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Highlights 

 Heterogeneity of canine monocytes was demonstrated on the basis of differential 

expression of CD14 and MHC class II 

 

Abstract  

Monocytes are key cells of the innate immune system. Their phenotypic and functional roles have 

been investigated in humans, mice and other animals, such as the rat, pig and cow. To date, detailed 

phenotypic analysis of monocytes has not been undertaken in dogs. Two important surface markers 

in human monocytes are CD14 and MHC class II (MHC II). By flow cytometry, we demonstrated that 

canine monocytes can be subdivided into three separate populations: CD14posMHC IIneg, CD14posMHC 

IIpos and CD14negMHC IIpos. Both light and transmission electron microscopy confirmed the monocytic 

identity of all three populations. The CD14posMHC IIneg population could be distinguished on an 

ultrastructural level by their smaller size, the presence of more numerous, larger granules, and more 

pseudopodia than both of the other populations.  
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1. Introduction 

Monocytes are a heterogeneous myeloid cell population comprising 5-10% of healthy human white 

blood cells (Martinez, 2009). They are implicated in a number of human diseases, including diabetes 

mellitus (Cipolletta et al., 2005), cardiovascular disease (Ghattas et al., 2013), renal disease (Ulrich et 

al., 2010), Crohn disease and ulcerative colitis (Stansfield and Ingram, 2015). 

Three populations of human monocytes are currently acknowledged by the Nomenclature 

Committee of the International Union of Immunological Societies (Ziegler-Heitbrock et al., 2010), 

respectively called classical (CD14highCD16neg), intermediate (CD14highCD16low/high) and non-classical 

(CD14lowCD16high); each population is thought to give rise to the next along a linear developmental 

pathway from classical to non-classical.  

Two murine monocyte populations have been characterised, known as Ly6Chigh (CCR2 (C-chemokine 

receptor type 2)highCX3CR1low) and Ly6Clow (CCR2lowCX3CR1high) (Gordon and Taylor, 2005). Based on 

CCR2 expression levels, Ly6Chigh monocytes most resemble human classical monocytes, and Ly6Clow, 

non-classical monocytes. However, functional disparity between the species is recognised: for 

example, Ly6Chigh monocytes are rapidly recruited to sites of infection in the mouse, whereas non-

classical and intermediate populations show the predominant responses in certain infections in 

human patients (Strauss-Ayali et al., 2007, Geissmann et al., 2003). This has led to difficulties in 

universally extrapolating findings from one species to the other. 

Delineating monocyte populations is an important first step in elucidating their role in disease. 

Canine monocytes represent a key, unmet study area. To date, there is a dearth of studies 

addressing monocyte phenotypic heterogeneity in this species; for example, Sibley et al. (2013) 

describe canine monocyte markers, but not individual populations. We hypothesised that multiple 



monocyte populations exist in healthy dogs, similar to those in humans, and used established 

myeloid markers to delineate the populations. 

 

2. Materials and Methods 

2.1    Peripheral blood mononuclear cell isolation 

  
Blood samples were procured by jugular venepuncture from 14 healthy canine blood donors after 

written informed consent was granted by the owners of the dogs. This protocol has passe scrutiny by 

the local ethical review committee before work was allowed to commence. The health status of 

these dogs was ascertained by meticulous clinical history and physical examination. The blood was 

collected into EDTA and maintained at 4⁰C for a maximum duration of 24 hours. Following dilution 

with phosphate buffered saline (PBS) containing 2% fetal calf serum (FCS), peripheral blood 

mononuclear cells (PBMCs) were isolated by density gradient centrifugation using the SepMate™ 

protocol (StemCell Technologies, Cambridge, UK) and Histopaque-1077 (Sigma-Aldrich). The PBMCs 

were washed twice at room temperature in PBS/2% FCS for 5 minutes at 300g at 4°C, before re-

suspension in 2mL PBS/10% FCS and counting.  

