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Abstract

Background

The cornerstone of current schistosomiasis control programmes is delivery of praziquantel

to at-risk populations. Such preventive chemotherapy requires accurate information on the

geographic distribution of infection, yet the performance of alternative survey designs for

estimating prevalence and converting this into treatment decisions has not been thoroughly

evaluated.

Methodology/Principal findings

We used baseline schistosomiasis mapping surveys from three countries (Malawi, Côte

d’Ivoire and Liberia) to generate spatially realistic gold standard datasets, against which we

tested alternative two-stage cluster survey designs. We assessed how sampling different

numbers of schools per district (2–20) and children per school (10–50) influences the accu-

racy of prevalence estimates and treatment class assignment, and we compared survey

cost-efficiency using data from Malawi. Due to the focal nature of schistosomiasis, up to

53% simulated surveys involving 2–5 schools per district failed to detect schistosomiasis in

low endemicity areas (1–10% prevalence). Increasing the number of schools surveyed per

district improved treatment class assignment far more than increasing the number of chil-

dren sampled per school. For Malawi, surveys of 15 schools per district and 20–30 children

per school reliably detected endemic schistosomiasis and maximised cost-efficiency. In
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sensitivity analyses where treatment costs and the country considered were varied, optimal

survey size was remarkably consistent, with cost-efficiency maximised at 15–20 schools

per district.

Conclusions/Significance

Among two-stage cluster surveys for schistosomiasis, our simulations indicated that survey-

ing 15–20 schools per district and 20–30 children per school optimised cost-efficiency and

minimised the risk of under-treatment, with surveys involving more schools of greater cost-

efficiency as treatment costs rose.

Author summary

Many countries are currently scaling up efforts to control schistosomiasis, a helminthic

disease for which preventive chemotherapy with praziquantel is the main control tool. In

order to apply WHO guidelines on how frequently to treat a given district or similar geo-

graphic unit for schistosomiasis, survey-based estimates of infection prevalence are

required. However, the optimal size and design of survey for generating such data is not

clear, and there is a clear trade-off between accuracy and cost–larger surveys provide

more accurate information with which to target treatment, but cost more to carry out.

Here, we systematically assess what size and design of simple 2-stage cluster survey (where

primary school children are tested for infection), might best enable control programmes

to implement WHO treatment guidelines. We use empirical data on schistosomiasis dis-

tribution from three African countries together with computer simulations to compare

survey performance, in terms of accuracy and cost-efficiency–the ability of a survey to

accurately determine treatment frequency, per unit cost. We show that although small

surveys of around 5 schools per district are frequently adopted for mapping schistosomia-

sis, such small surveys are prone to miss endemic schistosomiasis fairly often, and are also

not cost efficient. Our results suggest that among the designs tested, surveys involving 15–

20 schools per district optimise cost-efficiency, providing the most accurate treatment

decisions per dollar spent. These findings have important implications for the schistoso-

miasis control community, and provide the first evidence-based suggestion of a simple

survey design for mapping schistosomiasis in endemic countries.

Introduction

Schistosomiasis is a major global health problem, and is estimated to infect 230 million people,

cause at least 11,000 deaths per year [1,2] and 3.3 million Disability Adjusted Life Years in

2010 [3]. While various tools are used to control the disease, population-level preventive che-

motherapy (PC) with praziquantel is currently the cornerstone of schistosomiasis control, and

PC-based programmes are scaling up across Africa [4,5].

Since schistosomiasis shows high spatial heterogeneity in its geographic distribution, and

school-age children (SAC, aged 5–14 years) are an important high-risk group [6], PC is tar-

geted to those areas at greatest risk of infection and focuses on this age group. Treating all SAC

in such areas remains more cost-effective than individual-level test-and-treat strategies [7,8]

Optimising schistosomiasis survey design

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005599 May 26, 2017 2 / 21

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pntd.0005599


and is achieved by assigning geographic areas to WHO-recommended treatment classes based

on infection prevalence (Table 1) [6,9]. Thus, to decide treatment classes, epidemiological data

must first be collected to ascertain prevalence. Published WHO guidelines do not provide spe-

cific guidance on survey design for this purpose, but recommend collecting prevalence data

according to ‘ecological zones’ [6]. Ecological zones are not well defined, however, and it is

unclear how to convert ecological zone-based prevalence data into treatment decisions, which

are commonly applied across implementation units, such as health or educational districts. As

a result, a variety of survey designs have been adopted [10–14] and the performance of alterna-

tive designs has not been thoroughly evaluated.

Computerized sampling simulations have proved useful for assessing alternative survey

approaches for various tropical diseases, including soil-transmitted helminthiases, trachoma

and intestinal schistosomiasis [15–17]. These entail generating ‘‘gold standard” datasets that

maintain the spatial heterogeneity observed in empirical datasets, and then comparing how

well alternative sampling approaches perform in estimating known parameters from this spa-

tially realistic simulated data. Such simulations allow multiple approaches to be tested with far

greater replication than would be possible in field tests. A previous simulation study on schis-

tosomiasis [15] compared the performance of two methods to estimate school level infection

prevalence, lot quality assurance sampling (LQAS) and a spatial grid-based survey combined

with spatial interpolation. Here, we focus on comparing simple two-stage cluster survey

designs that aim to estimate schistosomiasis prevalence among SAC for a set of implementa-

tion units, such as districts. This simple survey design is often used when more complex (e.g.

spatially informed) survey designs are not possible, when the spatial distribution of infection

within districts is thought to be relatively homogeneous, or when a simple, easy to analyse sur-

vey is desired. For example, the design of spatially stratified surveys requires reliable informa-

tion on the likely distribution of disease, as well as accurate location data for all potential

sampling locations. Such information may not available for the entire area to be surveyed.

