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Abstract 

The antimicrobial properties of tulathromycin were investigated for M. haemolytica and P. 

multocida. Three in vitro indices of antimicrobial activity, minimum inhibitory concentration 

(MIC), minimum bactericidal concentration (MBC) and time-kill curves, were established for 

six isolates of each organism. Each index was measured in two growth media: Mueller–Hinton 

broth (MHB) and calf serum. It was shown that MICs and MBCs were markedly lower in serum 

than in MHB. MHB:serum ratios for MIC were 47:1 (M. haemolytica) and 53:1 (P. multocida). 

For both serum and MHB, adjustment of pH led to greater potency at alkaline compared to acid 

pH. Tulathromycin MIC was influenced by size of inoculum count, being 4.0- to 7.7-fold 

greater for high compared to low initial counts. It was concluded that for the purpose of 

determining dosages for therapeutic use, pharmacodynamic data for tulathromycin should be 

derived in biological fluids such as serum. It is hypothesized that in vitro measurement of MIC 

in broth, conducted according to internationally recommended standards, may be misleading 

as a basis for estimating the in vivo potency of tulathromycin.   
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INTRODUCTION 

Tulathromycin is a broad spectrum antimicrobial drug. Its spectrum of activity includes aerobic 

and anaerobic gram-positive bacteria, gram-negative cocci and Mannheima, Pasteurella, 

Actinobacillus, Haemophilus, Bordetella and Helicobacter, as well as mycoplasma, chlamydia 

and rickettsia species (Evans, 2005; Godinho et al., 2005a,b; Alexander et al., 2013; Villarino 

et al., 2013). As with other macrolides and triamilides, tulathromycin binds to the 50S 

ribosomal subunit, leading to blockade of transpeptidation and translocation reactions, to 

inhibit protein synthesis and hence prevent cell growth (Evans, 2005; Andersen et al., 2012). 

It is of interest that in 2004 percentage of bovine isolates of Mannheima haemolytica from 

USA and Canada with MICs of 16, 32, 64 and >64 μg/mL were 0, 0.6, 1.5 and 0.3, respectively. 

Corresponding percentage values in 2009 were 13.5, 3.3, 1.0 and 7.9, indicating reduction in 

potency for some isolates over this 5-year period. Similar findings were obtained for 

Pasteurella multocida (Portis et al., 2012). 

Several authors have reported on the efficacy of tulathromycin in calves, as a prophylactic and 

metaphylactic drug for the prevention of pneumonia, and also at therapeutic dosages to treat 

calves with clinical signs of disease (Godinho et al., 2005a,b; Robb et al., 2007; Schunicht et 

al., 2007; Step et al., 2007; Nickell et al., 2008; Perrett et al., 2008; Van Donkersgoed et al., 

2008, 2009; Rerat et al., 2012; Torres et al., 2013). In addition, Wellman and O'Connor 

(Wellman & O'Connor, 2007) undertook by meta-analysis a review of the then available 

clinical literature on tulathromycin, based on 21 manuscripts; comparing tulathromycin with 

tilmicosin, the summary Mantel–Haenszel relative risk for re-treatment of bovine respiratory 

disease was 0.51 (95% confidence interval 0.45–0.57), that is an approximately 50% reduction 

in risk for tulathromycin compared to tilmicosin. 

Plasma concentrations of tulathromycin are consistently reported as being lower than in vitro 

MICs. Consequently, the classical PK/PD indices, based on in vitro MICs measured in broth, 

such as AUC/MIC, the appropriate index for long-acting macrolides, have been claimed to 

have no value in optimizing dosages. For example, the typical maximal plasma concentration 

of tulathromycin after subcutaneous administration at the recommended dosage (2.5 mg/kg) is 

approximately 500 pg/mL (Nowakowski et al., 2004) and this is considerably less than the 

typical MIC90s of calf isolates of M. haemolytica and P. multocida (Evans, 2005). It is clear 

that the CLSI/EUCAST methods to measure the in vitro potency of triamilide antimicrobial 

drugs, using Mueller–Hinton broth (MHB) as growth medium, are less than optimal when the 
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aim is to estimate numerical values of PK/PD indices. The aim of the present investigation was 

to measure the in vitro potency and efficacy of tulathromycin, a semi-synthetic drug of the 

triamilide class, in serum, that is in the relevant biological matrix to consider when in vitro 

generated data are to be directly incorporated in a PK/PD index and beyond, to compute an in 

vivo dosage regimen. 