 

2.2   Flouresence-assisted cell sorting (FACSTM) 

PBMCs were stained with each of the antibodies in Table 1 at the specific concentration stated, and 

fluorescence minus one controls, using these same concentrations, were used to determine negative 

gates. Analytical flow cytometry was performed using a FACS Canto II (BD, Oxford, England). Cell 

sorting was performed using a FACS Aria III (BD) or a FACS Aria Fusion (BD). In both analytical flow 

cytometry and FACS™, 200,000 PBMCs suspended in a volume of 80µL were incubated with 20µL 

antibody mix (Table 1) in PBS for 30 minutes on ice in the dark, before re-suspending in 100µL PBS, 

washing twice at 600g for 5 minutes at 4°C, and re-suspending in 200µL PBS/10% FCS. UltraComp 

eBeads (eBioscience) were used as compensation controls (1µL of each antibody mixed with one 



drop of compensation beads, suspended in 200µL PBS). Events were acquired using FACS Diva (BD) 

and data analysed using Flow-Jo (Tree Star Inc., Oregon, US). A cascaded gating approach was used: 

exclusion of dead cells (DAPI and FSC vs. SSC gates) → exclusion of doublets (FSC-H vs. FSC-A gate) → 

exclusion of lymphoid cells (CD5-/CD21- gate) → inclusion of myeloid cells (CD11b+ gate) → exclusion 

of neutrophils (CADO48A-  gate). This gating strategy, allowing us to acquire monocytes from the  

isolated PBMCs, is illustrated in Supplementary Figure 1.  

 

2.3    Cytocentrifuge preparation and cell examination 

A Shandon Cytospin 2 cytocentrifuge was used to deposit cells onto Shandon cytoslides 

(Thermofisher scientific) at 90g for 5 minutes. The slides were air dried, stained using a Hematek® 

Stain Pak - Modified Wright’s Stain (Siemens, Pennsylvania, USA), and examined with an Olympus 

BX50 microscope. Images were captured with an Olympus SC50 camera and edited with CellSens 

(Olympus, Southend-on-Sea, UK). Purity of the samples was confirmed in two ways: post-sort 

analyses of each of the four samples, involving re-running and gating on the sorted populations to 

check the percentages that were within the live population; and a 200-cell count of every sample 

after cytocentrifugation.  

 

2.4     Transmission electron microscopy 

 

Cells were fixed in 2% paraformaldehyde and 1.5% glutaraldehyde in 0.1m sodium cacodylate for 24 

hours at 3⁰C. They were washed in 0.1M sodium cacodylate twice for 30 minutes each, then 

embedded in 2% low melting point agarose then fixed with 1% Oso4 (osmium tetraoxide) / 1.5% 

Potassium Ferrocyanine K4Fe (CN)6) in  0.1m cacodylate buffer. After rinsing with distilled water, 

specimens were dehydrated in a graded ethanol-water series, cleared in propylene oxide and 

infiltrated with Agar 100 resin. Representative areas were selected and ultra-thin sections were cut 

using a diamond knife in an Ultracut S microtome (Reichert technologies, Munich, Germany), and 



collected on 300 mesh grids, then stained with lead citrate and viewed with a 1010 transition 

electron microscope (Jeol, Massachusetts, USA). Images were recorded using an Orius CCD camera 

(Gatan, California, USA). 

 

2.5    Graphs and statistics 

 

All graphs were generated using R (R project, Aukland, New Zealand). Statistical analyses were 

undertaken using Prism (GraphPad software, California, US), applying the Friedman test with post 

hoc analysis (Dunn’s multiple comparisons test) to determine the significance of differences in 

frequency between the populations. 

 

3. Results and Discussion 

The objective of this study was to determine whether canine monocytes represent a heterogeneous 

population of cells, as in humans and mice, which we speculated could have ramifications for the 

pathogenesis of autoimmune and inflammatory diseases in this species (Heine et al., 2008, Ulrich et 

al., 2010).  

Our seven-step gating strategy resulted in four apparently distinct populations of cells based on 

CD14 and MHC II expression, three of which had the light microscopic characteristics of monocytes: 

these included CD14posMHC IIneg, CD14posMHC IIpos and CD14negMHC IIpos cells (Figure 1A). An anti-

canine CD16 antibody is not commercially available.  

