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Abstract 

How extinct, non­avian theropod dinosaurs locomoted is a subject of considerable interest, as 

is the manner in which it evolved on the line leading to birds. Fossil footprints provide the 

most direct evidence for answering these questions. In this study, step width – the 

mediolateral (transverse) distance between successive footfalls – was investigated with 

respect to speed (stride length) in non­avian theropod trackways of Late Triassic age. 

Comparable kinematic data was also collected for humans and 11 species of ground­dwelling 

birds. Permutation tests of the slope on a plot of step width against stride length showed that 

step width decreased continuously with increasing speed in the extinct theropods (P < 0.001), 

as well as the five tallest bird species studied (P < 0.01). Humans, in contrast, showed an 

abrupt decrease in step width at the walk­run transition. In the modern bipeds, these patterns 

reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits 

(humans), or a continuous locomotor repertoire, where walking smoothly transitions into 

running (birds). The non­avian theropods are consequently inferred to have had a continuous 

locomotor repertoire, possibly including grounded running. Thus, features that characterize 

avian terrestrial locomotion had begun to evolve early in theropod history. 

Keywords 

Step width, locomotion, theropods, birds, fossil footprints. 
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Introduction 

How extinct dinosaurs stood and moved has always been a question of great interest for 

palaeontologists. Locomotion in non­avian theropods is a controversial topic, owing to 

interest surrounding their carnivorous lifestyle and often gigantic size. Additionally, the 

recognition that Theropoda includes birds [1­5] provides a further rationale for understanding 

locomotion in extinct theropods: charting the evolution of locomotion on the line to birds [6­

8]. 

Terrestrial locomotion in modern birds is distinct from that of humans, the only other extant 

obligate, striding biped [9, 10]. It is characterized by a crouched, digitigrade, parasagittal 

posture, with a subhorizontally oriented femur during much of the stride [11­27]. A further 

curious aspect is that birds employ ‘grounded running’ at certain speeds [14, 16, 21, 24, 28­

32]. Here, the whole­body centre­of­mass (COM) exhibits little exchange of kinetic and 

potential energies, characteristic of running, despite there being double­support phases in the 

stride (i.e., duty factors are greater than 0.5; characteristic of walking). Therefore, birds run 

without an aerial phase; only at greater speeds do duty factors decrease below 0.5, resulting in 

an aerial run. Birds hence show more ‘continuous’ gaits compared to humans. Reflecting this, 

many kinematic parameters that have been previously measured in birds often show a 

continuous change with increasing speed, whereas in humans they typically change 

discontinuously at the walk­run transition [14, 16, 17, 21, 26, 29­31, 33­37]. 

The distinct locomotor repertoire of modern birds raises the question as to whether their non­

avian ancestors exhibited a similar repertoire, and if not, when did this distinct suite of 

behaviours first evolve? In answering this question, the most direct evidence of locomotion in 

extinct, non­avian theropods is fossil footprints and trackways, because they record the actual 

placement and motions of the feet during locomotion [38­40]. All known non­avian theropod 

footprints and trackways show that they were digitigrade, obligatorily striding, parasagittal 

bipeds that did not drag their tails along the ground, much like modern birds [39, 40]. 

Fossil theropod trackways have also facilitated estimates of trackmaker speeds, using stride 

length as a proxy [39, 41­44], but how locomotor kinematics changed with speed remains less 

investigated. The patterns exhibited by birds and humans lead to the prediction that whether a 

given non­avian theropod trackmaker exhibited continuous or discontinuous locomotor 

behaviour, this should be detectable in measurements of its tracks. One such measurement is 
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step width, the mediolateral (transverse) distance between successive footfalls, which can be 

measured for both fossil trackways and modern animals. Step width is linked to the 

maintenance of stability and energetic efficiency during locomotion in humans [45­50]. 