The objectives of this investigation were to: (i) compare the MIC and MBC of tulathromycin 

in two growth matrices, MHB and calf serum, for six clinical isolates of each of two bacterial 

species, M. haemolytica and P. multocida, harvested from cases of calf pneumonia; (ii) 

determine MICs for M. haemolytica and P. multocida in varying proportions of serum admixed 

with MHB; (iii) establish the effect of high, intermediate and low initial inoculum counts on 

MHB MICs; (iv) determine the effect of prior heat treatment of serum on serum MICs; (v) 

evaluate the effect on MICs of altering the concentrations of constituents of MHB to simulate 

their concentrations in serum; (vi) investigate the effect of varying matrix pH on MICs in serum 

and MHB; (vii) monitor the changes in pH produced by bacterial growth in MHB and serum 

in the absence of tulathromycin; (viii) determine time-kill profiles for six isolates of each 

species in serum and MHB, using five multiples of MIC, as a basis for classifying the killing 

action of tulathromycin as concentration-, time- or co-dependent. 

 

MATERIALS AND METHODS 

 

Origin, storage and selection of bacterial isolates 

Twenty isolates of each of two calf pneumonia pathogens, M. haemolytica and P. multocida, 

were obtained at post mortem from field cases in several geographical regions of the United 

Kingdom. Each was supplied on swabs by the Animal Health and Veterinary Laboratories 

Agency (VLA, Addlestone, Surrey, U.K.) and stored at −70 °C in a fluid of composition 

glycerol:milk:water in the proportions 20:10:70. To sterilize, the fluid was boiled for 5 sec, 

allowed to cool for 12 h and then boiled again for a further 5 sec (Tyndall, 1877). 

From the 20 isolates of each species, six of each species were selected for further study using 

two criteria: (i) each isolate was investigated for ability to grow logarithmically in two fluids, 

MHB and calf serum; (ii) each isolate was evaluated for sensitivity to tulathromycin using 

CLSI methods (CLSI, 2008), involving disc diffusion and measurement of diameter of zone of 
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growth inhibition. Sensitivity was then confirmed by determination of MICs, using doubling 

dilutions (CLSI, 2008). This initial screen ensured that all selected isolates could be used for 

MIC, MBC and time-kill determinations in the two growth matrices. 

Culture methods and bacterial counts 

Bacterial isolates were cultured in MHB (Oxoid, Loughborough, UK) or on 7% Sheep Blood 

agar [defibrinated sheep blood (TCS Biosciences, Buckingham, Bucks., UK) and blood agar 

base No. 2 (Oxoid)].  Agar cultures were incubated statically in a CO2 incubator (Heraeus, 

Thermo Scientific, MA, USA) and MHB cultures were incubated with shaking at 150 rpm in 

a C25 incubating shaker (New Brunswick Scientific, NJ, USA) both at 37°C. 

Viability counts were determined by serial dilution and spot-plate counts.  Ten or 100-fold 

dilutions were made in Phosphate Buffered Saline (PBS) and three 10 µL drops of each dilution 

were transferred to the agar surface and allowed to dry for 10 min before incubating at 37°C. 

Determination of Minimum Inhibitory and Minimum Bacterial Concentrations 

Routine determination of minimum inhibitory and minimum bactericidal concentrations 

MICs for six isolates each of M. haemolytica and P. multocida were established in accordance 

with CLSI methods (CLSI, 2004, 2008) except that, to increase accuracy, five overlapping sets 

of doubling dilutions of amoxicillin were prepared, instead of the CLSI method, which uses 

one set of doubling dilutions. In addition, calf serum collected commercially from animals <2 

years old (Gibco, Paisley, Scotland, UK) was also used to determine MICs and MBCs using 

CLSI methods, except again using five overlapping sets of doubling dilutions and serum in 

place of broth. For determination of MICs in broth, the quality control strain used was S. aureus 

ATTC9144. The potency of the tulathromycin supplied was 96.8%. The standard solution of 

tulathromycin of strength 1.28 mg/mL was prepared in 0.0015 m citrate buffer, with pH 

adjusted to 7.0 with 0.015 m citric acid or 0.02 m NaOH, as required, with continual stirring. 

The solution was equilibrated at 70 ± 2 °C for 90 ± 5 min, with swirling at approximately 10 
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min intervals. The solution was cooled to room temperature, and the final dilution to 100 mL 

was prepared with purified water (further details supplied on request). 