 
Furthermore, Western blots revealed a lack of convincing cross-reactivity of an anti-human CD16 

antibody (clone LNK16) with canine PBMCs. Densitometry revealed that 106 human PBMCs yielded a 

CD16 band that was 103% of the beta actin control band, yet the same number of canine PBMCs 

yielded a band only 20% that of the respective beta actin control (human PBMCs n=1, canine PBMCs 

n=2; data not shown) and multiple attempts to use the antibody in the setting of flow cytometry also 

failed to yield reliable staining. We were therefore unable to interrogate CD16 expression of the 



three monocyte populations, precluding direct comparisons of the canine subsets with those of 

humans, which are predominantly defined by their CD14 and CD16 expression. Nevertheless, we 

were able to make speculative inferences based on the known MHC IIhigh status of CD16pos human 

monocytes (Kim et al., 2010; Abeles et al., 2012; Gordon and Taylor, 2005) prompting us to 

hypothesise that the canine CD14posMHC IIneg cells are equivalent to human classical monocytes, that 

the canine CD14posMHC IIpos cells are equivalent to human intermediate monocytes, and that the 

canine CD14negMHC IIpos cells are equivalent to human non-classical monocytes. 

Classical monocytes comprise 80% or more of the peripheral monocyte pool in healthy humans 

(Wong et al., 2012, Cros et al., 2010), but species differences are known to exist. In mice, classical 

monocytes comprise approximately 50% of peripheral monocytes, whereas in rats they account for 

less than 20%, the non-classical population being the dominant in this latter species (Strauss-Ayali et 

al., 2007). Cows also exhibit the same three populations (Corripio-Miyar et al., 2015). Our data 

showed a predominance of the CD14pos population in dogs, but of these the MHC IIpos cells, which we 

speculate represent intermediate monocytes, appeared to predominate (Figure 1B), raising 

interesting questions about their function in the dog. Moreover, we note that some studies of 

human monocytes suggest that the intermediate population expresses higher levels of MHC II than 

the non-classical population, an observation that is at variance with our speculative designations of 

monocyte populations (Wong et al., 2011; Abeles et al., 2012). The reason these observations and 

ours do not coincide, is that the mean and median MHC II MFI of our CD14negMHC IIpos canine 

monocytes are higher than those of our CD14posMHC IIpos canine monocytes (data not shown). This 

again emphasises that further studies, ideally with an anti-dog CD16 antibody, are required to make 

more confident comparisons of canine monocyte populations with those of other species. Of 

interest, the CD14negMHC IIneg population appeared to comprise eosinophils, thus yielding a novel 

sorting strategy for the enrichment of canine eosinophils for downstream analysis. The mean 

eosinophil percentage as a fraction of total PBMCs was 1.0071%, with a minimum of 0.04% and a 

maximum of 4.1%. The purity of these eosinophils, determined by both post-sort analyses and a 200-



cell count of the samples after cytocentrifugation, exceeded 75% in every case, with a maximum 

value of 100% and a mean value of 93.9%. Similarly, the monocyte purity ranged from 79.2% to 

100% with a mean value of 95%. 

 

We were intrigued by the presence of apparently CD14neg monocytes, which comprised from 2.76% 

to 30.95% of total monocytes, according with previous studies that have demonstrated similar 

percentages of CD14neg monocytes in dogs (Jacobsen et al., 1993). The median CD14neg percentage 

was 9.79% and the median CD14pos percentage was 90.21%. Whether these are truly monocytes that 

fail to express CD14 or monocytes with lower CD14 expression (i.e. CD14low) undetected by the 

cross-reactive antibody, whose affinity for canine CD14 has never been formally assessed, remains 

unclear. Indeed, various studies of human monocytes appear not to make a distinction between 

CD14low and apparently CD14neg monocytes (Abeles et al., 2012), suggesting that this may be a point 

of semantics rather than a biologically important phenomenon.   

