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Interpretive summary: Machine-learning based calving prediction from activity, lying, and 1 

ruminating behaviors in dairy cattle. Borchers. Frequent visual inspection has long served as the 2 

primary method to identify cattle in labor. Precision dairy technologies monitoring behavior 3 

before calving may have potential to predict calving. This study quantified cow activity, time 4 

spent ruminating, and lying behaviors before calving and applied machine-learning methods to 5 

retrospectively determine the calving prediction efficacy of these variables. A combination of 6 

activity, rumination time, and lying behaviors in prediction models was effective in predicting 7 

calving and show promise in future research and commercial application. 8 
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Machine-learning based calving prediction from activity, lying, and ruminating behaviors 12 

in dairy cattle 13 
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ABSTRACT 24 

The objective of this study was to use automated activity, lying, and rumination monitors 25 

to characterize prepartum behavior and predict calving in dairy cattle. Data were collected from 26 

20 primiparous and 33 multiparous Holstein dairy cattle from September 2011 to May 2013 at 27 

the University of Kentucky Coldstream Dairy. The HR Tag (SCR Engineers, Ltd., Netanya, 28 

Israel) automatically collected neck activity and rumination data in 2 h increments. The IceQube 29 

(IceRobotics, Ltd., Scotland) automatically collected number of steps, lying time, standing time, 30 

the number of transitions from a standing position to a lying position (lying bouts), and total 31 

motion, summed in 15-min increments. IceQube data were summed in 2 h increments to match 32 

HR Tag data. All behavioral data were collected for 14 d before predicted calving date. 33 

Retrospective data analysis was performed using mixed linear models to examine behavioral 34 

changes by day in the 14 d before calving. Bihourly behavioral differences from baseline values 35 

over the 14 d before calving were also evaluated using mixed linear models. Changes in daily 36 

rumination time, total motion, lying time, and lying bouts occurred in the 14 d before calving. In 37 

the bihourly analysis, extreme values for all behaviors occurred in the final 24 h, indicating the 38 

monitored behaviors may be useful in calving prediction. To determine whether technologies 39 

were useful at predicting calving, random forest, linear discriminant analysis, and neural network 40 

machine-learning techniques were constructed and implemented using R version 3.1.0 (R 41 

Foundation for Statistical Computing, Vienna, Austria). These methods predicted calving events 42 

using 14 d of behavioral data. These methods were used on variables from each technology and 43 

all combined variables from both technologies. A neural network analysis combining variables 44 

from both technologies at the daily level yielded 100.0% sensitivity, and 86.8% specificity. A 45 

neural network analysis combining variables from both technologies in bihourly increments was 46 



used to identify bihourly periods in the 8 h period before calving with 82.8% sensitivity and 47 

80.4% specificity. Changes in behavior and machine-learning alerts indicate commercially 48 

marketed behavioral monitors may have calving prediction potential. 49 

Key Words: calving prediction, precision dairy monitoring technology, machine learning 50 

 51 

INTRODUCTION 52 

Parturition is an important period for both cows and their calves. Dystocia and calf 53 

mortality in this period can negatively impact farm economics and animal welfare (Mee, 2004). 54 

In the United States, 19% of primiparous and 11% of multiparous cows experience mild to 55 

severe dystocia at calving (USDA, 2010). Cows laboring more than 70 min past the appearance 56 

of the amniotic sac outside the vulva are at increased risk for dystocia (Schuenemann et al., 57 

2011). Providing timely calving assistance may reduce the risk of dystocia, reduce the pain 58 

associated with assisted labor (Mainau and Manteca, 2011), and improve reproductive 59 

performance in the subsequent lactation (Bellows et al., 1988). Identifying laboring cattle allows 60 

managers to assist in cases of dystocia. Dairy producers currently use a combination of breeding 61 

records and visual cues to estimate calving time; however, even experienced personnel may not 62 

accurately detect all calvings because perceptible behavioral and physiological changes do not 63 

occur for every cow or at a consistent time across all calvings (Hofmann et al., 2006; Sendag et 64 

al., 2008).  65 

Precision dairy monitoring technologies provide alternatives to the subjective observation 66 

and assessment of calving behaviors. Precision dairy monitoring technologies represent an 67 

alternative approach for predicting calving time compared to visual monitoring. To date, the 68 

application of precision technologies in calving detection has primarily consisted of maternal 69 



body temperature monitors. Maternal body temperatures have been shown to decrease 70 

approximately 48 h before calving (Lammoglia et al., 1997; Burfeind et al., 2011). Commercially 71 

marketed temperature monitors measure dairy cattle reticulorumen temperature, skin 72 

temperature, and vaginal temperature, but none have been validated for calving prediction. 73 