A volume of 97.5 μL of each dilution was aliquoted into the well of a U-shaped 96-well plate. 

Four mL of MHB was inoculated with a few colonies of the strain to be tested and incubated 

at 37 °C until growth, assessed by visual comparison with 0.5 McFarland Standard, reached 

approximately 1 × 108 cfu/mL. A volume of 2.5 μL of a 1:10 dilution of the culture in PBS was 

inoculated into each well. The plate was sealed with film, and incubated statically at 37 °C for 

20 h. Serial dilutions (1–10−8) were prepared and spot-plate counts carried out immediately 

after inoculations. For each 10 μL, the bacterial count (cfu/mL) was determined after 

incubation for 18 h. The original inoculum count was calculated by taking the mean count for 

each 10 μL volume and multiplying by 100 to give the cfu/mL. This value was multiplied by 

the dilution factor to determine the initial cfu/mL. Determinations were repeated at least three 

times to confirm the measurement. 

MBCs in MHB and serum were determined by microdilution, according to CLSI methods 

(CLSI, 2004), using a single set of doubling dilutions. MBC was determined using the spot-

plate technique to establish a 3log10 decrease in the inoculum count. 

Additional studies of minimum inhibitory concentration (conducted using five 

overlapping sets of doubling dilutions) 

a. For four isolates of each species, MICs were determined in serum and in MHB 

supplemented to contain 25, 50 and 75% serum. 

b. MIC measurements in MHB were undertaken for single isolates of M. haemolytica and 

P. multocida, to compare values for low, intermediate and high initial inoculum counts. 

The culture was grown to 1.0 McFarland Standard and diluted to final counts of 2.5–

2.9×104, 2.5–2.9×106 and 2.5–2.9×108 cfu/mL, respectively. 
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c. The composition of calf serum and MHB differs significantly in respect of protein and 

albumin concentrations and of electrolytes (Brentnall et al., 2012). Further MIC 

determinations were therefore undertaken for two isolates each of M. haemolytica and 

P. multocida, in which MHB was supplemented with calcium alone, magnesium alone 

or calcium plus magnesium by addition of the chloride salts (British Drug Houses, 

VWR International, Poole, Dorset, U.K.) to achieve concentrations of these ions similar 

to those present in calf serum. Thus, calcium and magnesium were adjusted to give final 

concentrations of 2.77 nM/L (calcium) and 0.92 nM/L (magnesium). MHB was also 

supplemented with bovine serum albumin to provide a final concentration (28.5 

mg/mL), similar to that occurring in normal calf serum of 21–36 mg/mL (Radostits et 

al., 2002). 

d. For single isolates of M. haemolytica and P. multocida, MIC was re-determined in heat-

treated serum to inactivate components such as complement, which might interact with 

tulathromycin on bacterial growth. The serum was heated in a water bath at 56 °C for 

30 min. 

e. The influence of matrix pH on the activity of tulathromycin was studied by adjusting 

the pH of MHB with dilute hydrochloric acid (l M) or sodium hydroxide (1 M) to 

achieve six pH values over the approximate range 7.0 to 8.0. For each pH, MIC was 

determined for four isolates each of M. haemolytica and P. multocida. The experiment 

was repeated with HEPES buffer (0.05 M) to provide a buffering capacity, similar to 

serum. 

f. The effect of storage of calf serum at −20 °C for periods up to 28 days on pH and 

accompanying effects on MIC were monitored for single strains of M. haemolytica and 

P. multocida at five time points. 
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Influence of bacterial growth on matrix pH 

To investigate the effect of bacterial growth on matrix pH, the pH was measured in the starting 

inoculum of an overnight culture, as described for time-kill curves (vide infra) and again after 

24-h incubation for both MHB and serum. For each matrix, the initial pH was adjusted to be 

either low (7.18 for MHB and 7.33 for serum) by addition of 1 m HCL or high (8.17 for MHB 

and 8.27 for serum) by addition of 1 m NaOH. For each of the four matrices, the pH decrease 

(increasing acidity) over 24 h was monitored for four isolates each of M. haemolytica and P. 

multocida. 

In vitro antimicrobial growth (time-kill) curves 

For six isolates each of M. haemolytica and P. multocida, inoculating cultures were prepared 

by adding 3–4 colonies of the isolate to 4 mL MHB, followed by incubation overnight. Fifty 

microlitres of this culture was diluted 1:50 in prewarmed, freshly prepared MHB and incubated 

statically at 37 °C for one hour. The culture was then centrifuged at 31 000 g for 2 min. The 

supernatant was discarded, and the cells re-suspended in 50 μL PBS. The viable cell counts 

(cfu/mL) were determined by serial dilution and spot-plate counts. 

