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Abstract 

Shc homology 2-containing inositol 5´ phosphatase-2 (SHIP2) is as lipid phosphatase which 

inhibits insulin signaling downstream of phosphoinositide-3-kinase (PI3K); its role in 

vascular function is poorly understood. To examine its role in endothelial cell (EC) biology, 

we generated mice with catalytic inactivation of one SHIP2 allele selectively in EC 

(ECSHIP2Δ/+). Hyperinsulinemic euglycemic clamping studies revealed ECSHIP2Δ/+ were 

resistant to insulin-stimulated glucose uptake in adipose tissue and skeletal muscle, compared 

with littermate controls. EC from ECSHIP2Δ/+ had increased basal expression and activation 

of PI3K downstream targets, including Akt and endothelial nitric oxide synthase (eNOS), 

although incremental activation by insulin and shear stress was impaired. Insulin-mediated 

vasodilation was blunted in ECSHIP2Δ/+, as was aortic nitric oxide bioavailability. 

Acetylcholine-induced vasodilation was also impaired in ECSHIP2Δ/+, which was exaggerated 

in the presence of a superoxide dismutase/catalase mimetic. Superoxide abundance was 

elevated in ECSHIP2Δ/+ EC, and was suppressed by PI3K and Nox2 NADPH oxidase 

inhibitors. These findings were phenocopied in healthy human EC after SHIP2 silencing. Our 

data suggest that endothelial SHIP2 is required to maintain normal systemic glucose 

homeostasis and prevent oxidative stress-induced endothelial dysfunction. 

 

 

  



 

Insulin resistance is a pathophysiological hallmark of obesity and type 2 diabetes mellitus (1). 

When systemic (2,3), or endothelium-restricted (4,5), insulin resistance leads to an 

unfavorable imbalance between endothelial cell (EC) generation of the signaling radical nitric 

oxide (NO) and potentially cytotoxic oxidants such as superoxide (4,5), and hydrogen 

peroxide (6). Whilst the effects of whole body and cell-specific insulin resistance on EC 

function are appreciated, the local and systemic consequences of increased insulin signaling in 

EC are less well characterized. To address this, we generated mice with endothelium-

restricted inhibition of Shc homology 2-containing inositol 5´phosphatase 2 (SHIP2). SHIP2 

is a lipid phosphatase which catalyzes the removal of the 5’ phosphate group from 

phosphatidylinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) (7). PI(3,4,5)P3 accumulation promotes 

the activity of signaling molecules, such as Akt; by reducing PI(3,4,5)P3 accumulation, SHIP2 

acts as a negative regulator of insulin-induced Akt signaling (7). Indeed, transgenic mice 

over-expressing SHIP2 have reduced insulin tolerance and blunted Akt activation in classic 

insulin target tissues (8).  

 

Three different murine models of SHIP2 loss of function have been generated to examine the 

role of SHIP2 in insulin signaling. Clement et al described mice with deletion of Inppl1 

(which encodes SHIP2), although these had unplanned deletion of Phox2a, a transcription 

factor involved in normal development (9). Sleeman et al studied a second knockout mouse 

with deletion of Inppl1, but intact Phox2a; this also had developmental abnormalities (10). 

Recently, mice with catalytic inactivation of SHIP2 were generated by inserting Cre-

recombinase-specific loxP sites into introns flanking Inppl1 exons 18-19 (coding the SHIP2 

catalytic domain) (11); these also had substantial developmental abnormalities making 

conclusions regarding insulin signaling challenging.  

 



 

To improve our understanding of enhanced endothelial insulin signaling, whilst 

circumventing the developmental impact of global SHIP2 deletion, we generated mice in 

which the catalytically inactive SHIP2 described above (11) is restricted to EC using Tie2-Cre 

(referred to as ECSHIP2Δ/+). We hypothesized that endothelial SHIP2 activity is required to 

maintain appropriate systemic and vascular responses to insulin. 

 

Research Design and Methods 

Generating ECSHIP2Δ/+ mice. Mice were bred onto a C57BL/6J background for >10 

generations in a conventional animal facility with 12-hour light/dark cycle. To examine the 

effect of chronically increased insulin signaling, male mice aged 10 months were used in all 

experiments, unless stated otherwise, conducted in accordance with accepted standards of 

humane animal care under UK Home Office project license 40/3523. A catalytically inactive 

SHIP2 mutant mouse was generated by inserting Cre recombinase-specific loxP sites into 

intronic regions flanking exons 18-19 of the Inppl1 gene (11);  mice with one floxed allele  

(SHIP2(18-19)/+) were crossed with Tie2-Cre mice (Jackson Labs) to produce progeny with 

germline endothelium-specific SHIP2 inactivation (referred to as ECSHIP2Δ/+). Cre-positive 

SHIP2+/+ littermates were controls in all experiments.  

 

Metabolic tests. Glucose and insulin tolerance tests were performed by blood sampling after 

intraperitoneal (IP) injection of glucose (1mg/g) or recombinant human insulin (0.75unit/kg: 

Actrapid; Novo Nordisk) respectively, as described (4,5). Glucose concentrations were 

determined in whole blood by a portable meter (Roche). Plasma insulin concentrations were 

determined by enzyme-linked immunoassay (CrystalChem). Free fatty acids and triglycerides 

were measured in fasting plasma using colorimetric assays (Abcam) (12). 

