results in decreased PC activation and a prothrombotic state. Warkentin and Pai also sug-
gest a central role for PC deficiency in acute hypoxic liver injury, which may predispose to microthrombi and 
ischaemic limb necrosis26. Recombinant human PC is available as a therapeutic agent24. However, it is unlicensed 
in patients with liver failure due to potential risk of bleeding. Moreover, its major reported therapeutic effects 

Figure 3. Change in (a) endogenous thrombin potential (ETP) and (b) peak height for thrombin generation 
and (c) concentrations of fibrinogen in arterial plasma with progression of acute liver injury to acute liver failure 
(ALF), which was defined as international normalised ratio (INR) of 3 or more. Mean ( ± se) for each parameter 
are plotted for acetaminophen (APAP) treated pigs (solid lines) and control pigs (broken lines). P values are 
given above significant differences between the APAP and control groups.
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appear not to be due to its anti-coagulant activity, but rather its anti-inflammatory, anti-apoptotic and endothelial 
stabilisation effect24. Therefore, consideration for use in early ALF/ALI with appropriate monitoring of coagula-
tion status may be beneficial in selected cases27, 28.

Endotoxin is known to activate the coagulation cascade via a pathway which is dependent on increased tissue 
factor expression on circulating monocytes and release of tissue factor positive microparticles into the circula-
tion. Experimental treatment with endotoxin results in hypercoagulability followed by hypocoagulability in man, 
rodents and pigs14, 29, 30. However contrary to our findings, the hypocoagulability of experimental endotoxemia is 
a consumptive coagulopathy, associated with elevation in d-dimers and DIC14, 29, 30.

In the current study a heparin-like effect (HLE) was observed, supporting a role for endothelial injury in the 
coagulopathy of ALI. We previously defined a heparin-like effect in nine out of 10 human ALF patients using TEG 
analysis, as a correction of R plus K of more than 50% in the presence of heparinase18. Anti-Xa assays can also be 
used to measure the effect of endogenous and exogenous heparins in plasma31 and the results of the chromogenic 
anti-Xa assay used in this study has previously been shown to be correlated with the R TEG parameter when 
using heparinase cups in infected cirrhotic patients17. In the current study, anti-Xa activity was only detected in 3 
samples at time 0 h: this may have been due to contamination with unfractionated heparin sodium used to flush 
catheters prior to insertion. Reason for failure to detect anti-Xa activity when INR exceeded 3 in presence of sig-
nificant HLE is unclear and warrants further investigation of the assay used with porcine samples.

The pig model of APAP-induced ALF used in this study has been previously shown to mimic the clinical time 
course of hyperacute liver failure in man32. In this study we confirm hepatocyte necrosis at the time INR exceeded 
3, defined as ‘ALF’, by demonstrating significant elevations in HMGB1, a biomarker of hepatocyte necrosis in 

Figure 4. Change in arterial plasma activities/concentrations of (a) factor V (FV), (b) factor VIII (FVIII), 
(c) von Willebrand factor (vWF Ag) and (d) A disintegrin and metalloprotease with thrombospondin type 
1 repeats–13 (ADAMTS-13) with progression of acute liver injury to acute liver failure (ALF) which was 
defined as international normalised ratio (INR) of 3 or more. Mean ( ± se) for each parameter are plotted for 
acetaminophen (APAP) treated pigs (solid lines) and control pigs (broken lines). P values are given above 
significant differences between the APAP and control groups.
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APAP-induced ALF in man21. Studies using biomarkers to map the time course of liver injury to clinical liver 
failure in man and pigs are yet to be published despite considerable progress in this field21, 33.

In conclusion, the results of this longitudinal study shows for the first time that APAP related ALI is associated 
with the initial development of hypercoagulability, consequent upon reduction in levels of ADAMTS-13 and 
natural anticoagulants, which may contribute to intrahepatic portal venous platelet aggregation and is a poten-
tial therapeutic target. Hypercoagulability progresses to hypocoagulability due to a combination of reduction in 
platelets, reduction in circulating procoagulants and anticoagulants and endotoxemia. The results of this study 
highlight reduction in ADAMTS-13, platelet aggregation and decline and endotoxemia as key events in the evo-
lution of the coagulopathy of ALI and emphasises the importance of global assessments of coagulation status in 
ALI/ALF and the use of blood products on an “on-demand” basis.

Methods
Porcine model of acute liver failure. A previously described pig model of APAP-induced ALF was used 
in this study32. Ten ALF pigs (‘APAP pigs’) and three control pigs (‘Controls’) from a previously published study34, 
from which appropriate blood samples had been taken, were included in this study. All animal procedures were 
approved by the Animal Welfare and Ethical Review Board of the Royal Veterinary College, University of London 
and were carried out in accordance with the Animals (Scientific Procedures) Act 1986.

Female, 26–36 kg, Landrace cross Large White pigs were induced to and maintained under general anaesthesia 
until study end. At the beginning of the study all pigs were instrumented for repeat blood sampling including a 
5Fr, 20 cm catheter in a femoral artery, a 7.5Fr, 16 cm catheter in the right external jugular vein and a 5Fr, 20 cm 
catheter in the portal vein via an ileal vein.