Monitors inserted in the vagina and expelled at the beginning of the second stage of labor also 74 

exist (Palombi et al., 2013), but these tools have also not been validated. Additionally, these 75 

technologies are costly, and to the knowledge of the authors, no economic research establishing 76 

their feasibility on dairy farms has been completed. 77 

Validated measures of activity (Champion et al., 1997; Robert et al., 2009; Bikker et al., 78 

2014), lying behavior (McGowan et al., 2007; Ledgerwood et al., 2010; Mattachini et al., 2013a; 79 

Borchers et al., 2016), and rumination (Schirmann et al., 2009; Bikker et al., 2014; Borchers et 80 

al., 2016) exist and may offer other options for calving prediction. Many of these technologies 81 

and the variables they monitor are already commonly used on dairy farms (Borchers and Bewley, 82 

2015). Evidence exists that dairy cows change feeding, rumination (Huzzey et al., 2005; 83 

Schirmann et al., 2013; Pahl et al., 2014), and lying behavior (Huzzey et al., 2005; Miedema et 84 

al., 2011; Jensen, 2012) as calving approaches, making technologies measuring these behaviors 85 

potentially useful calving prediction tools. Some research has endeavored to predict calving 86 

events using these measures. Clark et al. (2015) used the SCR HR Tag (SCR Engineers, Ltd., 87 

Netanya, Israel) to monitor rumination behavior and predict calving events, achieving a 70% 88 

sensitivity and 70% specificity in predicting the day of calving. Similarly, Ouellet et al. (2016) 89 

evaluated systems monitoring rumination time, vaginal temperature, and lying behaviors for their 90 

calving prediction accuracy and found a combination of these variables to achieve a greater level 91 

of prediction accuracy than considering them alone (77% sensitivity, 77% specificity). 92 



Most algorithm development and usage implements elements of statistical process control 93 

(MacGregor and Kourti, 1995) and requires the use of trial and error and deviations from 94 

baseline values to be developed. A newer approach in event prediction is the use of machine-95 

learning event prediction. Most machine-learning research in the dairy sciences has been applied 96 

for mastitis and estrus detection (Firk et al., 2003; Cavero et al., 2008; Sun et al., 2010), but no 97 

research has addressed their usage in calving prediction. Additionally, to the knowledge of the 98 

authors, no commercial precision dairy monitoring technologies use machine-learning techniques 99 

in alert creation.  100 

Before these technologies can become useful in calving prediction, research is needed to 101 

determine if the behaviors measured by the technologies (e.g., activity, rumination, and lying 102 

behavior) are highly sensitive and specific in detecting imminent calving. The objectives of this 103 

study were to first quantify activity, rumination, and lying behaviors before calving using two 104 

commercially available technologies and compare these behaviors to previous literature. The 105 

main objective was to determine the calving prediction efficacy of these technologies, both 106 

individually or in combination, using machine-learning prediction techniques. Cow-specific data 107 

commonly available through herd management software will also be included in these prediction 108 

methods. We hypothesize that activity, rumination, and lying behaviors will differ from typical 109 

values on the day of calving. In the calving prediction analysis, we hypothesize that a 110 

combination of variables from both technologies will generate greater prediction accuracy with 111 

machine-learning methods than either technology considered alone. 112 



MATERIALS AND METHODS 113 

Data were collected using 20 primiparous and 33 multiparous prepartum Holstein dairy cattle 114 

(mean ± SD; gestation length 277.6 ± 4.9 d; parity 2.3 ± 1.5) from September 2011 through May 115 

2013 at the University of Kentucky Coldstream Dairy Facility (IACUC Protocol Number: 2010-116 

0776). Beginning minimally 30 d before expected calving date, cows were moved to dry cow 117 

facilities and housed in a 9.15 x 21.34 m sawdust bedded pack with constant access to 3.64 118 

hectares of pasture. A TMR was delivered to the pen once daily. 119 

Two technologies were fitted to each cow by 28 d before predicted calving. After calving, 120 

data was reduced to include only the 2 weeks of data before calving from each cow. The HR Tag 121 