 



 

In vivo hyperinsulinaemic euglycaemic clamp studies. In vivo euglycaemic insulin clamps 

were performed at the Mouse Metabolic Phenotyping Centre at Vanderbilt University, as 

described (13). These use tracer techniques to assess: 1) Whole body insulin sensitivity; 2) 

Insulin suppression of endogenous (i.e. hepatic) glucose production; 3) Rates of individual 

tissue glucose uptake.  

 

Experimental protocol: Mice were maintained on a chow diet (Harlan Teklad Diet 7012). 

Catheters were implanted in a carotid artery for blood sampling, and jugular vein for 

infusions, 5 days before the study. On the morning of each study, food was removed and 

clamps initiated after a 5-h fast. 120 minutes (t=-120 min) prior to initiation of clamps, 

animals received a bolus (1.5μCi), followed by a continuous (0.075μCi/min) infusion of [3-

3H] glucose. Baseline blood or plasma parameters were determined in blood samples collected 

at −10 and 0min. At t=0 an insulin infusion (4mU/kg/min) was started, the [3-3H]glucose 

infusion rate increased (0.15μCi/min), and a constant infusion of heparinized saline-washed 

with erythrocytes from donor animals (5.5μL/min) given to prevent a fall in hematocrit. These 

infusions were continued for the duration of the clamp (145min). Blood glucose was clamped 

at ~100-110mg/dL using variable glucose infusion rate (GIR). Blood glucose was monitored 

every 10 minutes to validate clamping, and GIR adjusted accordingly. Blood was taken 

between 80–120min for determination of [3-3H]glucose. Clamp insulin was determined at 

t=120 and 145min. At 120min 13μCi 2[14C]deoxyglucose ([14C]2DG) was administered as an 

intravenous bolus. Blood was taken between 122–145min for determination of [14C]2DG. 

After the last sample, mice were euthanized and tissues collected.  

 

Plasma and muscle sample analysis: Immunoreactive insulin was assayed with rat 

radioimmunoassay kit (Millipore). To measure plasma 3-[3H]-D-glucose, the sample was 

deproteinized with barium hydroxide (Ba(OH)2) and zinc sulfate (ZnSO4), dried, and 



 

radioactivity determined using liquid scintillation counting. Excised soleus, gastrocnemius, 

superficial vastus lateralis and gonadal adipose tissue, were deproteinized with percholoric 

acid and then neutralizated to pH~7.5. A portion of the extract was counted ([2-14C]DG and 

[2-14C]DG-G-phosphate ([2-14C]DGP) and a portion treated with Ba(OH)2 and ZnSO4 and the 

supernatant counted ([2-14C]DG). Both [2-14C]DG and [2-14C]DG-G-phosphate ([2-14C]DGP) 

radioactivity levels were determined using liquid scintillation counting. 

 

Studies of vasomotor function in aortic rings. Vasomotor function was assessed ex vivo in 

aortic rings as described (2–5). Rings were mounted in an organ bath containing Krebs-

Henseleit buffer (composition [in mmol/L]: NaCl 119, KCl 4.7, KH2PO4 1.18, NaHCO3 25, 

MgSO4 1.19, CaCl2 2.5, and glucose 11.0) and gassed with 95% O2/5% CO2. Rings were 

equilibrated at a resting tension of 3g for 45min. A cumulative dose response to the 

constrictor phenylephrine (PE) (1nmol/L to 10mol/L) was performed. Vasodilation to 

insulin was assessed with incremental doses of actrapid insulin (0.1-1000mU/ml) in aortic 

segments pre-constricted maximally with PE. Relaxation responses to cumulative addition of 

acetylcholine (1nmol/L-10µmol/l) and sodium nitroprusside (0.1nmol/L-1µmol/l) were 

performed. The effects of MnTmPyP (10μmol/L for 30min, Calbiochem) on aortic relaxation 

were examined, as previously reported (2). Relaxation responses are expressed as % 

decrement in pre-constricted tension. Bioavailable NO in aortic segments subject to isometric 

tension was measured by recording the increase in tension elicited by L-NMMA (0.1mM) in 

aortic segments maximally pre-constricted with PE. 

 

Amplex red assay for hydrogen peroxide in aorta. H2O2 was measured using an Amplex® 

Red Hydrogen Peroxide/Peroxidase Assay Kit (ThermoFisher), according to the 

manufacturer’s protocol. Freshly harvested aortae were collected into modified Krebs-HEPES 

buffer, containing 20mM HEPES, 119mM NaCl, 4.6mM KCl, 1mM MgSO4.7H2O, 0.15mM 



 

Na2HPO4, 0.4mM KH2PO4, 5mM NaHCO3, 1.2mM CaCl2 and 5.5mM glucose, pH 7.4. 