Tulathromycin concentrations corresponding to 0.25, 0.5, 1, 2 and 4 × multiples of MIC for 

each isolate were prepared in prewarmed MHB or calf serum. For control growth curves, each 

matrix containing no drug was used. Four microlitres of the prepared culture was used to 

inoculate the dilutions to provide a 400 μL final volume. The cultures were placed in an orbital 

shaking incubator at 37 °C for 24 h. Forty microlitres of each culture were sampled and the 

viable count (cfu/mL) determined by serial dilution and spot-plate counts after incubation for 

1, 2, 4, 8 and 24 h. The lowest detectable count was 33 cfu/mL. 

Statistical analyses 
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MIC and MBC data are presented as geometric means and SD. Differences in MIC and MBC 

values between MHB and serum were compared using the paired t-test or the nonparametric 

Wilcoxon test, depending on whether the data passed a normality test. 

 

RESULTS 

 Selection of isolates 

From the 40 available isolates (20 of each species), six of each species were selected for further 

study to satisfy two criteria. First, a requirement to grow logarithmically in the two fluids, 

MHB and calf serum: percentages of the isolates were 65 and 65 (M. haemolytica) and 90 and 

75 (P. multocida), respectively. Second, those isolates of both species, which grew 

logarithmically in both matrices, were further required to be classified as susceptible to 

tulathromycin (MIC ≤ 4.0 μg/mL). Six isolates of each species were then selected for further 

study, comprising highest, lowest and four with intermediate MICs. 

Minimum inhibitory and minimum bactericidal concentrations 

In all experiments, except those comparing low, intermediate and high starting counts, the 

initial inoculum count ranged from 5×105 to 5×106 cfu/mL. MIC and MBC values in MHB and 

serum for individual isolates are illustrated in Fig. 1. Table 1 presents data as geometric mean 

MIC and MBC and as ratios MBC:MIC and also broth:serum ratios for both MIC and MBC. 

For both organisms, geometric mean MICs and MBCs were significantly different between 

serum and MHB; the MHB:serum MIC ratios were 47:1 (M. haemolytica) and 53:1 (P. 

multocida). Corresponding MHB:serum MBC ratios were 58.7:1 and 48.0:1. For both growth 

matrices, MBC:MIC ratios were relatively low, in the range 1.4:1–1.8:1. 
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Further MIC determinations were made to compare values in MHB, 100% serum and varying 

proportions of serum (25, 50 and 75%) admixed with MHB (Table 2). As little as 25% serum 

incorporated in MHB reduced MICs ten- and sixfold for M. haemolytica and P. multocida, 

respectively. The admixture of MHB with greater amounts of serum produced further but 

proportionally smaller decreases in MIC. 

Tulathromycin MICs in MHB were additionally determined using low, medium and high initial 

inoculum counts. For M. haemolytica, initial counts were 2.5×104, 2.5×106 and 2.5×108 

cfu/mL, respectively. Corresponding initial counts for P. multocida were 2.9×104, 2.9×106 and 

2.9×108 cfu/mL. For M. haemolytica, MIC ratios, high:medium and high:low starting counts, 

were 2.7:1 and 4.0:1, respectively. Corresponding values for P. multocida were 3.8:1 and 7.5:1. 

For single isolates of M. haemolytica and P. multocida, serum MIC was re-determined after 

heating serum. Heat treatment did not alter MIC for either organism (data not shown). 

For two isolates each of M. haemolytica and P. multocida, MIC was determined in MHB and 

MHB supplemented separately with calcium ions, magnesium ions, calcium plus magnesium 

ions or albumin to achieve concentrations of these cations and albumin similar to those present 

in normal calf serum. The mean MHB MICs were 0.20 μg/mL (M. haemolytica) and 0.25 

μg/mL (P. multocida). Mean MICs were identical for both organisms for all supplemented 

matrices (data not shown). 

For four isolates each of M. haemolytica and P. multocida, MICs in MHB were determined 

after adjustment of pH to six values over the approximate range 7.0–8.0. Results for two typical 

isolates are illustrated in Fig. 2. MICs decreased with increase in pH for both organisms, the 

changes being somewhat greater for M. haemolytica. 
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Following freezer storage (−20 °C), the pH of re-warmed serum was increased by 0.45 units 

within 7 days (Fig. 3). Storage for periods of 14, 21 and 28 days produced no additional 

apparent increase in pH. The increase in alkalinity was accompanied by reductions in MIC for 

single isolates of M. haemolytica and P. multocida (Fig. 3). 