Two-stage cluster surveys involving a simple random sample of sites from a list in each imple-

mentation unit, have therefore been used to generate implementable PC plans in a number of

countries [18–21]. We apply sampling simulations to data from three African countries in

order to assess what number of sampling sites, and number of individuals screened at each

site, maximises survey accuracy and cost-efficiency respectively. Survey accuracy is expected to

increase asymptotically with survey size, with diminishing returns as surveys get larger. How-

ever, a curved relationship between survey size and cost-efficiency is expected, with the opti-

mum reflecting a balance between survey accuracy and cost. Cost-efficiency should increase

with survey size initially, but then decrease as the costs of very large surveys outweigh their

accuracy benefits. The key question then, is at what point this curve turns, i.e. what survey size

leads to the most accurate treatment decisions per unit cost?

Table 1. WHO treatment guidelines for schistosomiasis, according to estimated prevalence. Adapted from [6,9].

Endemicity

level

Schistosomiasis prevalence (pooled species) based on

parasitological methods

WHO recommended treatment strategy

Non-endemic <1% No treatment

Low �1% and <10% Treat school-age children twice during primary school years

Moderate �10 and <50% Biennial treatment of all school-age children; as well as special

risk groups in adults

High �50% Annual treatment of all school-age children; as well as special risk

groups in adults

https://doi.org/10.1371/journal.pntd.0005599.t001
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Methods

Ethics statement

Ethical approval for the surveys analysed here (including the consent process and all

methodology) was obtained from Imperial College London Research Ethics Committee

(ICREC_8_2_2). Surveys were performed as part of national schistosomiasis and soil

transmitted helminth control programmes in all countries, overseen and approved by the

Ministry of Health. In Malawi, all participants provided written consent. In Côte d’Ivoire

and Liberia, as participants were under the age of 18 years the Ministry of Health required

written consent be provided by adults. As literacy levels were very low, written consent

from every parent or guardian was not possible, and each head teacher provided written

consent for the survey and all individual participants provided oral consent. In Liberia,

headteachers also received oral consent from parents at Parent Teacher Association (PTA)

meetings before surveys began, with parent presence at PTA meetings documented on an

attendance register. Only children who consented either in writing (in Malawi) or orally

(in Côte d’Ivoire and Liberia) took part in the surveys.

Characterising spatial heterogeneity in schistosomiasis from empirical

datasets

All analyses were performed in R v3.1.0. Data from baseline mapping surveys in Malawi, Côte

d’Ivoire and Liberia were used to characterise spatial heterogeneity in schistosomiasis preva-

lence (Table 2; Fig 1). All surveys adopted the same two-stage cluster survey protocol. This

involved randomly selecting 15–20 primary schools in each implementation unit (health or

educational district), then selecting 30 children per school (with an even gender ratio) to be

tested for Schistosoma haematobium using a single urine filtration and S. mansoni using dupli-

cate Kato-Katz slides from a single stool. At each school, children aged 10–14 were eligible for

participation. Where age was difficult to determine, grades corresponding to the targeted age

group were used. Children were selected systematically at each school, by assembling a line

each of eligible boys and girls, and using a sampling interval to select the required 15 children

of each gender. Survey sample size was originally decided based on precision-based sample

size calculations (S1 Text). We used semivariograms to characterise spatial heterogeneity in

the prevalence of schistosomiasis (infection by either S. haematobium, S. mansoni, or either

species), in each country. Before creating semivariograms, logistic regression models were per-

formed to remove large-scale spatial trends in prevalence. For each country, individual level

infection (1/0) was modelled as a function of longitude and latitude, with school as a random

factor, using a binomial mixed model in the R package lme4. Where either longitude or

Table 2. Characteristics of schistosomiasis surveys used to general theoretical gold standard datasets.

Country Survey date Mapping

units

Districts

mapped (N

districts in

country)

Median size of

districts

nationally

(range)

N geo-

referenced

schools

Schistosomiasis

prevalence (%)

S. haematobium

prevalence (%)

S. mansoni

prevalence

(%)

Malawi February

2012

13 8 (26) 3,194km2 (760 to

11,405 km2)

244 19.4 16 5.4

Côte

d’Ivoire

Dec 2013 to

March 2014

43 43 (82) 2,732 km2 (25 to

19,306km2)

500 6.5 2.7 4

Liberia March/April

2012 &

March/April

2013

58 58 (66) 1,266 km2 (107

to 4,610 km2)

933 25.4 9 21

https://doi.org/10.1371/journal.pntd.0005599.t002
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latitude did not explain significant variation in prevalence (i.e. p>0.05 in likelihood ratio

tests), these terms were removed from the final model. Using the R package geoR, omnidirec-

tional semivariograms were then fitted for each country to the school level random effects,

with weighted least squares fits of exponential, spherical, and Gaussian models. To further

characterise spatial heterogeneity in schistosomiasis prevalence and provide parameters useful

in future sample size calculations, we calculated the intra-cluster correlation coefficient (ICC)

for schistosomiasis prevalence using the iccbin function in R package aod [22]. The ICC is a

measure of the relatedness or similarity of clustered data, with values ranging from 0 to 1. As

the ICC increases, the more individuals within clusters, and the less individuals in different

clusters, resemble one another. In the context of our surveys, the higher the district-level ICC,

the more similar children in the same school are in their infection status, compared to children

in different schools. In sample size calculations, ICC determines the design effect; higher ICC