Aortas were cleaned of adipose tissue and divided into 2mm rings. Rings were incubated in 

50µL of modified Krebs-HEPES buffer with half also receiving 1250U/mL catalase (free 

from tymol) for 1h at 37°C. 50µL freshly-prepared 100μM Amplex Red reagent with 

0.2U/mL HRP was added to samples and incubated for 1 hour at 37°C, protected from light. 

Rings were removed from the samples and fluorescence measured on a VarioSkan 

(ThermoFisher) plate reader (excitation/emission 530/590nm). The mean reading with 

catalase was subtracted from the mean without catalase, and this value plotted on a 

simultaneously prepared H2O2 standard curve. Dry tissue mass was used for normalization 

(12). 

 

Pulmonary endothelial cell isolation and culture. Primary endothelial cells were isolated 

from lungs by immunoselection with CD146-antibody-coated magnetic beads as reported 

(4,14) and cultured in 2ml EGM-2-MV (Lonza) supplemented with 5% fetal calf serum until 

confluent. These express a range of endothelial markers including eNOS, Tie2 and CD102 

protein (4,14). 

 

SHIP2 activity assay. SHIP2 activity was measured using the 5’PtdIns(3,4,5)P3 Phosphatase 

Activity Fluorescent Polarization Assay (Echelon Biosciences) according to the 

manufacturer’s instructions, using a Polarstar Optima plate reader (BMG Labtech) with 

excitation at 550nm and measuring polarized emission at 580nm. 

 

Nitric oxide synthase activity in endothelial cells. Active eNOS produces NO and L-

citrulline from L-arginine in a stoichiometric reaction. Insulin-stimulated eNOS activity in EC 

was determined by conversion of [14C]-L-arginine to [14C]-L-citrulline as described (14,15). 

EC (1x106) were incubated at 37°C for 20 min in HEPES buffer pH 7.4 (in mmol/L): 10 



 

HEPES, 145 NaCl, 5 KCl, 1 MgSO4, 10 glucose, 1.5 CaCl2 containing 0.25% BSA. 0.5 

μCi/ml [14C]-L-arginine was then added for 5min prior to stimulation with insulin 

(100nmol/L) for 15min before the reaction was stopped with cold phosphate-buffered saline 

(PBS) containing 5mmol/L unlabeled L-arginine and 4mmol/L EDTA, after which cells were 

denatured in 95% ethanol. After evaporation, the pellet was dissolved in 20mmol/L HEPES-

Na+ (pH 5.5) and applied to a well-equilibrated DOWEX (Na+ form) column. The eluate 

[14C]-L-citrulline content was quantified by liquid scintillation and normalized against total 

protein mass.  

 

Exposure of endothelial cells to flow-mediated shear stress. Pulmonary EC were seeded 

onto fibronectin-coated 6-well plates. Confluent monolayers were placed onto an orbital 

rotating platform (Grant Instruments) inside an incubator (16). The radius of orbit of the 

orbital shaker was 10mm and the rotation rate set to 210rpm for 10min, generating a shear 

force of 12 dyne/cm2.  

 

Lucigenin enhanced chemiluminescence. We used lucigenin (5μM), enhanced 

chemiluminescence to measure NAD(P)H-dependent superoxide production in pulmonary 

EC, as described (12). All experiments were performed in triplicate. Pulmonary EC were 

suspended in PBS containing 5% FCS, 0.5% BSA and 50uM gp91ds-tat (GenScript) or 

scrambled ds-tat peptide (GenScript) and incubated in 37˚C for 30min. Luminescence was 

measured upon addition of a non-redox cycling concentration of lucigenin (5µM) and 

NADPH (100µM), using an autodispenser (VarioSkan, ThermoFisher).  

 

Cell lysis, immunoblotting, and immunoprecipitation. Pulmonary EC were lysed in 

extraction buffer containing (in mmol/L, unless otherwise specified) 50 HEPES, 120 NaCl, 1 

MgCl2, 1 CaCl2, 10 NaP2O7, 20 NaF, 1 EDTA, 10% glycerol, 1% NP40, 2 sodium 



 

orthovanadate, 0.5 μg/mL leupeptin, 0.2 phenylmethylsulfonyl fluoride, and 0.5 μg/mL 

aprotinin. Cell extracts were sonicated in an ice bath and centrifuged for 15 min, before 

protein measurement using the biocinochinic acid assay (ThermoFisher). Equal amounts of 

protein were resolved on SDS-polyacrylamide gels (ThermoFisher) and transferred to 

polyvinylidine difluoride membranes. Immunoblotting was carried out with primary 

antibodies produced by Cell Signaling Technologies, except for: mouse NOX2, mouse insulin 

receptor, mouse IRS1, mouse IRS2 and human SHIP2 (Abcam); human NOX2 and β-actin 

(Santa Cruz Biotechnology); mouse SHIP2 (Gift from Stéphane Schurmans, Université de 

Liège, Belgium). Blots were incubated with appropriate peroxidase-conjugated secondary 

antibodies and developed with enhanced chemiluminescence (Millipore). 

 

Lentiviral knockdown of SHIP2 in human umbilical vein endothelial cells. Knockdown of 

SHIP2 in human umbilical vein endothelial cells (HUVEC; Promocell, UK) was performed 

with shRNA transduction using a lentivirus vector (Sigma-Aldrich SHCLNV-NM001567), as 

described (17). HUVEC were transduced with 10 MOI and incubated at 37ºC for 4 days prior 

to analysis. Control cells were transduced with GFP-targeting control shRNA lentivirus 

(Sigma-Aldrich SHC002H). 