Indeed, stability may be paramount for large bipeds, such as giant non­avian theropods, 

because the consequences of falling could be dire [51]. Consequently, analyses of step width 

have the potential to offer insight into non­avian theropod locomotor biomechanics. 

There are only three known non­avian theropod trackway sites where the trackmakers made 

an appreciable change in speed. These sites provide the opportunity to examine how 

locomotion changed with speed in non­avian theropods, enabling comparison to locomotion 

in birds and humans. One site, in England, suggests that step width decreased with increasing 

speed [52, 53], but it is unclear whether this occurred gradually or abruptly. A second site in 

South Korea [54] is also too small for thorough analysis. The third site, the Culpeper Crushed 

Stone Quarry trackways, from the Late Triassic (approximately 211 Ma) of Virginia, USA, 

comprises 20 individual trackways [55­57], some of which are quite extensive. Based on 

measured stride lengths, it is clear that in some trackways, the trackmaker progressed from a 

slow walk to a fast run [57], so a large part of their speed spectrum was captured in these 

trackways. 

This study investigated the pattern of step width change versus speed in non­avian theropods, 

using the dataset of the Culpeper Quarry trackways. The results obtained from analysis of the 

trackways were compared to three­dimensional (3­D) kinematic measurements collected for 

humans and a range of extant, ground­dwelling birds. It is hypothesized that birds show a 

more continuous change in step width with increasing speed, whereas humans show a 

discontinuous change. Comparison of the patterns observed in the trackways to those 

observed in modern bipeds will hence provide insight into non­avian theropod locomotion. 

Additionally, the importance of mediolateral limb movements in bipedal animals (living and 

extinct) can be better clarified. 

Methods 

A summary of the methodology is given below, with a detailed outline provided in the 

Supplementary Material. All protocols used were approved by institutional research ethics 

committees (approvals AHS/01/14/AEC, SBS/102/14/ARC). Collection of the three wild bird 
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species was approved by the Queensland Department of Environment and Heritage Protection 

(permit WISP14699514). Written informed consent was obtained from the human subjects 

prior to the study. 

Theropod trackways 

Data collection 

Morphological similarity in all of the footprints examined suggests that a single genus, if not 

species, was recorded in the trackways [56, 57]. Moreover, the size of the footprints indicates 

that the trackmakers were similar in size [57]. Hence, by focusing only on the Culpeper 

Quarry trackways, this study effectively controlled for the potentially confounding factors of 

differing species, body sizes or shapes, patterns of leg movements and substrate conditions. 

The only factor likely responsible for any systematic change of step width with speed is 

therefore speed itself. 

Two measurements were made along each trackway (figure 1a–c): pace length (distance from 

one footprint to the next) and pace bearing (compass bearing from one footprint to the next). 

The reference point for each footprint was at the posterior end of the digit III impression 

(figure 1b). None of the trackways studied showed any indication of pathology, such as 

limping [58]. 

Data analysis 

From measured pace bearings and pace lengths, the pace angulation at each footprint (θN ) 

was determined (figure 1c). The stride length (SN) and step width (wN) at each footprint was 

then calculated trigonometrically (figure 1d). Step width was defined as the perpendicular 

distance from a footprint to the line of its corresponding stride length. If the feet crossed over 

the body midline, pace angulation becomes reflex (θN > 180°) and step width becomes 

negative. Calculated stride lengths and step widths were then normalized to the estimated hip 

height of the trackmakers, to minimize potential size effects on comparisons; hip height was 

estimated via equation 1 of Thulborn [43]. Normalization of S and w to hip height (producing 

S* and w*, respectively) facilitated fair comparison across the trackways. Additionally, 

relative stride length is a common proxy for speed of locomotion when speed itself cannot be 

measured, since animals tend to take longer strides at faster speeds [16, 21, 29­31, 41, 42, 59]. 
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Humans 

Data collection 

Three healthy, recreationally active adults (two male, one female) were studied (height 179.3 

± 3.2 cm, mass 79.7 ± 16.8 kg, means ± s.d.). A sample size of three was deemed sufficient, 

since this study aimed to elucidate major patterns, for broad comparative purposes [16, 41, 

59­61]. Reflective markers were placed on the end of the left and right hallux, and their 3­D 

trajectories during locomotion were recorded at 200 Hz using a 10­camera VICON MX T40­S 

motion capture system (Vicon Oxford Metrics, Oxford, UK). The subjects walked and ran 

barefoot on a split­belt instrumented treadmill (Bertec Limited, Columbus, Ohio, USA) 

integrated with the motion capture system. 