Fig 1. Spatial distribution of geo-referenced primary schools involved in schistosomiasis baseline

mapping surveys in Malawi (n = 244), Côte d’Ivoire (n = 500) and Liberia (n = 933). Data from these sites

were used to estimate semivariograms and generate spatially realistic gold standard datasets on which

sampling simulations were performed.

https://doi.org/10.1371/journal.pntd.0005599.g001
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values increase the design effect and the sample size required to obtain a given level of preci-

sion for parameter estimates such as prevalence.

Generation of gold standard datasets

Spatially realistic sampling locations were required to create gold standard datasets. Since geo-

referenced data on primary school locations was only available for one of the three countries

(Malawi), locations were simulated. We used PPS (“probability proportional to size”) sampling

according to population density (data from Worldpop, http://www.worldpop.org.uk/) in pack-

age raster [23] to assign primary schools to locations in each country (Table A in S2 Text).

Geo-referenced school datasets from Malawi and Kenya were used to validate this approach.

Good correspondence was observed between simulated and actual school locations across

both countries, which was improved by assigning schools separately to large cities (population

>1m; Lilongwe, Blantyre and Nairobi) and to the rest of the country (Fig A and Fig B in S3

Text).

We focused simulations on survey designs estimating pooled S. haematobium and S. man-
soni prevalence, since treatment guidelines are based on pooled schistosomiasis prevalence

(Table 1). Conditional simulation was performed using semivariogram parameters to generate

1000 different realizations per country that reproduced the global characteristics of the source

data. For each country, the semivariogram model for pooled schistosome infection with the

lowest sum of squares was chosen as the best fit for conditional simulation. For Malawi and

Liberia, conditionally simulated random effect values were added to predicted trend surfaces

(predictions using latitude and longitude) on the log odds scale before being back transformed

to prevalence. For Côte d’Ivoire, where no spatial autocorrelation in schistosomiasis was

detected (and therefore conditional simulation could not be performed) random effect values

were assigned to each school by sampling from the distribution of observed school random

effect values. To generate a distribution of random effect values to sample from, the distribu-

tion of observed random effects was smoothed using kernel smoothing. Overall, we created

1000 different schistosomiasis prevalence realizations for 5,239 primary school locations in

Malawi, 11,429 in Côte d’Ivoire and 2,785 in Liberia (Table A in S2 Text). Based on data pro-

vided by government ministries or enrolment figures collected during mapping surveys

(Table A in S2 Text), we assumed a population of school-age children (SAC, defined by the

WHO as children aged 5–14) per school of 400 for Malawi, 250 for Côte d’Ivoire and 150 for

Liberia, and thus calculated the number of SAC that were infected and uninfected with schisto-

somiasis at each school in each realization.

Testing alternative survey designs

We simulated two-stage cluster surveys involving a random sample of 2, 5, 10, 15 or 20 schools

per district, and a random sample of 10, 20, 30, 40 or 50 SAC per school. For each realization,

the survey package in R [24] was used to calculate district prevalence and 95% confidence

intervals with the ‘beta’ method for proportions. Districts were classified into WHO endemic-

ity and associated treatment classes according to point prevalence estimates (Table 1) [6]. We

assessed the accuracy of each survey design across 1000 realizations using four key metrics: (1)

the proportion of times that treatable levels of infection (�1% prevalence) were not detected

(2) prevalence estimate precision, as reflected by the width of the 95% confidence interval (3)

the proportion of times districts were misclassified (assigned to the wrong treatment class) and

(4) the proportion of times districts were under-classified (assigned to a treatment class below

their true class). We also explored how three alternative district assignment rules performed,

wherein districts were placed into the next highest treatment class if their prevalence estimate
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was within either 2 or 5 percentage points of the 10% or 50% threshold (“boosting rules"), or if

the upper 95% confidence limit overlapped a higher treatment class threshold (“upper CL

rule”). To ensure comparability across all survey designs, districts with fewer than 20 schools

were excluded from analyses. This resulted in each survey design being assessed 1000 times

across a total of 143 districts from the three countries (26 districts in Malawi, 78 in Côte

d’Ivoire and 39 in Liberia, Table A in S2 Text). We further explored how survey accuracy

according to these four metrics varied with district size.

Cost analysis

The cost of each survey design was estimated for Malawi using an ingredients based approach

[25], using itemized cost data from a 2014 schistosomiasis/STH mapping survey conducted in

Malawi. We assumed each survey covered the whole country and monitored S. haematobium
and S. mansoni. Only financial costs were estimated, with some costs fixed (invariant of sam-

pling strategy) and others variable (depending on survey design; Table 3). Capital item costs

were annualized over their useful lifespan (Table B in S2 Text) and a wastage factor of 10% was

applied to all relevant items [26]. Based on field experience in Malawi, we assumed three sur-

vey teams of constant size worked in parallel, and that survey duration (and hence staff salary

costs) changed with survey design (Table C in S2 Text). Survey design-specific travel distances

for fuel costs were estimated in qGIS: for each district and for each number of schools, a single

random selection of schools was taken from the geo-referenced school database and the short-

est path linking them was used as an estimate of average distance travelled per district. All

costs were adjusted to US dollars (US$) using the July 1st, 2014 exchange rates of 399.216

Malawian Kwacha (MWK) and 0.586 UK pounds to 1 US dollar (www.oanda.com/convert/

classic).