(SCR Engineers, Ltd., Netanya, Israel) was placed on the left side of the neck and automatically 122 

collected neck activity and rumination data in 2 h periods using a 3-axis accelerometer and a 123 

microphone with microprocessor, respectively. The IceQube (IceRobotics, Ltd., Scotland) was 124 

attached to the left rear leg and automatically collected number of steps, time spent lying, time 125 

spent standing (inverse of time spent lying), the number of transitions from a standing position to 126 

a lying position (lying bouts), and a proprietary total motion variable in 15 min periods using a 3-127 

axis accelerometer. Third-party technology variable validations were previously completed for 128 

the HR Tag (Schirmann et al., 2009) and IceQube (McGowan et al., 2007; Mattachini et al., 129 

2013b; Borchers et al., 2016), with both technologies being found to accurately monitor their 130 

respective variables. 131 

Cows in the dry pen were monitored for signs of calving every 3 h. Individual cows were 132 

monitored every 15 min after the first sign of labor was detected (e.g., the amniotic sac or calf 133 

feet became visible outside of the vulva). After laboring cows were identified, cows were 134 

separated into individual pens, preventing pasture access. For each calving, farm staff were 135 



instructed to record the calving date, the cow’s parity, the time calving began, and the 136 

approximate time calves were fully outside the cow. Eleven cows were assisted during labor in 137 

the study population. These cows were included in all analyses. The need for assistance in the 138 

birthing process was assessed and provided at the farm manager’s discretion, or according to the 139 

farm’s standard operating procedure.  140 

Statistical Analysis 141 

 To quantify changes in behavior before calving, neck activity and rumination data from 142 

the HR Tag, as well as number of steps, time spent lying, number of lying bouts, and total 143 

motion data from the IceQube were used to create two data sets; daily and bihourly (behavior per 144 

2 h period) calving behavior. For daily and bihourly analyses, data were averaged in 24 h periods 145 

relative to calving. For bihourly analyses, the time of calving was used to retrospectively 146 

generate cow-specific number of hours before calving in 2 h periods. This was performed on 147 

each variable in order to place all cows on the same timeline regardless of the time of day, 148 

similar to the methods of Schirmann et al. (2013).  149 

A mixed linear model (MIXED procedure of SAS version 9.3; Cary, NC) generated daily 150 

least-squares means, with parity group (primiparous or multiparous) and day before calving (Day 151 

-1 to -14) serving as categorical fixed effects. Cows served as repeated subjects for all variables 152 

and an autoregressive covariance structure (AR-1) was used to account for multiple observations 153 

being collected from subjects over time. All two-way interactions were tested in daily models, 154 

and non-significant (P ≥ 0.05) interactions were removed using backwards stepwise elimination. 155 

All main effects remained in final models regardless of significance. Tukey’s range test was used 156 

to identify significant differences between days before calving.  157 



All bihourly data were adjusted similarly to the methods of Jensen (2012). All 2 h periods 158 

were assigned a label (Hour -2 to -334) for each behavior and cow. For every cow, the 2 h 159 

behavioral data value minus the average of the same 2 h time of day for the previous three days 160 

(to account for differences in circadian patterns) was used to determine deviation from baseline 161 

values (Jensen, 2012). This procedure was applied to all variables (neck activity, rumination, 162 

number of steps, time spent lying, number of lying bouts, and total motion), individually. Least-163 

squares means were calculated from these differences, with parity (primiparous or multiparous), 164 

time of day (0000 h to 2359 h in 2 h periods), and bihourly period before calving (-334 to -2, in 2 165 

h periods) as fixed effects. Cows served as repeated subjects. All two-way interactions were 166 

tested and non-significant (P ≥ 0.05) interactions were removed using backwards stepwise 167 

elimination. All main effects remained in final models regardless of significance. 168 

Residual plots were generated and inspected to assess normality and detect potential 169 

outliers for each analysis. Data transformations were performed to meet normal distribution for 170 

daily number of steps and total motion, as well as bihourly neck activity, total motion, and 171 

number of steps. A natural logarithm transformation was performed on these variables to meet 172 

residual normality assumptions for mixed linear models. 173 

Prediction Model Development 174 

 Machine-learning techniques were applied to the data sets to predict calving time. The 175 

three machine learning analysis techniques used for calving prediction were random forest, linear 176 

discriminant analysis, and neural network analyses. The random forest method is based on 177 

decision tree classification and develops a group of tree-structured classification models. Each 178 

tree contributes an opinion of how the data should be classified (Breiman, 2001; Bishop, 2006; 179 