Time 0 h was defined as the time immediately following instrumentation of the pigs for experimental pro-
cedures and was just prior to onset of induction to ALF. Acute liver failure was induced in ‘APAP pigs’ with an 
aqueous APAP suspension, given via an oroduodenal tube as described previously32. A loading dose of 0.25 g/
kg APAP was followed by an hourly maintenance APAP dose, adjusted between 0.5 and 4 g to achieve toxic 
serum APAP concentrations of greater than 300 mg/L. Progression of ALI to ALF was monitored by measuring 
prothrombin time (PT), initially every 4 h and then every 1 h when prolongation of PT was observed. PT was 
measured using venous sodium citrate whole blood samples and a bedside analyser, CoagDx (Idexx Laboratories 
Ltd, West Yorkshire, UK): this PT will hereafter be referred to as PTCoagDx. ‘ALF’ was defined as the time point 
at which PTCoagDx exceeded 3 times that at time 0 h, which was equivalent to an INR of 3. This was based upon 
previous studies, where INR of 3 was associated with subsequent progression to death in 100% of pigs32. ‘Control 

Figure 5. Change in arterial plasma activities of (a) protein C (PC), (b) protein S (PS) and (c) antithrombin 
(AT) with progression of acute liver injury to acute liver failure (ALF) which was defined as international 
normalised ratio (INR) of 3 or more. Mean ( ± se) for each parameter are plotted for acetaminophen (APAP) 
treated pigs (solid lines) and control pigs (broken lines). P values are given above significant differences between 
the APAP and control groups.
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pigs’ were managed using the same protocols as APAP pigs, except that they received water without APAP for the 
20 h required for ‘ALF’ induction in APAP pigs.

All pigs included in these studies were ultimately sacrificed or died within 20 h of ‘ALF’ for APAP pigs and at 
40 h for Control pigs. Histological examination of paraffin embedded post-mortem liver specimens was used to 
confirm acute APAP-induced hepatocyte necrosis in APAP pigs.

In the following studies progression of coagulopathy was assessed between Time 0 h and ‘ALF’ unless other-
wise stated. During this time all pigs received intensive supportive care according to defined protocols32, which 
did not include treatments for coagulopathy nor any blood products.

Haematology. Femoral artery blood samples were collected in Ethylenediaminetetraacetic acid (EDTA) 
tubes (Becton Dickinson UK Ltd, Plymouth, UK) and fresh blood smears were made for complete blood cell 
counts at a commercial laboratory (Pathology and Diagnostic Laboratories, RVC, UK) at 0 h, 4 h, 8 h, 12 h and 
then every 2 h until ‘ALF’. EDTA blood was stored at 4 °C prior to analysis within 24 h.

Thromboelastography (TEG). TEG was performed on the TEG analyser 5000 (Haemonetics Ltd, 
Coventry, UK). Baseline TEG was performed after intramuscular premedication with atropine, azaperone, mida-
zolam and ketamine, from a blood sample obtained directly from an ear vein to achieve normal TEG values 
for this study. Subsequent blood samples were obtained from femoral artery and portal vein catheters at 0 h, 
12 h, then every 2 h until ‘ALF’. One ml of native whole blood collected in a clean 2.5 ml plastic syringe was 
analysed within 4 minutes of collection. TEG analysis was carried out with (heparinase cup) and without (nat-
ural cup) addition of heparinase simultaneously. Two TEG analysers (Analyzer 5000) permitted simultaneous 
analysis of portal vein and arterial samples. All TEG traces were reviewed graphically and those with errors due 
to technical problems, e.g. bubbles in the sample, calibration error, discontinuation of analysis prior to achieve-
ment of all data points, were discarded. The following machine generated parameters were analysed: R, reaction 
time, representing time to initial fibrin formation; K, representing time from beginning of clot formation until 

Figure 6. Immunohistochemical lablelling of platelets with CD61 antibody, in liver sections, 12 h after onset 
of acetaminophen (APAP) dosing when thromboelastography demonstrated a hypercoagulable profile. Portal 
vein platelet aggregates (arrow heads) were seen in greater numbers in (a) APAP treated pigs compared to (b) 
Controls. Sinusoidal platelet aggregates (complete arrows) were not significantly different between groups. PA, 
portal area; CV, central vein; ×200 magnification.
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thromboelastogram amplitude reaches 20 mm; α, angle, representing rapidity of fibrin build up and cross-linking; 
and MA, maximum amplitude, representing ultimate strength of the fibrin clot.

Analysis of clotting times, thrombin generation, procoagulants and anticoagulants. Femoral 
arterial blood samples were collected at 0 h, 12 h, 16 h and ‘ALF’ from 3 Controls and 8 APAP pigs. Additionally, 
portal vein blood samples were collected from 2 Controls and 3 APAP pigs at the same times, except that portal 
vein blood was collected at 14 h instead of 16 h, due to need to limit total volume of blood collected at each time 
point. Blood was transferred directly to 4.5 ml, 3.2% tri-sodium citrate blood collection tubes (Becton Dickinson 
UK Ltd) on ice. Platelet poor plasma was prepared immediately by double centrifugation at 3500 rpm for 10 min 
at 4 °C. Samples were stored in 500 µl aliquots at −70 °C until analysis.