Influence of bacterial growth on matrix pH 

In both MHB and serum, the growth of M. haemolytica and P. multocida (four isolates each) 

in the absence of tulathromycin led to reductions in pH over a 24-h incubation period (Table 

3). When the initial pH was slightly acid, the decreases of 0.45 and 0.36 units in serum (M. 

haemolytica and P. multocida, respectively) were smaller than the decreases, 1.11 and 1.13, 

respectively, in MHB. Decreases in pH for serum when starting pH was alkaline were 1.18 and 

0.69; corresponding values for MHB were 1.01 and 1.26, respectively, for M. haemolytica and 

P. multocida (Table 3). Bacterial growth was thus associated with acid production in all 

circumstances, being greater in magnitude for MHB compared to serum in three of four 

instances. As tulathromycin MIC is sensitive to small pH changes (Fig. 3), it is possible that 

the generally greater degree of acidification during growth in MHB, which is nonbuffered, 

would exert a greater impact on MIC than in serum, which is buffered. To further investigate 

this, MHB was buffered with HEPES to provide six pH values in the range 7.0–8.0. For P. 

multocida, buffering reduced MICs up to pH 7.6, but for M. haemolytica, buffering reduced 

MIC only at pH 7.0 and 7.2 (Fig. 4). 

 Time-kill curves 

Tulathromycin time-kill curves, for five multiples of MIC in the range 0.25 to 4.0, are 

illustrated in Fig. 5 (M. haemolytica) and Fig. 6 (P. multocida). For both organisms, 0.25 and 

0.5 multiples produced, at most, slight growth inhibition. For M. haemolytica, there was a more 

rapid and greater reduction in count at 2× and 4 × MIC in MHB than in serum. Thus, at 4 × 
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MIC, the initial count was reduced by approximately 5 log10 cfu/mL in MHB after only 4-h 

exposure and to the same degree after 8-h exposure to 2 × MIC. The slower killing pattern of 

tulathromycin in serum was indicated by a 3 log10 reduction at 8 h at 4 × MIC and by a 4.5 

log10 cfu/mL decrease in count only after 24-h incubation at 4 × MIC. 

For P. multocida, there was a somewhat slower rate of kill at all concentrations compared to 

that achieved with M. haemolytica. Even at 24 h, a reduction in count to the level of detection 

was not achieved in either matrix. Reductions in count at 24 h were 4 log10 and 3 log10 with 

exposure to 4 × MIC for MHB and serum, respectively. Moreover, in serum, there was some 

re-growth at 24 h, compared to the 8-h count at 4 × MIC. 

DISCUSSION 

The principal finding in the present investigation is that, for two calf pathogens, MIC 

determined in a biologically relevant matrix (serum) was markedly lower than the MICs 

measured in an artificial matrix (MHB). Moreover, these serum in vitro MICs are consistent 

with in vivo plasma concentrations measured after a therapeutic dose of tulathromycin. The 

serum but not the MHB data will therefore enable recourse to the classical PK/PD AUC/MIC 

index to predict dosage requirement for clinical efficacy (Toutain et al. 2016). 

Selection of an optimal dose for antimicrobial drugs depends on appropriate assessment of both 

pharmacokinetic (clearance and bioavailability) and pharmacodynamic (that is antimicrobial) 

properties. If the methodology yields only an approximate value for any parameter, for example 

MIC, dosage cannot be determined accurately. Hence, in this study, MICs were established 

using five overlapping sets of doubling dilutions to improve accuracy that is to reduce maximal 

estimation error from approaching 100% to not >20%. In addition, pharmacodynamic 

parameters were compared between serum and a nonphysiological fluid, MHB, and the latter 

is designed to be optimal for bacteriological growth in vitro. Such artificial growth matrices 
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are not necessarily predictive of bacterial growth in physiological fluids, and therefore may be 

poorly reflective of antimicrobial drug activity in vivo. Consideration of these differences, 

between biological fluids and artificial growth media, led Nightingale and Murakawa 

(Nightingale & Murakawa, 2002) to recommend use of physiological fluids for studies of 

antimicrobial activity (MIC determination and time-kill curves), when the objective is to set 

dosing schedules that are optimal for bacterial kill in vivo. 