Per-capita treatment cost was assumed to be $0.30, based on financial costs of programme

delivery and purchased praziquantel costs in Malawi for 2014, but was varied from $0.10 to

$0.60 in sensitivity analyses [27–29]. The total cost for each design was calculated by summing

survey costs and the cost of treating the entire Malawi SAC population (4.3 million according

to Ministry of Education figures from February 2014) over the subsequent six years, in accor-

dance with survey results. Six years was chosen as WHO recommends re-assessment surveys

after 5–6 years [6]. Using WHO guidelines, we assumed low endemicity districts would be

treated every three years (such that SAC are treated twice during primary schooling), moderate

endemicity districts would be treated biennially and high endemicity districts would be treated

annually, while districts with prevalence below 1% would not receive treatment.

Under the assumption that treating districts more frequently than required is not harmful

but treating less frequently is, we define districts as receiving “adequate” treatment when they

are assigned to either their correct or a higher treatment class. The annual cost per district ade-

quately treated, c, incorporates the assumptions described and was calculated using Eq 1. We

converted c to a percentage of the annual cost of blanket treatment per district (cprop), using

Eq 2. Cost-efficiency is optimised when cprop is minimised. Parameters are defined in Table 4.

c ¼
1

6

ðSþ TÞ
P:D

ð1Þ

cprop ¼ 100:
c
B

ð2Þ

The sensitivity of survey costs to variation in three inputs was assessed: 1) the number of

survey teams, 2) survey staff salaries and 3) capital item lifespan. We also examined how varia-

tion in per capita treatment cost affected cost-efficiency, as per-capita treatment costs are likely
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Table 3. Itemised costs of school-based surveys for Schistosoma haematobium and S. mansoni in

Malawi.

Unit and Cost type Unit cost§

(2014 prices in

USD)

Number required per survey team

Capital equipment*
(Fixed)

Wash basins 4.01 2

Brushes 5.79 2

Buckets 4.01 2

Droppers 0.20 2

Forceps 2.70 4

GPS 123.79 1

Hole punch 14.90 1

Microscope 1,186.97 2

Sieving mesh 37.17 2

Slide boxes 5.99 1

Tally counters 4.13 2

Capital equipment*
(Variable)

Filter Holders 6.51 2 × number of children sampled per schoolτ

Stool pots 0.15 Number of children sampled per school τ

Syringes 0.16 Number of children sampled per school τ

Kato-Katz kit (template

and

plastic spatula)

0.112 Number of children sampled per school τ

Urine Pots 0.15 Number of children sampled per school τ

Consumables (Fixed)

Marker pens 0.90 2

Notebooks 2.15 5

Pencils 0.38 5

Pens 0.85 5

Scissors 1.81 2

Bleach (500ml) 3.01 1

Insecticide 2.26 1

Soap (400g) 1.24 1

Consumables (Variable)

Methylene blue (25mg) 23.14 0.5 grams per district τ

Glycerol (5L) 31.44 50 ml per district τ

Iodine (10ml) 3.00 1 per district τ

Newspaper 0.25 1 per district

Bin bags 0.15 2 per school sampled τ

Cellophane 0.55 1 sheet per 40 children sampled τ

Filters 0.072 1 for each child sampledτ

Folders 1.46 0.5 per school sampled

Gloves 0.05 60 per school sampled τ

Hemastix 0.52 0.5 for each child sampled τ

Masking tape 2.26 0.2 per school sampled τ

Microscope slides† 0.03 3† for each child sampled τ

Stool plastic (100 yards) 10.56 1.5 yards per school sampled τ

Tissue paper 0.67 0.2 per school sampled τ

(Continued)
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to vary according to country-specific delivery costs and economies of scale [28,30]. Finally, to

explore how conclusions might be affected by country-specific differences in geography and

epidemiology, we examined cost-efficiency using simulation results for either Côte d’Ivoire or

Liberia, combined with Malawi’s survey cost estimates and SAC population size.

Results

Spatial heterogeneity in schistosomiasis prevalence

Countries varied in overall schistosomiasis prevalence, species composition and the spatial

heterogeneity of prevalence (Table 2, Fig C in S3 Text). Spatial autocorrelation in prevalence

Table 3. (Continued)

Unit and Cost type Unit cost§

(2014 prices in

USD)

Number required per survey team

Washing powder (1kg) 3.16 60 grams per school sampled τ

Photocopying 0.02 1 sheet per child sampled and 3 per school sampled τ

Salaries (Variable)

District health officer 25.00 per day Days required for survey¥ (Table C in S2 Text)

Driver 45.58 per day Days required for survey¥ (Table C in S2 Text)

Supervisor 57.61 per day Days required for survey¥ (Table C in S2 Text)

Technicians (four needed) 50.10 per day 4 × days required for survey¥ (Table C in S2 Text)

Transport

Fuel 0.53 per km The number of schools sampled‡ × the average distance

(km)# between schools #

Maintenance 166.99 1

* Capital items (resources lasting longer than a year/ can be re-used in subsequent surveys). Shown unit

costs have not been annualized to allow comparison with other reported costs (though they were when

estimating the total cost of each mapping strategy–see methods).