 

Gene expression. mRNA was isolated using TRIzol (ThermoFisher), and SHIP2 mRNA 

quantified using SYBR-Green based real-time quantitative PCR using (ABI Prism 7900HT, 

Applied Biosystems) (4). Primer details are as follows: truncated SHIP2 forward 5’-ACC-

TTA-ACT-ACC-GCT-TAG-ACA-TGG-A; truncated SHIP2 reverse 5’-ATC-AGT-GCA-

ACT-AAA-TCG-AAG-GAA; non-truncated region of SHIP2 forward 5’-AAG-ACT-ACT-

CGG-CGG-AAC-CA; non-truncated region of SHIP2 reverse 5’- TGC-CGA-TCA-CCC-

AAC-GA; β-actin forward 5’-CGT-GAA-AAG-ATG-ACC-CAG-ATC-A; β-actin reverse 5’-

TGG-TAC-GAC-CAG-AGG-CAT-ACA-G. As published (12), RNA was also isolated from 



 

purified CD11b+ myeloid cells to define truncated SHIP2 expression. TaqMan 

(ThermoFisher) assays were used to measure expression of IL-1β (mm00434228_m1), IL-6 

(mm00446190_m1) and TNFα (mm00443258_m1) in gastrocnemius muscle and epididymal 

adipose tissue.  

 

Flow cytometry. Heparinised whole blood underwent erythrocyte lysis (Pharmalyse, BD 

Biosciences) prior to isolation of peripheral blood mononuclear cells (PBMC) by 

centrifugation. After blocking with CD16/32 Fc block (BD Biosciences), cells were stained 

anti-CD45-VioBlue, anti-CD11b-FITC, anti-Ly6G-PE (all Miltenyi Biotec) and Ly6C-APC 

(eBioscience). Paired samples were prepared with corresponding isotype-specific controls. 

Flow cytometry (LSRFortessa, BD Biosciences) was performed to define the following 

subsets: total leukocytes (CD45+); myeloid cells (CD45+CD11b+); monocytes 

(CD45+CD11b+Ly6G-Ly6C+); neutrophils (CD45+CD11b+Ly6Ghi-Ly6Chi); ‘inflammatory’ 

monocytes (CD45+CD11b+Ly6G-Ly6Chi); ‘patrolling’ monocytes (CD45+CD11b+Ly6G-

Ly6Clo). All populations are expressed as cells/ml blood. 

 

Cytokine ELISA. Serum IL-6 and TNFα were measured with commercially available 

ELISAs according to manufacturers’ instructions (Abcam) (12). 

 

Histology. 1) Adipose inflammation. Epididymal fat fixed in 4% paraformaldehyde was 

embedded in paraffin blocks and 5-micron sections stained with Sirius Red (Sigma) to 

demarcate collagen deposition, a feature of inflammation (18). Sirius red percentage area 

staining was calculated with Image J (NIH). 2) Adipose vascularity. Epididymal fat fixed in 

1% paraformaldehyde, then stained with lipidtox-green (ThermoFisher) and isolectin-B4-

Alexa647 (ThermoFisher) was wholemounted in chamber slides and imaged with confocal 

microscopy (Zeiss LSM880). Vascular (Isolectin-B4) percentage area was calculated in 



 

thresholded 4-micron maximum intensity projections using ImageJ (NIH). 3) Skeletal muscle 

vascularity. Gastrocnemius muscle fixed in 4% paraformaldehyde was embedded in OCT 

(TissueTek, Sakura) and snap-frozen. 5-micron cryosections were stained with isolectin-B4-

Alexa647 (ThermoFisher) and DAPI (Southern Biotech) then imaged with confocal 

microscopy (Zeiss LSM880). Vascular (Isolectin-B4) percentage area was calculated in 

thresholded 2-micron maximum intensity projections using ImageJ (NIH). 

 

Statistics. Results are expressed as mean (SEM). Comparisons within groups were made 

using paired Student’s t-tests and between groups using unpaired Student’s t-tests or repeated-

measures ANOVA, as appropriate. P<0.05 was considered statistically significant. 

 

Results 

Basic characterization of mice with endothelium-specific inactivation of SHIP2. To 

examine the effect of reducing the restraining role of SHIP2 on insulin action specifically in 

the endothelium, we generated mice with Tie2-Cre mediated catalytic inactivation of one 

SHIP2 allele (ECSHIP2Δ/+). ECSHIP2Δ/+ mice were born with the same frequency as control 

littermates. There was no difference in gross appearance (Fig. 1A), organ weight (Fig. 1B), or 

body length (Fig. 1C), when comparing ECSHIP2Δ/+ and control, although 10 month-old 

ECSHIP2Δ/+ mice were slightly heavier (Fig. 1D). We quantified truncated SHIP2 mRNA in 

organs with differing vascularity; as expected, SHIP2Δ18-19 mRNA was only detectable above 

non-specific fluorescence in ECSHIP2Δ/+ organs, not control organs (Fig. 1E). SHIP2Δ18-19 

mRNA was also undetectable in non-endothelial cells from ECSHIP2Δ/+ lungs (Fig. 1F), but 

was just detectable in CD11b+ myeloid cells (>3000-fold lower than ECSHIP2Δ/+ PEC, and 

≈5-fold above non-specific fluorescence Sup. Fig. 1A). Endothelial SHIP2 protein expression 

was mildly reduced in ECSHIP2Δ/+ mice (Fig. 1G), whilst SHIP2 activity was substantially 



 

reduced (Fig. 1H), in keeping with targeted catalytic domain deletion, as shown previously in 

work using SHIP2(18-19)/+ mice (11). 