Each subject undertook a number of steady­state walking and running trials at increments of 

0.25 m s­1, ranging from slow walking through fast running speeds. Subjects were also tested 

twice at their (predetermined) walk­run transition speed, in one trial using walking, in the 

other using running. To elucidate if there was any difference in how step width changes with 

increasing speed between accelerating and steady­state locomotion, two subjects also 

undertook accelerating trials. Using the programmable treadmill, each subject undertook a 

slow and fast acceleration of 1.0 m s­2 and 2.5 m s­2, respectively, up to a peak tread speed of 

3.25 m s­1 . 

Data analysis 

Step width was measured from the 3­D trajectory data for the hallux markers, and normalized 

to the hip height of the subjects; this was estimated using standard anthropometry [62] based 

on the subject’s total standing height. 

Birds 

Animals studied 

Eleven species of ground­dwelling bird were studied (table 1). Given logistical limitations and 

the study’s objectives, preference was given to maximizing the diversity of species 

Page 6 of 22 http://mc.manuscriptcentral.com/jrsi 

http://mc.manuscriptcentral.com/jrsi


    

 

             

               

           

             

             

           

 

  

 

               

               

                

               

            

              

             

   

 

               

              

                 

                 

                  

   

 

            

               

              

               

 

        

 

             

            

               

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Review Only 

Page 7 of 28 Under review for J. R. Soc. Interface 

investigated, rather than achieving more replicates for fewer species. All birds investigated in 

the present study were considered to be adults based on skeletal maturity, with the possible 

exception of the domestic turkeys, which had sizeable chondroepiphyses (revealed in 

postmortem dissection) but were still of adult size. Following the conclusion of experiments, 

birds were euthanized and immediately weighed. Data collected in the present study was 

combined with data collected previously for ostriches [18] and emus [63]. 

Data collection 

Two experimental setups were used in the present study, one small indoor racetrack for the 

quail species, and a larger outdoor one for the remaining species (figure S1). Both racetracks 

were walled around their entire perimeter, but the middle of one side was replaced with clear 

acrylic or fine wire mesh, through which filming took place. Birds were filmed at 50–250 

frames second­1 with two high­speed light video cameras (IL3­100 and HiSpec1, Fastec 

Imaging, San Diego, USA), synchronized using a manual trigger pulse. For both racetracks, a 

calibration volume for each day’s trials was established using an 11­coefficient direct linear 

transform [64]. 

Prior to data collection, feathers from the back and wings were clipped, to allow the 

placement of small (2–5 mm) markers that were unobstructed from the cameras’ views during 

locomotion. Up to three markers were placed on the midline of the back, as part of another 

study. A single marker was placed over the trochanteric crest of each hip, which in all species 

was easily palpable. Non­toxic, white paint was used to mark the base of the claw of digit III 

of both feet. 

Birds moved down the racetrack at a self­selected speed, although sometimes additional 

motivation was used, such as making loud noises. The speeds used varied from slow walking 

speeds through fast running speeds. Birds were also filmed during quiet standing, allowing the 

capture and measurement of the height of the hip marker (taken as standing hip height). 