Shahinfar et al., 2014). Linear discriminant analysis is similar to analysis of variance and 180 



regression methods, but uses a categorical dependent variable and several continuous 181 

independent variables (McLachlan, 2004; Wetcher-Hendricks, 2011). Neural networks imitate 182 

the structure and function of the human brain, simulating human intelligence, learning 183 

independently and quickly, adapting continuously, and applying inductive reasoning to process 184 

knowledge (Zahedi, 1991; Krieter et al., 2006). In animal sciences, neural networks are the most 185 

frequently used machine-learning method (Shahinfar et al., 2014). 186 

All analyses were constructed and implemented using the <caret> package in R version 187 

3.1.0 (R Foundation for Statistical Computing, Vienna, Austria). To make the prediction 188 

methods as applicable to actual calving situations as possible, prediction models were developed, 189 

with the intent to be sequentially performed. The day of calving would first be identified using 190 

daily calving behaviors data. The 8 h period immediately preceding calving would then be 191 

determined using the bihourly data from the day of calving.  Separate random forest, linear 192 

discriminant analysis, and neural network analyses were performed for the IceQube, the HR Tag, 193 

and a combination of variables from both technologies, for a total of 18 prediction models (3 194 

technologies x 3 analyses x 2 time periods predicted). 195 

The datasets used in each model were prepared in the same way. A data subset consisting 196 

of 80% of observations was used as a “training” set to generate prediction models. A leave-one-197 

out cross-validation method was performed for each machine-learning method to develop 198 

training phase models. The remaining 20% of observations in the “testing” subset were used to 199 

evaluate the performance of the models. During the testing phase, trained models were used to 200 

predict periods of interest. True positives, false positives, true negatives, and false negatives 201 

were calculated for each daily and 2 h period and the sensitivity, specificity, positive predictive 202 



value, and negative predictive values were calculated to evaluate the performance of different 203 

machine-learning techniques and technology.  204 

Daily Calving Prediction Models. For daily calving prediction, the predicted variable 205 

was the day before calving (from Day -1 to -14). The ability of models to predict the day before 206 

calving was used as the outcome of interest, but all days were included in the model. Data were 207 

summed by day in a 24 h format, from 0000 h through 2359 h. Day 0 was not considered in daily 208 

prediction models to exclude periods in which calving occurred and remove any incomplete time 209 

periods. 210 

Data were presented to machine-learning techniques in three separate ways. Analyses 211 

were performed individually analyzing complete daily data from each technology and combined, 212 

analyzing complete daily and bihourly data from both technologies. For example, only cows with 213 

complete data for the IceQube included in IceQube calving prediction models, and cows missing 214 

data from either technology or all data from both technologies were removed from combined 215 

calving prediction models. For this reason, sample sizes differed by day relative to calving 216 

because of missing data originating from technology failure or data transfer error. From Day -1 217 

to Day -14 d prepartum, sample sizes ranged from n = 43 cows to n = 51 cows for the HR Tag. 218 

For the same period sample sizes for the IceQube ranged from n = 43 to n = 53. For the 219 

combination analysis, only instances where data was available from each technology were 220 

analyzed (n = 43 to n = 51). Parity and days until estimated calving date (from breeding records) 221 

data were included in the daily prediction models. Variables measured by each technology were 222 

also included in their respective prediction models (IceQube models: number of steps, time spent 223 

lying, number of lying bouts, and total motion; HR Tag models: neck activity and rumination; 224 

technology combination models: all variables from both technologies). The IceQube also 225 



monitored standing time (the inverse of lying time). Standing time was a variable supplied by the 226 

technology and all available variables were used in prediction models to simulate actual 227 

conditions.  228 

Bihourly Calving Prediction Models. A 24 h backwards moving average was calculated 229 

for each cows’ behavior and 2 h period to account for differences in circadian patterns. Machine-230 

learning techniques were applied to 22 h of backwards moving averaged data before calving. The 231 