 

ECSHIP2Δ/+ mice do not exhibit a pro-inflammatory state. As very low-level expression of 

truncated SHIP2 was found in myeloid cells, we conducted a detailed assessment of systemic 

and tissue-specific inflammation. Flow cytometry revealed no difference in circulating 

leukocyte populations (Sup. Fig. 1B), and leukocyte SHIP2 activity was comparable in 

ECSHIP2Δ/+ and control littermates (Sup. Fig. 1C). ECSHIP2Δ/+ had normal serum TNFα and 

IL-6 (Sup. Fig. 1D-E), along with expression of TNFα, IL-1β, and IL-6 in white adipose 

tissue and skeletal muscle (Sup. Fig. 1F). We found no evidence of altered adipose tissue 

inflammation using Sirius Red collagen staining (Sup. Fig. 1G). 

 

ECSHIP2Δ/+ mice have reduced glucose tolerance and insulin sensitivity. Compared to 

control littermates, ECSHIP2Δ/+ mice had higher fasting glucose (Fig. 2A), similar fasting 

insulin concentrations (Fig. 2B), and higher HOMA-IR (Fig. 2C). ECSHIP2Δ/+ had delayed 

normalization in capillary glucose during glucose tolerance testing (Fig. 2D), but insulin 

tolerance rests were similar to control littermates (Fig. 2E). Serum free fatty acids (Fig. 2F) 

and triglycerides (Fig. 2G) were not altered in ECSHIP2Δ/+. In hyperinsulinemic euglycemic 

clamp studies, ECSHIP2Δ/+ mice required approximately 25% less glucose to maintain 

euglycemia than controls (Fig. 3A). In tracer studies, glucose uptake into adipose tissue and 

skeletal muscle was reduced (Fig. 3B), whereas hepatic glucose output was no different 

between ECSHIP2Δ/+ and controls (Figs. 3C,D).  

 

Endothelial cells from ECSHIP2Δ/+ mice have increased basal activation of signaling 

molecules downstream of PI3K, although incremental activation by insulin and shear 

stress is impaired. In the endothelium, PI3K transduces insulin signaling by catalyzing the 



 

addition of a phosphate group to the 3’-position of inositol rings, generating 3’-

phosphoinositides, including PI(3,4,5)P3, which by activating phosphoinositide dependent 

kinase-1 (PDK1) activates the serine/threonine kinase Akt/PKB (19). Akt activates 

downstream signaling molecules including eNOS (20). ECSHIP2Δ/+ had increased basal 

expression of total PDK1 and pPDK1, total Akt and T308 pAkt, total eNOS and S1177 

peNOS, Rictor (which phosphorylates Akt at S473) and pRictor (Fig. 4A). Importantly, 6-

week old ECSHIP2Δ/+ mice had normal endothelial total Akt, Rictor and eNOS expression, 

and normal adipose tissue and skeletal muscle vascularity (Sup. Fig. 2), suggesting adulthood 

signaling abnormalities do not reflect persistent developmental abnormalities. ECSHIP2Δ/+ 

had comparable insulin-stimulated induction of Akt S473 phosphorylation, but diminished 

downstream induction of eNOS S1177 phosphorylation, compared to control (Fig. 4B). 

PI3K/Akt also mediate shear-induced eNOS activation in EC; ECSHIP2Δ/+ EC exhibited no 

increase in the phosphorylation of Akt S473 or eNOS S1177 in response to shear stress (Fig. 

4C). Notably, we found no significant differences in basal or insulin-stimulated 

phosphorylation of the insulin receptor or insulin receptor substrates 1/2 (Sup. Fig. 3). 

 

ECSHIP2Δ/+ mice have blunted acetylcholine- and insulin-mediated aortic vasodilatation 

associated with vascular oxidative stress. Ex vivo aortic vasomotor responses were studied 

in organ bath apparatus. Consistent with our findings in EC, ECSHIP2Δ/+ had blunted insulin-

mediated vasodilation (Fig. 5A). ECSHIP2Δ/+ exhibited significantly less constriction to the 

non-selective NOS inhibitor L-NMMA (Figs. 5B-D), indicative of reduced NO biogenesis in 

response to isometric tension. There was subtle impairment of acetylcholine-induced 

relaxation in ECSHIP2Δ/+ (Fig. 5E), but SNP responses were comparable to control (Fig. 5F). 