† Three slides are needed per child sampled, assuming duplicate slides are screened for S. mansoni and

one slide for S. haematobium.

¥ The number of days required to survey a district under a given sampling design (Table C in S2 Text) × the

number of districts surveyed per team (the total number of implementation units (26) divided by the number

of teams)

τ +10% wastage

‡ For each district an extra journey worth of fuel was accounted for the trip back from the field to a central

point.

# Average distance between schools: 2 schools (39km), 5 schools (32.5km), 10 schools (22km), 15 schools

(17.5km), 20 schools (16km).

https://doi.org/10.1371/journal.pntd.0005599.t003

Table 4. Definitions of parameters used in cost-efficiency equations.

Parameter Verbal Description Calculation

S Cost of survey

N Number of school-aged children in country

t per capita cost of treatment and its delivery

R Mean (average across districts) number of rounds of treatment given over a 6

year period according to survey results

T Cost of nationwide treatment for 6 years based on survey results N*t*R

P Mean proportion of times districts were adequately treated in simulations

D Number of districts nationwide

B Annual cost of blanket treatment per district (N*t)/D

https://doi.org/10.1371/journal.pntd.0005599.t004
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was detected for S. haematobium in all three countries, for pooled schistosomiasis in Malawi

and Liberia but not Côte d’Ivoire, and for S. mansoni only in Liberia (Fig 2). Range values indi-

cated that no spatial correlation was present beyond 20–65km, with the exact distance within

this range depending on the country and species considered. Values of the district-level intra-

cluster correlation coefficient (ICC) ranged from 0 to 0.774 across the three country dataset

(Table 5, Fig C in S3 Text), indicating that districts varied widely in the extent to which preva-

lence clustered by school. Districts of a given endemicity class (according to the point estimate

of prevalence), contained schools with widely varying schistosomiasis prevalence, particularly

in moderate and highly endemic districts (Fig D in S3 Text). A saturating relationship was

seen between survey-estimated district prevalence and the proportion of schools positive for

schistosomiasis; the proportion of endemic schools increased steeply up to ~10% prevalence,

but once district prevalence exceeded 30% it was rare to find schools entirely free of infection

(Fig 3).

Fig 2. Omnidirectional semivariograms for schistosomiasis prevalence across primary schools in

Malawi, Côte d’Ivoire and Liberia. Best fit lines of exponential (solid line) or Gaussian (dashed line) spatial

models are shown and where no line is shown no significant spatial autocorrelation was detected. Distance in

kilometres was calculated assuming 1 decimal degree is approximately 111km (as at the equator).

https://doi.org/10.1371/journal.pntd.0005599.g002

Table 5. Mean and range of the district-level intra-cluster correlation coefficient (ICC) for schistosomi-

asis prevalence in Malawi, Côte d’Ivoire and Liberia, as estimated from empirical mapping survey

datasets. N indicates the number of endemic mapping units (usually districts) included in the calculation.

Country Pooled schistosomiasis S. haematobium S. mansoni

ICC mean (range) N ICC mean (range) N ICC mean (range) N

Malawi 0.129 (0.015–0.382) 13 0.110 (0.016–0.372) 13 0.333 (0.013–0.751) 13

Côte d’Ivoire 0.176 (0–0.697) 41 0.150 (0–0.774) 36 0.192 (0–0.751) 40

Liberia 0.039 (0–0.263) 55 0.080 (0–0.680) 44 0.037 (0–0.322) 53

https://doi.org/10.1371/journal.pntd.0005599.t005
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Survey performance: Accuracy

District prevalence estimates converged on true prevalence as the number of schools surveyed

increased (Fig 4), as expected. The probability of failing to detect endemic schistosomiasis at

treatable levels (�1% prevalence) declined as more schools were sampled per district (though

Fig 3. District-level relationship between prevalence and the percentage of schools endemic for

schistosomiasis (any species), S. haematobium or S. mansoni in Côte d’Ivoire, Malawi and Liberia.

Data were collected from mapping surveys using a standardised two-stage cluster survey design: random

sampling of 15–20 schools per district, and 30 children at each school.

https://doi.org/10.1371/journal.pntd.0005599.g003

Fig 4. Plots illustrating the relationship between estimated and true schistosomiasis prevalence

across 1000 simulated realisations for Malawi, Côte d’Ivoire and Liberia. All data relate to a sample size

of 30 children per school, and colours represent the number of schools sampled per district (blue = 2, red = 5,

green = 10, pink = 15, grey = 20). Each dot represents a realisation, and dashed lines indicate perfect

correspondence between true and estimated prevalence. Points from surveys of different sizes are overlaid,

from smallest (n = 2 schools, blue points at the back) to largest (n = 20 schools, grey points at the front).

https://doi.org/10.1371/journal.pntd.0005599.g004
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with diminishing returns, particularly beyond 10 schools per district), while increasing the

number of children tested per school led to very small improvements (Fig 5A and 5B, Fig E in

S3 Text and Table D in S2 Text). Failure to detect treatable levels of schistosomiasis with

smaller surveys was most acute in districts with low prevalence. For example, surveying 2–5

schools in low endemic districts led to detection failure 10–50% of the time (Fig 5A, Table D

in S2 Text). Surveying more schools clearly improved the precision of prevalence estimates

and the accuracy of treatment class assignment (Fig 5C, 5E and 5G, Fig E in S3 Text), again

with diminishing returns above 10 schools per district. In contrast, increasing the number of

children sampled per school led to negligible improvements in precision and assignment accu-

racy (Fig 5D, 5F and 5H, Fig E in S3 Text). For a given total sample size, sampling fewer chil-

dren in more schools rather than many children in few schools minimised detection failure

and maximised the accuracy of prevalence estimates and treatment class assignment (Fig F in

S3 Text).