Data analysis – present study and ostrich data 

Toe markers were digitized and their 3­D coordinates calculated using DLTdv5 [64], a 

program written for MATLAB 8.0 (MathWorks, Natick, USA). Markers were digitized when 

the feet were planted on the ground and fully stationary. Additionally, the hip marker in 
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standing trials was digitized and its coordinates calculated, either using DLTdv5 or using a 

reference object of known dimensions within the cameras’ fields of view. The coordinates of 

the toe markers were then used to determine stride lengths and step widths trigonometrically 

(figure S2). Stride lengths and step widths were normalized to the standing hip height of the 

birds as for the theropod footprints. The calculations followed the same convention as used 

for the theropod footprints; if the feet crossed over the midline, step width was negative. A 

similar process was used to extract and analyse the 3­D kinematic data collected for the 

ostriches [18]. 

Data analysis – emu data 

In the emus [63], a marker was placed only on the right digit III, in addition to two markers on 

the back midline. Whilst true step width and stride length could not be calculated, they could 

be estimated, using the trajectory of the back markers as a proxy for the body midline axis 

(figure S3). Step width and stride length were then normalized to standing hip height. 

Statistics 

Two statistical analyses were performed. The first tested whether w* varied significantly with 

S* for a given species, using major axis (MA) regression [65]. As assumptions of normality or 

homoscedasticity were frequently not met by the data, as determined in PAST 3.09 [66], a 

permutation test of the slope was performed [67], with significance levels conservatively set 

to P = 0.01. The second statistical analysis examined whether a given dataset showed 

continuous or discontinuous change in w* with respect to S*. Curve fitting was performed in 

R 3.2.2 (R Foundation, Vienna, Austria), using two continuous curves (linear, power) and one 

discontinuous curve (logistic). The Akaike Information Criterion (AIC) was then used to 

determine which curve provided the best fit. 

Results 

Theropod trackways 

Step width decreased with increasing speed (figure 2a), although the correlation is not strong 

(r 
2 = 0.0587, P < 0.001). After binning w* into narrow intervals of S* and taking the mean for 
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each interval, this pattern is more clearly illustrated (figure 2b): as the theropods moved 

faster, they placed their feet closer to the midline. At slow speeds, step width was 

approximately 5–10 % of hip height; at fast speeds (S* > 3.0), the feet typically crossed the 

midline, as indicated by negative values for w*. Importantly, the decrease in w* versus S* was 

best modelled by a power function (table S1), indicating no discontinuity. 

Humans 

Step width decreased with increasing stride length (P < 0.001), particularly at the transition 

from walking to running, with a distinct difference in w* between the gaits (figure 3a,b). This 

was well modelled by a logistic function (table S1, figure 3a), indicating a pronounced 

discontinuity. Abrupt, discontinuous change in w* was also observed in accelerating­

decelerating trials (figure 3c); at the transition from walking to running (or vice versa), 

w*changed suddenly over one step. This indicates no difference in how w* varies with S*, 

whether through acceleration within a trial, or across steady­state trials at different speeds. 

This supports the validity of comparing steady­state locomotion in humans and birds with 

largely non­steady­state locomotion in the Culpeper theropod trackways. 

Birds 

Four species studied (Colinus virginianus, Coturnix japonica, Numida meleagris and Gallus 

gallus) did not show a statistically significant pattern of w* versus S*; values for w* largely 

varied between 0–0.2 (figure 4a–d). Two species (Coturnix chinensis and Alectura lathami) 

showed a significant pattern, but the slope of the MA regression was positive (figure 4e,f; w* 

increased slightly with S*). The remaining five species (Threskiornis moluccus, Meleagris 

gallopavo, Porphyrio porphyrio, Dromaius novaehollandiae and Struthio camelus) all 

showed a significant pattern with negative MA regression slopes, that is, w* decreased with 

increasing S* (figure 4g–k). In each of these five species, the data was best modelled by a 

linear or power function (table S1), indicating no discontinuity. 