In this study, MICs were significantly lower in serum than in MHB. Similar findings for 

tulathromycin, based on MHB supplemented (up to 50%) with serum rather than the 100% 

serum used in the present study, have been reported by previous workers (Reese et al., 2004; 

Evans, 2005; Godinho et al., 2005a,b; Godinho, 2008). For example, Godhino et al. (Godinho 

et al., 2005a,b) reported that, for broth supplemented with 40% serum, the MIC of M. 

haemolytica was 0.25 μg/mL, compared to 2.0 μg/mL in broth. A similar eightfold reduction 

in MIC was reported for P. multocida. In the present study, we obtained 12-fold and ninefold 

decreases in MIC for M. haemolytica and P. multocida, respectively, using 50:50 serum:MHB 

mixtures compared to MHB. Importantly, even greater decreases in MIC were obtained using 

100% serum as the growth matrix. 

Total protein and albumin concentrations in the calf serum used in this study were 60.9 and 

37.6 g/L, respectively (Brentnall et al., 2012). Corresponding concentrations in MHB were 

much lower, 3.78 and 0.08 g/L, respectively. In vivo, most antimicrobial drugs bind to serum 

proteins, mainly to albumin, to varying degrees, and for tulathromycin, the reported percentage 

protein binding was 32–47% [Pfizer 2005, 40% reported by European Medicines Agency 

(EMA)]. However, in our laboratory, protein binding of tulathromycin was higher (mean = 

82%, Lees et al. unpublished data). Assuming little or no significant protein binding of 

tulathromycin in MHB and assuming also this to be the only factor leading to differences 

between serum and MHB, an approximately fivefold increase in MIC in serum compared to 
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MHB would be predicted. This is because protein bound drugs have been reported to be 

microbiologically inactive (Craig & Ebert, 1989; Zeitlinger et al., 2004, 2008). The difference 

in MIC between MHB and serum actually obtained was of the order of 50-fold but in favour of 

greater potency in serum. Comparing tulathromycin MICs for a single strain of Mycoplasma 

mycoides mycoides Small Colony, Mitchell et al. (Mitchell et al., 2012) reported a 330-fold 

lower value for serum compared to an artificial growth medium. 

An early study by Pruul & McDonald (Pruul & McDonald, 1992) demonstrated that, at fixed 

acid (7.2) and alkaline (8.0) pH values, azithromycin MICs for Escherichia coli and 

Staphylococcus aureus were reduced eightfold to 60-fold by the incorporation of 40% serum 

in the growth medium. Moreover, these reductions in MIC were maintained in serum depleted 

of specified antibody and in serum lacking complement activity, but MICs were not reduced 

by the addition of either albumin or globulins to the broth. More recently, Rose et al. (Rose et 

al., 2013) reported that, for the novel veterinary macrolide tildipirosin, the addition to broth of 

increasing amounts of serum (from 5 to 50%) progressively reduced the MIC for six bacterial 

species harvested from pigs. Interestingly, MIC ratios for pure broth:broth supplemented with 

50% serum were highest for S. aureus (8-64:1) and least for M. haemolytica (2-4:1) and P. 

multocida (1–2:1). From these data and the present findings, it may be concluded that the 

marked potentiating effect of serum is a class property of some newer macrolides and that it is 

species and strain (or isolate) as well as drug dependent. Consequently, it is clear that the CLSI 

methods for determining MICs in artificial growth matrices should not be used for the purpose 

of proposing dosage regimens for clinical use. That said, it is acknowledged that serum is not 

the biophase for lung infections; the biophase is the extracellular fluids that are an ultrafiltrate 

of plasma. Hence, the determination of MICs in epithelial lining fluid would be of relevance to 

the prediction of optimal dosage regimens (Kiem & Schentag, 2008). Nevertheless, serum 
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MICs are likely to provide a reasonable surrogate for epithelial lining fluid and thus be far more 

predictive than MHB of growth conditions in the biophase. 

The present study investigated possible causes of the differences in MIC between MHB and 

calf serum, largely with negative results. Thus, alteration of the composition of MHB to 

increase, separately, albumin, calcium, magnesium and calcium plus magnesium 

concentrations, to be similar to those in calf serum, failed, in all instances, to alter MIC. On the 

other hand, the addition of calf serum to MHB, to produce final mixtures containing 25, 50 and 

75% serum, did lead to progressive reductions in MIC. However, given the lack of effect on 

MIC of adjusting the albumin concentration of MHB to be similar to that in calf serum, our 

data suggest that a serum factor, other than albumin, must account for the lower MICs in both 

serum and MHB/serum mixtures compared to MHB. 