Fig 5. The effect of survey design on district-level schistosomiasis treatment decisions, using gold

standard simulated data for Malawi, Côte d’Ivoire and Liberia. Left panels (A, C, E, G) show the effect of

altering the number of schools sampled, while holding the number of children sampled constant at 30 per

school, while right panels (B, D, F, H) show the effect of altering the number of children tested at each school,

while holding the number of schools visited constant at 10 per district. Dashed lines indicate thresholds

between low, moderate and high endemicity treatment classes according to WHO guidelines (Table 1). Lines

indicate mean values for each survey design across the full three country gold standard dataset. A and B: the

proportion of times a survey failed to detect endemic schistosomiasis (�1% prevalence); C and D: the width of

the 95% confidence interval around a district-level prevalence estimate; E and F: the proportion of times

districts were wrongly classified into either a higher or lower treatment class; G and H: the proportion of times

districts were classified into a treatment class below their true class.

https://doi.org/10.1371/journal.pntd.0005599.g005
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The use of more lenient district assignment rules (boosting rules) reduced the probability

that districts were classified into a treatment class below their true class (Fig G in S3 Text and

Table E in S2 Text). Use of boosting rules also allowed smaller surveys to be used while still

achieving a specified maximum allowable probability of under-classification. For example, if

one wanted the risk of district under-classification to not exceed 7%, this could be achieved by

either surveying 20 schools and using point estimate district assignment, or surveying 10

schools and using a 2% boosting rule. District size had an influence on some measures of sur-

vey accuracy, with the probability of wrongly classifying and under-classifying districts being

greater in large districts, for a given survey design (Fig H in S3 Text). However, district size did

not appreciably alter the shape of the relationship between survey size and measures of accu-

racy (Fig H in S3 Text).

Although surveying more schools per district improved the accuracy of district-level classifi-

cation, schools still showed great variation in prevalence within any given district. If the same

WHO thresholds were applied at a school level, under most survey designs around 50% of

schools would have been wrongly classified and 10–30% under-classified, with only very modest

improvement as more schools were sampled per district (Fig I in S3 Text). This is due to the

underlying large heterogeneity in prevalence among schools within a district (Fig D in S3 Text).

Survey performance: Cost efficiency

Based on a range of 2–20 schools surveyed per district and 10–50 children sampled per school,

the estimated cost of a nationwide schistosomiasis survey in Malawi varied between $22,482

and $135,033 (Table F in S2 Text). In sensitivity analyses, survey costs were most sensitive to

variation in staff salaries (per diems), while the number of survey teams and capital item lifespan

had minimal effects (Fig J in S3 Text). The number of schools surveyed strongly influenced

both the absolute cost of surveys and cost-efficiency, while varying the number of children

screened per school had smaller cost implications, particularly in terms of cost efficiency (Fig 6,

Fig K in S3 Text). Under parameters expected for Malawi (per capita treatment cost $0.30, 4.3

million SAC nationwide), surveying 15 schools per district was the most cost-efficient survey

size, with assignment using the point prevalence estimate or boosting rules performing similarly

(Fig 7A). Use of 95% confidence intervals to assign treatment classes was cost inefficient, partic-

ularly with small surveys where confidence intervals were wide (Fig 7A). While the use of boost-

ing rules was not always the most cost-efficient strategy, they notably improved the proportion

of districts adequately treated (Fig 7B) for some additional cost (Fig 7C).

These cost-efficiency results for Malawi were robust to variation in staff salaries (Fig L in S3

Text). Furthermore, when we halved or double the assumed per capita treatment cost, and

assessed how cost-efficiency might be altered when simulation results from either Côte d’Ivoire

or Liberia were used instead of those from Malawi, results were remarkably consistent: surveys

of 15–20 schools per district maximised cost-efficiency in all cases (Fig 8). As treatment costs

increased, the cost-efficiency of surveying more schools per district increased, and at $0.60 per

treatment a survey of 20 schools per district was often more cost efficient than 15 (Fig 8). In

these sensitivity analyses, treatment class assignment using either the point prevalence estimate

or the two percentage point boosting rule was most cost efficient (depending on the country

considered), with worse cost-efficiency for the larger five percentage point boosting rule, and

worse still when using 95% confidence intervals (Fig 8).

Discussion

Prevalence surveys form a key component of schistosomiasis control programmes, allowing

programmes to guide delivery of praziquantel to those areas most in need of treatment. Using
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Fig 6. Effect of altering the number of schools surveyed per district and the number of children

sampled per school in schistosomiasis surveys on the cost per district adequately treated (cost-

efficiency is maximised when this is at a minimum).

https://doi.org/10.1371/journal.pntd.0005599.g006

Fig 7. The effect of schistosomiasis survey size (number of schools surveyed per district) and the rule used

for converting district-prevalence estimates into treatment class assignments on (A) the cost per district

adequately treated (cost-efficiency is maximised when this is at a minimum), (B) the proportion of times a

district was adequately treated and (C) combined survey and subsequent treatment costs. Line colour

indicates the district classification rule used (blue: point prevalence estimate; red: 2% boost at thresholds,

green: 5% boost at thresholds, black: upper 95% confidence limit). All plots relate to surveys where 30

children were sampled per school.

https://doi.org/10.1371/journal.pntd.0005599.g007
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in silico sampling simulations based on data from three African countries, we evaluated the

performance of cluster survey designs differing in the sample size at each of two stages (schools

and children within schools) and a series of rules to translate resulting prevalence estimates

into treatment class assignments. Overall, our results provide an evidence base for schistoso-

miasis programmes wishing to map prevalence, illustrating how different two-stage cluster

survey designs impact the accuracy and cost-efficiency of treatment decisions.