To explore whether vasodilating oxidants were masking more substantial impairment of 

acetylcholine-mediated vasodilation in ECSHIP2Δ/+, we repeated acetylcholine relaxation 

studies in the presence of the superoxide dismutase/catalase mimetic MnTmPyP. MnTmPyP 



 

reduced acetylcholine-mediated aortic relaxation in ECSHIP2Δ/+ and control vessels, but the 

extent of inhibition was significantly greater in ECSHIP2Δ/+ (Figs. 5G-K). Hydrogen 

peroxide, the more stable product of superoxide dismutation, was also elevated in 

ECSHIP2Δ/+ aortae (Fig. 5L). In isolated lung EC, superoxide abundance was increased, as 

assessed by lucigenin-enganced chemiluminescence and with dihydroethedium fluorescence 

(Fig. 6A). Superoxide is generated by many enzymes, and we have shown Nox2 NADPH 

oxidase is a critical pathophysiological source of superoxide in models of global insulin 

resistance (4,5). In ECSHIP2Δ/+ EC, Nox2 protein expression was increased (Fig. 6B). 

Moreover, superoxide abundance was normalized with the Nox2 specific inhibitor Gp91ds-tat 

(Fig. 6C), and the PI3K inhibitors Wortmannin and LY294002 (Fig. 6D). Oxidative stress is 

often associated with reduced eNOS activity, and this was confirmed in ECSHIP2Δ/+ EC 

treated with insulin (Fig. 6E).  

 

SHIP2 knockdown in human EC phenocopies the signaling abnormalities of 

ECSHIP2Δ/+. Next, we sought to validate and generalize the mechanistic data from our 

murine model, using a complementary system in human endothelial cells. We used lentiviral 

vectors to express SHIP2-targeting shRNA, or a non-targeting control shRNA, to knockdown 

SHIP2 in HUVEC, achieving ≈75% reduction in SHIP2 protein, versus control (Fig. 7A). As 

seen in ECSHIP2Δ/+ EC, knockdown of SHIP2 reduced SHIP2 activity (Fig. 7B), and 

enhanced superoxide concentrations (Fig. 7C). We examined potential sources of superoxide, 

and again demonstrated increased Nox2 NADPH oxidase expression (Fig. 7D); moreover, the 

excess superoxide seen in SHIP2 deficient cells was inhibited by Gp91ds-tat (Figs. 7E,F). 

Furthermore, in SHIP2 knockdown HUVEC, S473 pAkt and S1177 peNOS were more 

abundant (Fig. 7G), and superoxide abundance was reduced by the PI3K inhibitors 

Wortmannin and LY294002 (Fig. 7H). These data imply increased PI3K signaling drives 

Nox2-dependent superoxide production in the context of human EC SHIP2 knockdown. 



 

 

Discussion 

We provide a number of novel findings pertaining to the understanding of endothelial SHIP2 

signaling and metabolic disease: 1) EC-specific reduction of SHIP2 activity is not associated 

with developmental defects; 2) Mice with EC-specific reduction of SHIP2 activity develop 

insulin resistance in skeletal muscle and fat, which is not associated with evidence of 

inflammation; 3) EC-specific reduction of SHIP2 activity is associated with endothelial 

dysfunction, excess superoxide abundance, and reduced NO bioavailability; 4) Oxidative 

stress associated with SHIP2 knockdown in murine and human EC is caused by excessive 

PI3K signaling, and is Nox2 NADPH oxidase-dependent. Our data emphasize the detrimental 

impact of increased PI3K/Akt signaling on EC function, and confirm the key role of SHIP2 in 

maintaining vascular homeostasis. In particular, they reveal that increased basal PI3K/Akt 

signal transduction in EC is associated with Nox2-mediated vascular oxidative stress and 

paradoxical systemic insulin resistance due to impaired adipose tissue and skeletal muscle 

glucose uptake. Therefore, whilst hyperinsulinemia is an adaptive response to hyperglycemia, 

when sustained this may have detrimental effects on vascular function and glucose uptake in 

key metabolic tissues; this raises important questions about the long-term risks of therapies 

that induce sustained insulin signaling.  

 

SHIP2, insulin signaling, PI3-kinase and Akt. The ligand-bound insulin receptor 

phosphorylates tyrosine residues on downstream substrates, activating PI3K, which catalyzes 

phosphorylation of the 3’-position of inositol rings, generating 3’ phosphoinositides including 

PI(3,4,5)P3 (21). PI(3,4,5)P3 recruits the serine/threonine kinase Akt to the cell membrane, 

facilitating its activation, allowing phosphorylation of downstream effectors, including eNOS 

(19). Short-term in vivo studies have examined the effect of SHIP2 modulation on insulin 

sensitivity in models of type 2 diabetes. Adenoviral expression of a dominant-negative mutant 



 

SHIP2 in the liver of obese hyperglycemic mice restored insulin sensitivity and Akt 

phosphorylation (22), whereas expression of wild-type SHIP2 blunted these (23). In humans, 

SHIP2 (Inppl1) polymorphisms are associated with obesity, type 2 diabetes and the metabolic 

syndrome (24,25). SHIP2 inhibition has thus been suggested as an approach to treat insulin 

resistant type 2 diabetes mellitus (7). However, the effect of SHIP2 inhibition on specific 

components of the arterial wall is ill defined; our data question the potential therapeutic 

benefit of SHIP2 inhibition, at least in the endothelium.  