Following these mixed results, further analysis revealed that a measure of bipedal stability 

could discriminate between species that showed a decrease in w* with increasing S* and those 

that did not (figure 5a). This measure, h , expresses hip height (h) relative to body mass 

(m), assuming isometry. Birds that are relatively tall for their mass have a higher h , and 

are inherently more unstable, since stability decreases as the height of the COM above the 
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3 m 

3 m 

ground increases [68] (figure 5b). All species for which the mean value of h > 0.24 

demonstrated a pattern of decreasing w* with increasing S*. This ‘threshold’ may be specific 

to birds, however, since for the humans studied, h was 0.222 ± 0.012, yet w* still 

decreased with increasing S*. 

Discussion 

This study investigated how step width varies with stride length in one extinct and two extant 

groups of obligate biped. The non­avian theropods showed a pattern of continuous decrease in 

w* with increasing S*, a pattern that was also observed in about half of the bird species. These 

species were those that are relatively tall (long­legged) for their mass; in the other bird 

species, no strong patterns were apparent. In contrast to the non­avian theropods and birds, 

humans showed a marked and abrupt decrease in w* at the walk­run transition. 

Step width in bipedal locomotion 

For all three kinds of biped investigated, it was shown in general that if step width changed 

with speed, it decreased with increasing speed: at quicker speeds, the feet were placed closer 

to the body midline, and in fast running cross­over could occur. The observed pattern of step 

width versus speed in the Triassic­age Culpeper trackways parallels the observation of Day et 

al. [52, 53], of a large theropod trackway of Middle Jurassic age. Step width has therefore 

been shown to decrease with increasing speed in two non­avian theropod trackways, more 

than 40 Ma apart in age. Given that step width also decreased with increasing speed in several 

of the bird species investigated here, it is phylogenetically conceivable that such a pattern was 

present in many, if not most, extinct non­avian theropods. 

The findings for humans also accord with those of previous studies that have measured step 

width, for both treadmill and overground locomotion [46, 48, 50, 69]; step width was 

approximately 10–20% of hip height in walking and was close to zero in running. However, 

this study is the first to show how step width changes with speed in humans, across the walk­

run transition. Almost no previous data exist for how step width changes with speed in 

modern bird species. One exception is a recent study of walking in broiler chickens [70], 

which showed that step width decreased with increasing speed in a continuous fashion. That 
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no such pattern was observed for chickens in the present study is possibly due to different 

breeds studied. 

Step width and bipedal stability 

Step width is closely tied to mediolateral stability during bipedal locomotion [45­50], yet why 

step width decreases with speed remains undetermined. It is suggested here that this 

phenomenon may represent, at least partly, a trade­off between mediolateral stability and 

energy economy. 

At slow speeds, the body has limited linear momentum directed forwards, so it is relatively 

easy for lateral forces to displace the trajectory of the COM laterally, leading to postural 

instability. To counteract this, the feet assume a sizeable non­zero lateral placement relative to 

the midline. However, this incurs an energetic cost, as energy is expended in mediolateral 

movement of the COM (successively towards each footfall) instead of forward movement of 

the COM [69]. This cost, derived from the kinetic energy of lateral movement, would be 

comparatively greater in larger bipeds, as kinetic energy is proportional to the square of 

velocity, and hence linear dimensions (e.g., hip height). With increasing speed, dynamic 

stability increases as linear momentum in the forward direction increases, decreasing the 

effect of lateral forces on the trajectory of the COM. Consequently, the feet are not required to 

have such large lateral placements, so step width can be reduced. By reducing step width, and 

therefore lateral oscillations of the COM [69, 71], less energy is expended in mediolateral 

movement of the COM and more is expended in forward movement of the COM, improving 

economy. 

The above scenario of a stability­economy trade­off may explain why five of the 11 bird 

species studied showed a pattern of decreasing w* with increasing S*, yet the others did not. 

Given the expectation that the energetic cost of unnecessarily large lateral displacements is 

disproportionally greater in taller bipeds, and given that taller bipeds are less stable (figure 5), 

this makes it more likely that a stability­economy trade­off will exist in relatively taller birds. 