2 h period immediately preceding calving was excluded from analysis because alerts would be 232 

generated following or at calving completion and would not be obtained in a timely manner for a 233 

producer to execute meaningful interventions. Behavioral data, parity, and time of day were used 234 

to predict each 2 h period before calving (bihourly periods from -2 h to -22 h before calving; 11 235 

total time points). The variable of interest was the 2 h period before calving (representing data 236 

from -2 to -4 hours before calving), but due to large calving behavior variation, this period was 237 

extended to the 8 h period preceding calving. All sensitivity, specificity, positive predictive 238 

value, and negative predictive values were performed using combined true positives, false 239 

positives, true negative, and false negative data from this 8 h period (data from periods -2 to -4, -240 

4 to -6, -6 to -8, and -8 to -10) periods. Variables measured by each technology were also 241 

included in their respective prediction models (IceQube models: number of steps, time spent 242 

lying, number of lying bouts, and total motion; HR Tag models neck activity and rumination; 243 

technology combination models: all variables from both technologies). Standing time was also 244 

added to models including IceQube data, similar to the daily analyses.  245 

RESULTS 246 

Interactions and parity effects on behavior 247 



 Significant interactions were found between parity and day before calving (Day -1 to Day 248 

-14) for daily lying time (Table 1; P = 0.02). Significant interactions were also found for parity 249 

and 2 h period before calving for difference in bihourly neck activity (Figure 1; P = 0.03). 250 

Primiparous cows differed from multiparous cows in lying behavior and neck activity, with 251 

primiparous cows lying less and becoming more active before calving.  252 

Behavioral Comparisons 253 

 Differences between days before calving were observed for rumination time, total 254 

motion, lying time, and lying bouts (Table 1). No differences were found for neck activity and 255 

number of steps between days before calving. Behavioral changes by 2 h period for the 72 h 256 

before calving are shown in Figure 1a to f. In the 24 h before calving, all measured variables 257 

were significantly (P < 0.05) affected by 2 h periods, indicating an effect of time, and therefore 258 

stage of labor before calving on differences in behavior. 259 

Activity Variables: Neck Activity, Number of Steps, Total Motion 260 

 Neck activity and the number of steps taken were not different by day before calving 261 

(Table 1), but were affected by 2 h period before calving (Table 1a). First parity neck activity 262 

decreased to its least value 18 h before calving, and then increased to its greatest value 2 h before 263 

calving. This indicates that these variables may not be useful for calving prediction at the daily 264 

level, but may be at the 2 h level. 265 

Rumination Behavior: Rumination Time 266 

 Daily rumination time decreased throughout the prepartum period and was least on the 267 

day before calving (Table 1), but no differences were observed. Similarly, the difference from 268 

baseline values in rumination at the 2 h level was below baseline values for the entire 24 h before 269 

calving (Figure 1b). Rumination time decreased to its least value 8 h before calving. An increase 270 



in rumination time beginning 8 h before calving was observed but values remained far below 271 

baseline values. This suggests that preparturient cows decrease rumination behavior as calving 272 

time approaches.  273 

Lying Behaviors: Lying Time and Lying Bouts 274 

 Lying time decreased from Day -14 to Day -2 (Table 1). Differences between parities 275 

were found for the final 7 days before calving. Lying times were least on the final day before 276 

calving for both parities (Primiparous, 7.0 ± 0.6 h; Multiparous, 10.2 ± 0.5 h). When data were 277 

analyzed for differences in 2 h intervals, a similar trend was observed in the 24 h to 48 h period 278 

before calving (Figure 1e). The 2 h periods throughout the 24 h preceding calving were variable 279 

for lying time, but lying time decreased to its least value, 8 h before calving (a decrease of 34.7 ± 280 

9.3 min from baseline values). Lying time increased and exceeded baseline values 4 h before 281 

calving, indicating a return to normal behavior. This behavioral change indicates that although 282 

daily lying time decreased on the day of calving, cows lay more in the hours immediately 283 

preceding calving. Similarly, lying bouts increased on the day before calving (Table 1). Cows 284 

also steadily increased lying bout frequency per 2 h period on the day of calving (Figure 1f).  285 

Machine-Learning Analyses 286 

 The machine-learning methods used in this study produce results and output not typical 287 

of other prediction methods where algorithms are produced. The authors have provided sample 288 

code and data, which are viewable at https://github.com/Mrborchers/Machine-learning-based-289 

calving-prediction-from-activity-lying-and-rumination-behaviors. Prediction performance for 290 

daily methods is shown in Table 2. The ability to predict the day before calving was best when a 291 

combination of variables from the HR Tag and IceQube were used. The best daily calving 292 

prediction results were obtained in the combined variable neural network analysis.  293 