Spatial heterogeneity in schistosomiasis prevalence

Schistosomiasis is often described as a focal disease, with prevalence varying widely even from

one village to the next. Our results from Malawi, Côte d’Ivoire and Liberia illustrate this well.

Prevalence varied very widely across schools in moderate or high endemicity districts (Fig D

S3 Text), and spatial autocorrelation in prevalence was detected across short distances (20–

65km), similar to previous findings from East and West Africa [15,31]. Moreover, spatial auto-

correlation was not detected in all cases, indicating no spatial clustering or clustering at scales

too small to detect with our data. District-level intracluster correlation coefficients (ICC) were

also highly variable, ranging from 0 to 0.775 with a mean of 0.116. These findings indicate

greater within-district spatial heterogeneity in schistosomiasis prevalence than reported for

STH [16].

Fig 8. Effect of variation in per capita PZQ treatment costs (0.15 to 0.60 USD) and the country source of

simulation results on estimates of mapping survey cost-efficiency. Cost-efficiency is expressed as the

cost per district adequately treated, as a percentage of the annual blanket treatment cost for a district. Line

colour indicates the district classification rule used (blue: point prevalence estimate; red: 2% boost at thresholds,

green: 5% boost at thresholds, black: upper 95% confidence limit). All plots relate to surveys where 30 children

were sampled per school. Data points for surveys using 2 schools per district and assignment using the upper

95% confidence limit (which all produced very high values, >90% on the y-axis) are not shown, to improve clarity

in the lower range of the y-axis.

https://doi.org/10.1371/journal.pntd.0005599.g008

Optimising schistosomiasis survey design

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005599 May 26, 2017 15 / 21

https://doi.org/10.1371/journal.pntd.0005599.g008
https://doi.org/10.1371/journal.pntd.0005599


Comparative survey performance

Our simulations clearly demonstrated that increasing the number of schools surveyed pro-

vided much greater gains in the accuracy of prevalence estimates and treatment class assign-

ments than increasing the number of children tested per school. Surveying too few schools per

district risked failing to detect treatable levels of schistosomiasis, particularly in low endemic

districts. For instance, simulated surveys of five schools per district led to low endemic districts

being classified as non-endemic between 2% and 23% of the time. Since district prevalence will

usually not be re-assessed for 5–6 years [6], it is important that enough schools are surveyed

initially such that districts are not erroneously classified as non-endemic, missing treatment

for several years.

Using cost data from Malawi, cost-efficiency improved notably as surveys increased in size

from 2 to 15 schools per district, with only a very small decline in cost-efficiency at 20 schools

per district. Conversely, the number of children sampled per school did not greatly affect cost-

efficiency. Decisions about sample size per school could, therefore, be made in light of practical

considerations, such as to maximise the number of schools visited per day, provide reasonably

accurate prevalence estimates to feed back to communities, or acquire data for operational

research needs. Sensitivity analyses showed that as treatment costs increased, larger surveys of

20 schools per district became most cost-efficient; essentially, the higher the cost of nationwide

treatment, the greater the benefit of larger surveys to enable accurate geographic targeting of

drug delivery. This may apply even more so in suspected high endemicity areas where treat-

ment of at-risk adults as well as SAC is to be performed. In all sensitivity analyses, surveys

involving 10 or fewer schools per district showed inferior cost-efficiency compared to those

involving 15–20 schools. Thus, although surveys of five schools per district have been sug-

gested to be cost efficient for soil-transmitted helminths [16], schistosomiasis surveys need to

be larger [10]. Two-stage cluster surveys aiming to provide treatment guidelines for both types

of infection should therefore optimise sample size for schistosomiasis, and STH prevalence

estimates of sufficient accuracy will follow.

The latest draft of WHO guidelines on schistosomiasis mapping [32] suggest that districts

can be mapped with as few as five schools per district, where the distribution of infection is

thought to be homogeneous. Our results suggest that this may not be optimal, as this sample

size led to some districts with treatable levels of infection going undetected, and poorer cost-

efficiency than surveys involving 15 or 20 schools per district. Thus, what might be perceived

as quite large surveys (15–20 schools per district) are shown here to pay off for schistosomiasis

mapping in terms of cost-efficiency. The draft guidelines also suggest surveying 50 children

per school. Our results indicate that a sample size of 20–30 children per school produced very

similar accuracy and cost-efficiency results to those involving 50 per school (Fig 4, Fig F in S3

Text), such that this recommended within-school sample size could be reduced, particularly

when paired with surveying a larger number of schools (e.g. 15–20) per district.