In turn, step width would be more tightly modulated with respect to speed. An example 

illustrating this is the comparison between swamphen and guineafowl. The swamphen were 

only about half the mass of the guineafowl, and yet they were almost 20% taller at the hips; 

the swamphen showed a significant decrease of step width with increasing speed, while the 

guineafowl did not. 
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An additional reason for why step width decreases with speed may be simple anatomical 

constraints. As speed increases, stride length also increases, providing more room between 

each step for the legs to be placed closer toward the midline, something that may not be as 

easily achieved at lower speeds (and stride lengths) without considerable yawing or rolling of 

the body. 

The gait patterns of non­avian theropods 

In the modern bipeds studied, step width displayed the same speed­related pattern as many 

other previously investigated kinematic parameters: a continuous change with speed reflects a 

continuous locomotor repertoire, whilst an abrupt change with speed reflects a discontinuous 

locomotor repertoire, with discrete and distinct gaits defined by those abrupt changes [72]. In 

the non­avian theropod trackways, step width decreased with increasing speed in a continuous 

fashion. In light of the patterns exhibited by (long­legged) modern obligate bipeds, this 

suggests that the theropod trackmakers may not have had discrete gaits, instead having a 

continuous locomotor repertoire, as in modern birds. That is, grounded running was possibly a 

component of their locomotor repertoire (figure 6). This realization should not be as 

surprising as it may first appear, for there are a wide variety of extant animals that habitually 

employ a continuous locomotor repertoire (to one degree or another), in addition to birds. 

These animals use a variety of limb postures, and include opossums [73, 74], other marsupials 

[74], frogs [75], elephants [76], primates [77, 78], sheep [79] and even arthropods [80­82]. 

That grounded running was possibly present in an early, basal theropod suggests that it may 

have been present in the majority of extinct theropods, both non­avian and avian. Indeed, 

grounded running may have even been primitive for theropods. 

The possibility of grounded running in extinct, non­avian theropods has implications for 

understanding their palaeobiology. Grounded running could confer several advantages to a 

bipedal predator, despite potentially higher energy expenditure [83]. Periods of double limb 

support makes grounded running more stable than aerial running at the same speed, including 

over uneven terrain [16, 84]. Double limb support also reduces the peak ground reaction 

forces experienced compared to aerial running [32, 77, 83], which would subsequently reduce 

bone and muscle stresses. Therefore, the predator can move faster whilst still maintaining 

stability and lowered musculoskeletal stresses. This would be particularly advantageous for 

the large to giant species (e.g., Allosaurus, Tyrannosaurus and Giganotosaurus), whose 
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athletic capabilities have previously been questioned [85­88]. Grounded running may also 

improve visual acuity by increasing head stability, particularly in the vertical direction [30, 

83], which would be beneficial when pursuing prey. Given these advantages to a predatory 

biped, it is tempting to speculate that these advantages may have facilitated the evolution of 

grounded running in theropods in the first instance. 

Limitations of the study 

This study has some potential limitations arising from logistical constraints on data collection. 

Firstly, the study compared steady­state locomotion data for humans and birds with largely 

non­steady­state locomotion data from theropod trackways, although the accelerating trials for 

humans suggest this had little effect. Secondly, locomotion in the non­avian theropods and 

birds was overground, whereas locomotion in the human subjects was treadmill­based. Whilst 

some kinematic differences have previously been found between treadmill and overground 

locomotion [89], more recent, detailed studies tend to suggest that the kinematics of the two 

are quantitatively and qualitatively similar [90­93]. Thirdly, human kinematics were recorded 

with barefoot subjects, possibly influencing their gait since they may have been accustomed 

to wearing shoes. Although wearing shoes may alter some kinematics compared to barefoot 

locomotion [94, 95], it is unknown if it affects many variables in the coronal plane, including 

step width. Moreover, any influence of wearing shoes may also vary with shoe design; hence, 

for consistency, the subjects walked and ran barefoot in the experiments. Despite these 

potential limitations, they are considered unlikely to alter the main findings of the present 

study, which is concerned with major patterns of similarity and difference across species. 