Transmission electron microscopy of the monocyte populations (Figure 1C) supported observations 

made at the light microscopic level, as well as aligning with TEM literature in humans and other 

species. For example, the modest numbers of mitochondria we observed are common to the guinea 

pig (Daems and Brederoo, 1973) and bird (Sutton and Weiss, 1966). The CD14posMHCIIneg population, 

which we speculated were equivalent to human classical monocytes, appeared to be smaller and to 

possess more numerous and larger granules, as well as more vacuoles and pseudopodia, than the 

other two populations, possibly reflecting functional differences between the populations such as 

greater phagocytic activity (Grage-Griebenow et al., 2000, Nichols et al., 1971, Sutton and Weiss, 

1966). However, these observations remain preliminary until images from a larger number of dogs 

have been analysed, and further work would need to be undertaken to investigate functional 

differences between the canine monocyte populations and any correlations with monocyte 

populations in the mouse, rat and human.  



In conclusion, canine monocytes display phenotypic heterogeneity and may be divided into three 

populations based on CD14 and MHC II expression. Functional and transcriptomic studies will be 

necessary to further define these myeloid populations in dogs and their similarities to those in other 

species. The dog is rapidly gaining traction as a spontaneous, large animal model of a number of 

human diseases (Davis and Ostrander, 2014, Rowell et al., 2011), superior in several regards to 

induced murine models (Gordon et al., 2009, Wilbe et al., 2015). Detailed characterisation of 

myeloid populations, which play a key role in a number of autoimmune, inflammatory and 

neoplastic diseases, is a key step in further elucidating the translational merit of this species. 
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Figure 1: Differential expression of CD14 and MHC II by monocyte populations in healthy dogs. (A) 
Representative cytological images (cytocentrifuge preparations, modified Wright’s stain) of four 
myeloid populations defined by CD14 and MHC II expression in healthy dogs (n=5). The scale bars all 
represent 10µm. The populations were delineated by means of a cascaded gating strategy using 
FMO controls (Supplementary Figure 1). Cells in panels i, iii and iv most resemble monocytes, while 
those in panel ii resemble eosinophils. (B) Graphical representation of the frequency, expressed as a 
percentage of all cells in the CD14/MHC II plot, of each of the four populations from each dog (n=13). 
Significant differences in frequencies were apparent (** p≤0.01; *** p≤0.001; **** p≤0.0001). (C) 
Representative transmission electron microscopy images of cells from each of the four myeloid 
populations in healthy dogs (n=3). These confirm the monocytic and eosinophilic identities of the cells 
as established in (A). Overall, CD14posMHC IIneg cells appeared smaller, with more numerous, larger 
granules, and more pseudopodia than the other two monocyte subpopulations. All scale bars 
represent 1µm. Abbreviations:  Gr=granules, M=mitochondria, N=nucleus, No=nucleolus, 
Ps=pseudopodia, R=free ribosomes, RER=rough endoplasmic reticulum, and V=vacuoles. 
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Table 1: Flow cytometry antibodies 

 
 

 

1Phyocoerythrin; 2Alexa Fluor-700; 3Phycoerythrin-Cyanine7; 4Allophycocyanine; 5Alexa Fluor-647; 

6Pacific Blue; 7AbD Serotec, Kidlington, UK; 8eBiosciences, Hatfield, UK. 9,10 Recorded cross-reactivity 

with the canine antigen. 

Antibody 
target 
(isotype) 

Clone Fluorochrome 
conjugate 

Concentration Supplier Target 
species 

CD5 (IgG2a) YKIX322.3 PE1 0.3µg AbD Serotec7 Dog 
CD21 (IgG1) CAT.1D6 PE 0.3µg AbD Serotec Dog 
CD11b (IgG2b, 
kappa) 

M1/70 AF-7002 0.2µg eBioscience8 Mouse9 

CADO48 
(IgG1) 

CADO48A PE-Cy73 1µg Washington 
State 
University 

Dog 

MHCII (IgG2a, 
kappa) 

YKIX334.2 APC4 0.3µg eBiosciences Dog 

CD14 (IgG2a) TÜK4 AF-6475, PB6 0.15µg AbD Serotec Human10 