We found that using alternative rules to convert prevalence estimates into treatment class

assignments could be beneficial in some situations. The use of boosting rules, where districts

were boosted into the next highest treatment class when close to a threshold, in combination

with small surveys (2–5 schools per district) was associated with a reduced risk of under-treat-

ment, and comparable or improved cost-efficiency compared to assignment using point preva-

lence estimates. However, with larger surveys (10–20 schools) this pattern reversed and while

boosting rules reduced under-treatment they also reduced cost-efficiency. Therefore, when

small surveys (<10 schools per district) are unavoidable due to logistical, budgetary or time

constraints, boosting rules might prove useful to avoid under-treatment. Use of 95% confi-

dence intervals in assignment of districts to treatment classes was never cost-efficient due to a
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high degree of over-treatment. This was particularly true when used in combination with

small survey sizes, suggesting this practice should be avoided.

By using data from three different African countries, our simulations allowed us to identify

a ball-park sample size and design for optimising district-level schistosomiasis surveys across

similar settings. However, several limitations to this study warrant discussion. First, we only

compared simple two-stage cluster surveys, frequently adopted where there is limited reliable

information about schistosomiasis distribution that could be used to design more complex,

potentially more powerful surveys, or when a survey design that is easy to implement and ana-

lyse is desired. If information about the likely distribution of infection is available and is of suf-

ficient quality and geographic scope, other survey designs could prove superior. For example,

where schistosomiasis prevalence is strongly associated with known geographic risk factors

(such as lake proximity for S. mansoni in Uganda and Burundi [33]), geographic survey strati-

fication can improve the accuracy of district-level prevalence estimates, while guarding against

random samples that happen not to capture schools in high risk areas. Re-assessment surveys

may often be able to incorporate such stratification, using prevalence information from prior

surveys to guide design. Where geographic risk factors drive strong within-district variation in

prevalence, survey and treatment strategies at a sub-district level are also likely to be fruitful,

where feasible. If geographic coordinates of potential sampling locations are available, explic-

itly spatial survey designs may also be an option [15,34] and geospatial modeling can be used

to convert survey data into PC implementation maps [34–36]. However, both stratified designs

and geospatial approaches require increased expertise for appropriate survey implementation

and data analysis. Studies examining how best to optimise other surveys designs, for example

those stratifying for water body proximity for S. mansoni, would be valuable. Second, we have

not thoroughly examined how differences in factors such as district size, population density

and urbanization, all of which can vary widely across countries, might affect optimal survey

design. We show that the accuracy of district assignment to treatment classes was lower for

larger districts (Fig H in S3 Text). However, since survey costs can also be expected to scale

with the size of districts, it is unclear exactly how district size might alter survey cost-efficiency.

With cost data from only one country we were unable to explore this. Future studies that do

so, using matched survey and cost data from a range of countries with pronounced variation

in factors like district size, would be valuable. Finally, while our results concern the use of

urine filtration and Kato-Katz for diagnosing schistosome infection, use of the urine-based cir-

culating cathodic antigen (CCA) test for S. mansoni surveys is increasing [37,38]. It is possible

that use of this alternative diagnostic could alter optimal survey size, for example if increased

test sensitivity leads to lower observed spatial heterogeneity in infection. Thus, our findings

may not be directly applicable to the use of different diagnostic tests, and further work is

needed to understand how the CCA test alters survey results and optimal design.

Although our aim here was to assess survey performance for generating district-level treat-

ment decisions, our data highlight the broader issue that schools within a district often vary

widely in prevalence, particularly in high prevalence areas (Fig D in S3 Text). If WHO treat-

ment recommendations were applied at the school level, our simulations showed that using

district level prevalence estimates derived from two-stage cluster surveys would lead to 10–

30% schools being under-treated. Increasing survey size made very limited improvements

here, and achieving this would require a fundamental shift in approach, for example towards

either surveys at finer spatial scale or school-level surveillance. Currently, the cost and com-

plexity of schistosomiasis diagnostic tests means surveillance is often impractical, particularly

for S. mansoni where a test that could be easily administrated by teachers is not currently avail-

able. In areas where only S. haematobium is endemic, however, surveillance strategies may be

fruitful and could for example utilise blood-in-urine questionnaires or urine dipsticks [39]
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delivered to schools through widespread vaccination or STH (Albendazole) control pro-

grammes, such that they could self-perform and report an LQAS assessment for schistosomia-

sis. Alternatively, geospatial modeling could be used to predict endemicity class at non-

surveyed schools using data from surveyed schools [15]. Such school-level approaches could

ameliorate the problem highlighted here that district-level averages mask wide variation in

infection risk among sites, though use of such approaches would require new accompanying

guidelines for converting site-specific prevalence levels into treatment practice.

Conclusion

Based on our findings, we suggest that among simple two-stage cluster survey designs, sam-

pling 15–20 schools per district and 20–30 children sampled per school is suitable for estimat-

ing district-level schistosomiasis prevalence and placing districts into treatment classes. This

design fulfilled three key requirements: (1) it minimized the risk of failing to detect treatable

infection levels in a district (2) it generated reasonably accurate prevalence estimates and treat-

ment decisions and (3) it was cost-efficient, minimizing the cost per district adequately treated.

Surveys towards the upper end of this range are likely to be more cost-efficient where treat-

ment costs are high. The data presented here provides an initial evidence base for sample size

in schistosomasis surveys, which can be built upon by future work assessing optimal survey

design in the context of disease control. Our approach can also be adapted to inform on opti-

mal survey design for other NTDs where two-stage cluster surveys are appropriate.
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