Conclusion 

By integrating ichnological and comparative biomechanical datasets, this study has revealed 

new insight into the biomechanics of terrestrial locomotion of theropods, and bipeds in 

general. Across the groups studied, step width tended to decrease with increasing speed, but 

the manner in which step width changed with speed was decidedly different between humans 

and theropods. Humans exhibited an abrupt decrease at the walk­run transition, whereas in 

both non­avian and avian theropods step width decreased gradually with speed, with 

considerable variability among avian taxa. These differences reflect a discontinuous 

locomotor repertoire in humans, and a continuous locomotor repertoire in theropods. 
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The non­avian theropods that made the trackways investigated seemed to have used a more 

continuous locomotor behaviour, much like modern birds, possibly including grounded 

running as part of their repertoire. The age and likely basal phylogenetic position of the 

trackmakers would therefore suggest that the distinct locomotor behaviour of modern birds 

had begun to appear very early in theropod evolution. The results of this study also indicate 

that future analyses of locomotion in non­avian theropods cannot simply pigeonhole it into 

discrete ‘walking’ or ‘running’ gaits. Moreover, given that mediolateral limb movements were 

apparently important in terrestrial locomotion in these animals, future analyses also need to be 

3­D in order to fully capture the range of limb postures used. 
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Figure captions 

Figure 1. The quantitative analysis of trackways to determine step width and stride length. (a) 

Life reconstruction of the trackmaker, likely to be some form of basal neotheropod. (b) The 

footprints in plan view; white dots mark the common reference point from which 

measurements were made. (c) Two principal measurements were made: pace length D, and 

bearing from one footprint to the next A. This allowed the calculation of pace angulation θ. 

(d) Step width w and stride length S were then calculated trigonometrically from pace lengths 

and angulations. 

Figure 2. Comparison of how step width changes with stride length in the non­avian 

theropods. (a) The raw data, with MA regression plotted. (b) Mean values of w* for each bin 

of S*, with MA regression derived from raw data again plotted. In (b), hollow circles are 

single data points; they are not means of multiple points for a given bin. Hence their apparent 

outlier nature can be accounted for as simply the only points that fell into those particular 

bins. 

Figure 3. Comparison of how step width changes with stride length in humans. (a) The raw 

data, with logistic curve plotted (cf. table S1); data for running at walk­run transition speeds 

were excluded to be more reflective of naturally preferred gaits. S* is the mean across the trial 

for each speed tested. (b) Mean values of w* plotted against mean S* across each trial; data 

for running at walk­run transition speeds were included, to emphasize how w* remains 

distinctly different between the two gaits, even at the transition. (c) Plot of w* through 60 

consecutive steps for subject 2, across an acceleration of 1.0 m s­2, followed by a slow 

deceleration. Acceleration and deceleration phases are signified by arrows; subject begins 

moving at step 1. Note that the change from walking­like to running­like values for w* takes 

place over a single step during both acceleration and deceleration. 

Figure 4. Comparison of how step width changes with stride length in birds. For 

visualization, the raw data was binned to intervals of S*, and the mean w* determined for 

each bin. A MA regression derived from the raw data is also plotted for those species in 

which P < 0.01. (a) C. virginianus (n = 221, n.s.). (b) C. japonica (n = 419, n.s.). (c) N. 

meleagris (n = 442, n.s.). (d) G. gallus (n = 233, n.s.). (e) C. chinensis (n = 840, slope = 

0.0138, r 
2 = 0.007). (f) A. lathami (n = 154, slope = 0.0159, r 

2 = 0.024). (g) T. moluccus (n = 
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124, slope = ­0.1067, r 
2 = 0.162). (h) M. gallopavo (n = 185, slope = ­0.0081, r 

2 = 0.003). (i) 

D. novaehollandiae (n = 1,140, slope = ­0.0268, r 
2 = 0.027). (j) S. camelus (n = 34, slope = ­

0.0411, r 
2 = 0.107). (k) P. porphyrio (n = 78, slope = ­0.0209, r 

2 = 0.019). Hollow circles are 

single or double data points; they are not means of many points for a given bin. Hence in 

some instances, their apparent outlier nature may be accounted for as simply very few points 

that fell into those particular bins. Note differences in horizontal and vertical scales. 