For use in this study, serum-resistant isolates, that is those that grew logarithmically in serum, 

were necessarily selected, rather than the wider range of isolates representative of the whole 

populations, some of which are known to be killed by serum constituents such as complement. 

Including such strains might theoretically have lowered the mean MIC in serum, as 

complement might act synergistically with triamilides to promote growth inhibition, at least of 

growing organisms. In practice, however, MIC could not be determined in serum for isolates 

which do not reproduce logarithmically in this medium. Mitchell et al. (Mitchell et al., 2013) 

reported for another triamilide, gamithromycin, and a single isolate of Mycoplasma mycoides 

strain B237, a 500-fold increase in MIC in heat-inactivated serum compared with normal 

serum; respective MICs were 0.06 and 0.00012 μg/mL. In contrast, for one isolate each of the 

two bacterial species used in the present study, the same level of heat treatment used by 

Mitchell et al. (Mitchell et al., 2013) did not alter serum MICs. 
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Tulathromycin is a weak organic base (Evans, 2005). An effect of matrix pH on MIC is 

therefore not surprising, based on the fact that the ratio of unionized to ionized molecules will 

increase logarithmically as matrix pH increases. This is a simple manifestation of the 

Henderson–Hasselbalch principle. The more lipid-soluble unionized molecules would be 

expected to readily cross bacterial cell membranes, whereas the poorly lipid-soluble ionized 

molecules may penetrate less readily to the site of action within the bacterial cell, so that extent 

of penetration may be favoured by a more alkaline pH of the growth matrix. Under 

physiological and pathophysiological conditions, the extremes of pH of extracellular fluids 

compatible with life are of the order of 7.0 and 7.8. Therefore, in this study, the effect of pH 

on MIC in MHB was determined at two pH extremes (7.0 and 8.0) and at four intermediate 

values. The regression lines for each bacterial species indicated greater potency (lower MIC) 

as pH increased. The influence of pH on serum MIC values was further demonstrated by the 

effect of freezing samples at −20 °C. Within 7 days of freezing, the pH of re-warmed serum 

was increased by 0.5 units, possibly due to limited breakdown of proteins, with only slight 

further increases on more prolonged storage. MICs were re-determined on re-warmed samples; 

MICs were significantly reduced in the more alkaline samples. Similar data for Haemophilus 

somni were reported by Reese et al. (Reese et al., 2004). In summary, matrix pH seems likely 

to be an important factor accounting for markedly lower MICs in calf serum compared to MHB. 

However, it is unlikely to be the sole factor; the change in MIC between extremes of pH (7.0 

and 8.0) as shown in Fig. 2 was smaller than the approximately 50-fold differences between 

serum and MHB. 

During the logarithmic phase of growth, micro-organisms are metabolically highly active and 

this may lead to lowering of matrix pH. For a drug such as tulathromycin, whose growth 

inhibiting action is highly pH dependent, this may be a contributory factor to differences in 

MIC between MHB and serum reported in this study. Indeed, serum has a buffering capacity 
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that is likely to limit the reduction in matrix pH during growth, whereas buffering in MHB is 

likely to be absent, based on its chemical composition. 

For four isolates each of M. haemolytica and P. multocida, the reductions in pH over 24-h 

growth periods were quantified for change from initial pHs, which were either acid or alkaline. 

For MHB for the two bacterial species, mean reductions in pH were 1.11, 1.01, 1.13 and 1.26. 

For serum, corresponding pH decreases during growth were 0.45, 1.18, 0.36 and 0.69. Hence, 

with the exception of serum with a starting alkaline pH for M. haemolytica, decreases in matrix 

pH were greater in MHB. Accumulation of acid during growth may therefore have contributed 

to the experimentally determined MIC differences between serum and MHB. 

The main MIC data in this study were established for an intermediate starting bacterial count. 