An ACL TOP Coagulometer and HaemosIL reagents from Instrumentation Laboratory (IL), Warrington, 
UK were used for the following assays, unless otherwise stated and as previously described5, 35, 36. Prothrombin 
time (PTIL), and activated partial thromboplastin time (APTT) were measured using PT-Fibrinogen HS Plus and 
APTT SP respectively. FV and FVIII activities were measured by one-stage PT-based and one-stage APTT-based 
assays respectively. Protein C (PC) and Protein S (PS) activities were measured using the chromogenic Protein C 
assay and the Free Protein S assay respectively. Anti-Xa activity was measured using the liquid Anti-Xa chromog-
enic assay. Antithrombin (AT) activity was measured using an in-house chromogenic assay.

vWF Ag was assayed using an in-house ELISA incorporating a rabbit polyclonal anti-human vWF antibody 
(Dako, Glostrup, Denmark) as previously described37. Fibrinogen was measured using the Clauss method38. 
ADAMTS-13 activity was measured using the Technozym ELISA (Technoclone, Vienna, Austria). D-dimers were 
measured using a pig d-dimer ELISA kit (Abbexa Ltd, Cambridge, UK).

Thrombin generation following in vitro activation of coagulation by 5 pmol tissue factor with 4 µM/L phos-
pholipids was assessed using the Calibrated Automated Thrombogram method as previously reported for 
‘unmodified’ thrombin generation35. All assay reagents were obtained from Thrombinoscope BV, Maastricht, The 
Netherlands and used according to their recommendations. The following automated parameters were analysed: 
endogenous thrombin potential (ETP, nM min), proportional to thrombin concentration and the duration of its 
activity; and peak height (nM), representative of total plasma thrombin-generating capacity.

Immunohistochemistry for platelet microthrombi detection. Four-micron paraffin-embedded 
sections of formalin-fixed liver biopsies taken from pigs at 0 h (3 Controls and 9 APAP) and at 12 h (3 Controls 
and 3 APAP) were used for platelet microthrombi detection. Platelet aggregates were identified based on platelet 
morphology, localisation in intravascular spaces and immunohistochemical labelling using a mouse anti-human 
monoclonal antibody against the platelet surface antigen, CD61 (clone 2f2), obtained in a ‘ready-to-use’ for-
mat (Leica Microsystems, Cambridge, UK). The BondMax Automated System and the Bond Polymer Refine 
Detection System from Leica Microsystems was used according to their recommendations. Heat induced epitope 
retrieval was performed using Bond Epitope Retrieval Solution 1 (pH 6) for 20 minutes at 90 °C. Stained sections 
were reviewed blind at ×10 magnification by two researchers (KL and SP) reaching a consensus for all counts. Ten 
fields centred on a portal area were reviewed per section. Mean number of platelet aggregates within portal veins 
per field was recorded for each section. Sections were then ranked according to abundance of platelet aggregates 
within sinusoids and assigned a grade of 0 to 3 accordingly (0 = no sinusoidal platelet aggregates; 3 = abundant 
sinusoidal platelet aggregates).

Endotoxin assays. Femoral artery and portal vein heparin plasma samples were collected from 3 Controls 
and 9 APAP pigs at 0 h, 8 h, 16 h and ‘ALF’ and stored at −70 °C pending analysis. Plasma endotoxin concen-
trations were measured using the Kinetic Turbidimetric Limulus Amebocyte Lysate Assay (Charles River 
Laboratories International Inc., MA, USA) according to the manufacturer’s instructions and as described 
previously39.

High-mobility group box-1 protein, HMGB1, assays. Total HMGB1 in arterial plasma samples col-
lected from 3 Controls and 10 APAP pigs at 0 h and ‘ALF’ and stored at −70 °C pending analysis, was quantified by 
enzyme-linked immunosorbent assay (ELISA, Shino-Test Corporation, Tokyo, Japan) as previously described40.

Portal vein flow. Portal vein flow was recorded every 15 minutes for all pigs using a Transonic flow meter 
(T402-PP) and 12 mm flow probe (12PSB521) placed around the portal vein (Transonic Systems Inc., Ithaca, New 
York), from 4 h to ‘ALF’.

Statistical analysis. IBM SPSS Statistics V22 (IBM Corporation, New York, USA) was used for all data anal-
ysis and significance was set at the 5% level. The Linear Mixed Models procedure was employed to analyse each 
recorded parameter in turn and to consider the effect of time, group (APAP or Control) and blood vessel (artery 
or portal vein) on each parameter. The ‘ALF’ time point for the APAP group was compared to the 20 h time point 
for the Control group. The Linear Mixed Models procedure was used to determine which of these parameters 
may act as independent determinants of the four TEG parameters recorded (α, K, R, MA) for native whole blood 
without heparinase. Parameters considered for inclusion in this model were platelet count, neutrophil count, 
endotoxin concentrations and all procoagulants and anticoagulants assayed. A backward elimination method 
was used for parameter selection.

Data Availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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