Figure 5. Bipedal stability in birds. (a) Comparison of mean (± s.d.) value of h for each 

species studied. Species with a mean value of h greater than 0.24 (white bars) 

ubiquitously demonstrated a pattern of decreasing w* with increasing S*. (b) Bipedal stability 

is influenced by the length of the legs (or equivalently, hip height) relative to body mass. For 

a point mass m on a massless leg of length l1 or l2 (where l2 > l1), the mass with leg length l2 

exerts a greater moment (by virtue of weight) about the base of support than the mass with leg 

length l1, for the same leg orientation α. Therefore, it is easier for the mass to be shifted away 

from a stable state and tipped over (i.e., relatively longer legs decrease stability). 

Figure 6. The Culpeper theropod trackmakers are inferred to have had a continuous gait 

pattern, probably including grounded running in their locomotor repertoire. (a) At slow 

speeds of locomotion, the theropods would have walked in a fashion comparable to slow 

walking in both modern birds and humans. The centre­of­mass (COM, black and white disc) 

would have been lowest during double­support phases and highest at single­support phases, 

and kinetic (KE) and potential energies (PE) of the COM would have oscillated more or less 

out of phase. (b) At faster speeds, the theropods would have employed grounded running, still 

having periods of double­support, yet where the COM is highest at double­support and lowest 

at single­support. Kinetic and potential energies would oscillate more or less in phase. (c) At 

faster speeds still, the theropods would have become airborne (i.e., aerial running) as the 

vertical oscillations in the COM increase. Kinetic and potential energies continue to oscillate 

in phase. 

3 m 

3 m 
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Tables 

Table 1. The species of bird studied, along with sample sizes and mean (± s.d.) masses and 

hip heights. 

Species Hip height Data 
n  Mass (kg) 

Scientific name Common name (mm) collected 
Coturnix chinensis 

Colinus virginianus 

Coturnix japonica 

Porphyrio porphyrio 

Numida meleagris 

Alectura lathami 

Threskiornis moluccus 

Gallus gallus 

Meleagris gallopavo 

Dromaius 

novaehollandiae 
Struthio camelus 

Chinese painted quail 

Northern bobwhite quail 

Japanese quail 

Purple swamphen 

Helmeted guineafowl 

Australian brush turkey 

Australian white ibis 
Domestic chicken 
(white leghorn breed) 
Domestic turkey 
(various mixed breeds) 

Emu 

Ostrich 

3♂, 2♀ -
3♂, 2♀ -
1♂, 3♀ -

3♀ -
2♂, 1♀ -

2♀ -
2♂ -

1♂, 2♀ -

2♂, 3♀ -

6♀ -
3♂ -

0.047 ± 0.002 

0.170 ± 0.014 

0.301 ± 0.077 

0.623 ± 0.058 

1.257 ± 0.114 

1.490 ± 0.057 

1.54 ± 0.057 

1.710 ± 0.521 

3.228 ± 0.90 

38.58 ± 2.69 

74.87 ± 4.44 

58.6 ± 4.0 

77.8 ± 10.4 

106.25 ± 7.5 

239.0 ± 14.1 

201.7 ± 15.5 

267.0 ± 15.6 

282.5 ± 30.4 

254.3 ± 47.8 

365.2 ± 47.4 

903.3 ± 35.0 

1129.3 ± 10.3 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

[63] 

[18] 
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