 

Endothelial SHIP2 inhibition and glucose homeostasis. We demonstrated that 10-month 

old ECSHIP2Δ/+ mice were resistant to insulin-mediated glucose lowering, and the vascular 

dysfunction caused by chronic SHIP2 inactivation may underpin these findings. We found 

reduced insulin-stimulated eNOS activation in ECSHIP2Δ/+ EC, and endothelial-derived NO 

is thought to be crucial for insulin-stimulated glucose uptake; eNOS deficient mice are 

systemically insulin resistant, with reduced insulin-mediated glucose uptake in skeletal 

muscle (26,27). Kubota et al demonstrated impaired insulin-stimulated glucose disposal in the 

skeletal muscle of mice with endothelium-specific deletion of insulin receptor substrate 2 

(IRS2), due to impaired NO bioavailability (28). Our dataset are consistent with this, since 

ECSHIP2Δ/+ mice have reduced EC insulin sensitivity, diminished insulin-stimulated glucose 

uptake to skeletal muscle, and reduced endothelial NO generation. However, mice with 

endothelium-specific insulin receptor deletion have normal glucose disposal during clamping 

studies (29), suggesting a complex association between vascular insulin signaling and 

systemic glucose homeostasis. Importantly, ECSHIP2Δ/+ mice had preserved proximal insulin 

signaling, implying that downstream signaling may be more important in vascular 

homeostasis, including regulation of systemic glucose metabolism. 

 



 

Endothelial SHIP2 inhibition, superoxide generation, and eNOS inhibition. We 

demonstrate that EC-specific inactivation of SHIP2 increases basal activation of the 

PI3K/Akt/eNOS signaling cascade, with potentially important increases in both the total and 

phosphorylated forms of key signaling nodes (which did not increase in response to insulin), 

and increases the abundance of superoxide. This is associated with reduced NO production in 

isolated EC, and aortic segments under isometric tension, indicating endothelial dysfunction. 

Expression of Nox2 NADPH oxidase was increased in the setting of SHIP2 knockdown, and 

by using the selective antagonist Gp91ds-tat, we implicated Nox2 as the source of excess 

superoxide. Moreover, by normalizing superoxide abundance using two selective PI3K 

inhibitors, we also implicated excessive PI3K/Akt signaling as contributing to oxidative 

stress. Whilst a number of studies have shown a link between excessive Akt activation and 

superoxide generation (30,31), none have identified the source of excess superoxide. 

Moreover, the association between SHIP2 and oxidative stress in vivo is currently unexplored. 

Our study is therefore the first to mechanistically link SHIP2 inactivation to increased Nox2 

NADPH oxidase activity, oxidative stress, and endothelial dysfunction (Fig. 8). By 

recapitulating these data in human EC after silencing SHIP2, we provide support for the 

relevance of our in vivo observations to human pathophysiology, suggesting caution is 

warranted in the clinical translation of SHIP2 inhibition. Importantly, we have also published 

that mice with endothelial overexpression of the insulin receptor exhibit many of the 

phenotypic traits noted in ECSHIP2Δ/+ mice, including PI3K- and Nox2-dependent vascular 

oxidative stress and endothelial dysfunction (12). In conjunction, these data suggest that 

unrestrained signaling at multiple nodes in the proximal insulin signaling cascade cause 

vascular dysfunction mediated by Nox2-dependent oxidative stress. 

 



 

Conclusion. Vascular endothelial SHIP2 activity is required to maintain normal systemic 

insulin sensitivity and suppress vascular oxidative stress and endothelial dysfunction caused 

by unrestrained PI3K-Nox2 signaling. 
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Figure Legends 

Figure 1: Basic characterization of mice with endothelial cell specific inactivation of Shc 

homology 2-containing inositol 5´ phosphatase 2 (ECSHIP2Δ/+). Compared to control Cre+ 

littermate controls: A) No difference was seen in gross development of ECSHIP2Δ/+; B) 

ECSHIP2Δ/+ organ weights were comparable (n≥7); C) Nose to tail length of ECSHIP2Δ/+ was 

similar (n≥4); D) ECSHIP2Δ/+ were slightly heavier (n≥6); E) Truncated SHIP2 mRNA was 

detectable in organs from ECSHIP2Δ/+, but not controls (n=3); F) Truncated SHIP2 mRNA 

was only detectable in EC from ECSHIP2Δ/+ lungs, and not the non-EC fraction (n=3); G) 

SHIP2 protein expression (Representative Western blot shown above panel) was mildly 

reduced in EC from ECSHIP2Δ/+ (n≥5); I) SHIP2 activity was substantially reduced in EC 

from ECSHIP2Δ/+ (n≥9). 