However, for high compared to low starting inoculum counts, M. haemolytica MIC was 

fourfold greater and P. multocida MIC was 7.5-fold higher. Likewise, Mitchell et al. (Mitchell 

et al., 2012) reported a fourfold increase in MIC for tulathromycin for a starting inoculum 

counts of 107 compared to a count of 104 cfu/mL for Mycoplasma mycoides mycoides Small 

Colony. These findings are likely to be very relevant to the killing actions of tulathromycin in 

vivo. Thus, pathogen load in clinical disease is likely to be an important factor in determining 

an optimal dosage regimen for tulathromycin. Kesteman et al. (Kesteman et al., 2009) 

demonstrated the importance of pathogen load for the fluoroquinolone, marbofloxacin, in a rat 

lung Klebsiella pneumoniae infection model. The AUC/ MIC ratio preventing the emergence 

of resistance was fourfold higher with a high compared to a low pathogen load. Moreover, 

resistance development to marbofloxacin was greater in an Escherichia coli infection mouse 

thigh model, when the mice were infected with a high, compared to a low, initial inoculum 

count (Ferran et al., 2009). 
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In conclusion, the present study clearly showed a 50-fold reduction of MIC for tulathromycin 

in serum compared to the routinely used MHB. As a consequence, the MHB should be 

questioned when establishing PK/PD relationships as a basis for dosage regimen determination 

as reported in our companion paper (Toutain et al. 2016). 
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Table 1. Geometric mean (SD) MIC and MBC in MHB and serum for amoxicillin and 

MIC:MBC and MHB:serum ratios (n=6) 

                                                                   M. haemolytica 

Matrix        MIC      MBC MBC:MIC ratio 

MHB 

Serum 

Serum:MHB ratio 

2.07 (0.99) 

0.04 (0.01)* 

     47.2 :1* 

3.67 (0.82) 

0.06 (0.00)* 

    58.7 :1* 

       1.8:1 

       1.4:1 

 

                                                                    P. multocida 

Matrix        MIC       MBC MBC:MIC ratio 

MHB 

Serum 

Serum:MHB ratio 

2.07 (1.34) 

0.04 (0.01)* 

     53.0:1* 

3.00 (1.10) 

0.06 (0.00)* 

    48.0:1* 

1.5:1 

1.6:1 

Comparison of MHB/serum differences: *P ≤ 0.01. 
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Table 2. Tulathromycin MICs (μg/mL) (geometric mean and SD) for eight isolates 

(four M. haemolyticaand four P. multocida) in MHB and 25%, 50%, 75% and 100% calf 

serum 

 MHB 

Serum percentrage in MHB 

Serum 25% 50% 75% 

M. haemolytica 1.3 (0.12) 0.13 (0.03)a 0.11 (0.01)a 0.10 (0.02)a 0.07 (0.01)a 

P. multocida 0.63 (0.10) 0.10 (0.02)a 0.07 (0.02)a 0.06 (0.04)a 0.05 (0.02)a 

a Significantly different from MIC in MHB (P ≤ 0.01). 

 

 

Table 3. pH decrease (geometric mean and SD, n = 4) for MHB A (low pH), MHB B (high 

pH), serum A (low pH) and serum B (high pH) 

 MHB A MHB B Serum A Serum B 

Starting pH 7.18 8.17 7.33 8.27 

Reduction of pH for M. haemolytica 1.11 (0.1) 1.01 (0.17) 0.45 (0.15)b 1.18 (0.35)a 

Reduction of pH for P. multocida 1.13 (0.07)b 1.26 (0.17)a 0.36 (0.09)a,b 0.69 (0.41)a,b 

 
a pH decrease significantly different from that of MHB A. 

b pH decrease significantly different from that of MHB B. 

 

 

 

 

 

 

 



25 
 

 

Fig. 1. MICs and MBCs of tulathromycin against 12 isolates (six M. haemolytica, first six left 

to right and six P. multocida, second six left to right) in MHB (a) and bovine serum (b). 
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Fig. 2. Regression lines for MICs of tulathromycin determined in MHB adjusted to six pH 

values 
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Fig. 3.  In vitro inhibition of growth of P. multocida over 24 h exposure to five MIC multiples 

of amoxicillin in (a) MHB and (b) serum (mean, n=4).  SEM bars not included for clarity. 
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Fig. 4. MICs for single isolates of M. haemolytica (a) and P. multocida (b) in MHB and 

buffered MHB at six pH values ranging from 7.0 to 8.0. 
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Fig. 5. In vitro inhibition of growth of M. haemolytica over 24-h exposure to five MIC 

multiples of tulathromycin in MHB (a) and serum (b) (geometric mean, n = 6 isolates, SEM 

bars not included for clarity). 
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Fig 6. In vitro inhibition of growth of P. multocida over 24-h exposure to five multiples of 

MIC of tulathromycin in MHB (a) and serum (b) (mean, n = 6 isolates, SEM bars not 

included for clarity). 

 

 