 

Figure 2. Abnormal glucose homeostasis in ECSHIP2Δ/+ mice. A) Fasting glucose was 

increased in ECSHIP2Δ/+ (n=7). B) Fasting insulin was comparable to control in ECSHIP2Δ/+ 

(n≥6). C) HOMA-IR was increased in ECSHIP2Δ/+ (n≥12). D) Glucose tolerance was 

impaired in ECSHIP2Δ/+ (n≥8). E) Insulin tolerance testing was similar in ECSHIP2Δ/+ versus 

control (n≥8). F) Serum free fatty acids were similar in ECSHIP2Δ/+ versus control (n≥6). G) 

Serum triglycerides were similar in ECSHIP2Δ/+ versus control (n≥6). 

 

Figure 3. Insulin resistance in ECSHIP2Δ/+ during hyperinsulinemic euglycemic 

clamping. A) Reduced insulin infusion rate (GIR) in ECSHIP2Δ/+ indicative of insulin 

resistance. B) Blunted glucose uptake in muscle and fat from ECSHIP2Δ/+. C,D) Comparable 

hepatic glucose output in ECSHIP2Δ/+ versus control (n≥4 for all experiments). 

 

Figure 4. Endothelial cell signaling insulin and mechanical shear stress signaling is 

impaired in ECSHIP2Δ/+. A) The basal abundance of Akt, pAkt T308, PDK1, pPDK1, 



 

Rictor, pRictor, eNOS and peNOS S1177 were increased in ECSHIP2Δ/+ EC exposed to 

standard culture media (n≥4). B) Insulin-stimulated [150nm for 10 minutes] phosphorylation 

of eNOS, but not Akt, was impaired in ECSHIP2Δ/+ EC (n≥6). C) Shear stress-induction [10 

minutes] of Akt and eNOS phosphorylation was impaired in ECSHIP2Δ/+ EC (n≥6). 

Representative Western blots are shown above all panels. 

 

Figure 5. Impaired aortic vasodilation in ECSHIP2Δ/+ is associated with oxidative stress 

and reduced NO bioavailability. A) Reduced insulin mediated aortic relaxation in 

ECSHIP2Δ/+ (n≥4). B-D) Reduced L-NMMA induced vasoconstriction in ECSHIP2Δ/+ 

indicative of reduced NO bioavailability (n≥3). E,F) Subtle impairment of acetylcholine-

mediated vasodilation in aorta from ECSHIP2Δ/+ (n≥8). F) No difference in SNP-mediated 

vasodilatation in aortic rings from ECSHIP2Δ/+ (n≥3). G-K) MnTmPYP blunts acetylcholine-

mediated vasodilation in aorta from ECSHIP2Δ/+ and controls, but the reduction in 

acetylcholine-mediated vasodilation is greater in ECSHIP2Δ/+ (n≥4). L) Increased aortic 

hydrogen peroxide generation in ECSHIP2Δ/+ (n≥4). 

 

Figure 6. ECSHIP2Δ/+ endothelial cells exhibit PI3K- and Nox2-dependent oxidative 

stress, and reduced nitric oxide generation. A) Increased superoxide generation in 

ECSHIP2Δ/+, measured with lucigenin-enhanced chemiluminescence (left: n≥10) and DHE 

fluorescence (right: n≥3). B) Increased Nox2 NADPH oxidase protein (Representative 

Western blot shown above panel) in ECSHIP2Δ/+ (n≥9). C) Increased superoxide abundance 

in ECSHIP2Δ/+ is normalized by Gp91ds-tat (n≥4). D) Increased superoxide abundance in 

ECSHIP2Δ/+ is normalized by the PI3K inhibitors Wortmannin and LY294002 (n≥4). E) 

Insulin-stimulated NO production is impaired in endothelial cells from ECSHIP2Δ/+ (n≥5). 

 



 

Figure 7. shRNA knockdown of SHIP2 in human umbilical vein endothelial cells 

(HUVEC) recapitulates phenotype of ECSHIP2Δ/+ endothelial cells. A) SHIP2 shRNA 

reduced SHIP2 protein by approximately 75%, versus control shRNA (n=3; Representative 

Western blot shown above panel). B) SHIP2 activity is reduced by SHIP2 shRNA (n=3). C) 

Increased superoxide abundance in SHIP2 knockdown HUVEC measured by lucigenin-

enhanced chemiluminescence (n=3). D) Increased Nox2 NADPH oxidase protein in SHIP2 

knockdown HUVEC (n=5; Representative Western blot shown above panel). E,F) 

Suppression of excess superoxide production in SHIP2 knockdown HUVEC by the NOX2 

inhibitor Gp91ds-tat, measured with lucigenin-enhanced chemiluminescence (E) (n≥3) and 

DHE fluorescence (F) (n=6). G) Increased concentration of S473 pAkt, S1177 peNOS in 

SHIP2 knockdown HUVEC (n=5). H) Suppression of excess superoxide production in SHIP2 

knockdown HUVEC by the PI3K inhibitors Wortmannin and LY294002 (n=5). 

 

Figure 8. Proposed mechanism of endothelial dysfunction associated with SHIP2 

knockdown. In contract with normal physiology (A), reduced SHIP2 activity (B) results in 

increased basal PI3K/Akt/eNOS signaling, although NOX2 is also hyper-activated, resulting 

in oxidative stress and reduced nitric oxide bioavailability. 
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