The greatest sensitivity and specificity combinations were obtained when true positives, 294 

false positives, true negatives, and false negatives from the 2 h periods from -2 to -8 (data from 295 

periods -2 to -4, -4 to -6, -6 to -8, and -8 to -10) were combined. These results are presented in 296 

Table 3. Similar to the daily analysis, neural network results of the bihourly combination analysis 297 

were the greatest.  298 

Daily variable data measured by the IceQube sensor also effectively predicted the day of 299 

calvings in the linear discriminant analysis. Similar results were also obtained at the bihourly 300 

level, where the IceQube best identified the 8 h period before calving in comparison to the HR 301 

Tag. The HR Tag alone was ineffective at the daily level, reaching the best prediction efficiency 302 

in the linear discriminant analysis. At the bihourly level, the HR Tag variables were best able to 303 

identify the 8 h period before calving in the linear discriminant analysis. 304 

DISCUSSION 305 

Behavioral Comparisons 306 

 Primiparous cows showed differences in daily lying times, and bihourly neck activity. 307 

Primiparous cow lying times decreased in the days before calving and were different from 308 

multiparous counterparts beginning 7 d before calving. Lying time was least on the day of 309 

calving for both primiparous and multiparous cows. When separated by parity, neck activity may 310 

have use in calving prediction over shorter periods, and may be useful in predicting first parity 311 

calvings. Similar to this study, Owens et al. (1985) and Wehrend et al. (2006) found primiparous 312 

cattle to become more restless before calving. This indicates parity to be important in describing 313 

the change in daily lying time and neck activity. Accordingly, parity was included in all 314 

prediction models. 315 



 Previous studies have shown activity increases as calving approaches (Miedema et al., 316 

2011; Jensen, 2012), but their measurement of activity and methodology differed from this study. 317 

For example, Miedema et al. (2011) used a within-cow comparison and observed that walking 318 

duration increased from control periods during the dry period to the 24 h before calving (21.0 ± 319 

7.4 vs. 31.5 ± 13.1 min; P < 0.01). Similarly, Jensen (2012) observed an activity (calculated as 320 

acceleration not associated with gravity) increase beginning 6 h before calving (F = 5.46; P < 321 

0.01), compared to the same time of day during the 3 d before calving. These findings are similar 322 

to the findings for the total motion variable used in this study. In the current study, differences 323 

between days before calving were identified for the total motion variable. Total motion is a 324 

proprietary motion variable monitored by the IceQube, and the method by which this variable 325 

was calculated were not known. This variable may encompass all overall movement of the leg, 326 

as well as step number. This could include motions associated with lying and standing bouts, 327 

lateral movement, as well as steps. A variable analogous to lying bouts is standing bouts. Lying 328 

and standing bouts would be approximately equivalent if measured individually. Standing bouts 329 

were not measured in this study but may be represented in total motion. The motions associated 330 

with a standing or lying event, if captured in total motion, would be potentially additive. This 331 

additive effect may have led to the overall total motion increase seen in this study. 332 

 For rumination behaviors, Clark et al. (2015) showed a 33% decrease in rumination time 333 

over the 2 days prepartum. The same period in the current study only showed a decrease of 13%. 334 

Similarly, Schirmann et al. (2013) observed a 63 ± 30 min/24 h difference between the day of 335 

calving and a 2 d average rumination baseline value. A 45 min difference was seen in the current 336 

study between the day of calving and the day before. Ouellet et al. (2016) observed a 36 min 337 

decrease in this same period. In all studies, including the current study, a decrease in rumination 338 



was shown, but the magnitude of this decrease differed. Differences in environments and 339 

feedstuffs may explain these differences, but more research is needed. 340 

 In bihourly periods, rumination decreased by nearly 20 min from baseline values 8 hours 341 

before calving. Pahl et al. (2014) showed similar differences across bihourly periods, but found 342 

the largest differences immediately preceding calving. The differences in rumination time 343 

(although not significant at the daily level) indicate it may be a good predictor of calving across 344 

smaller periods immediately preceding calving. Although non-significant, differences in 345 

rumination may be useful in daily calving prediction models as well.  346 

 For lying behaviors, Jensen (2012) showed a gradual decrease in daily lying time from 347 

16.6 h/d on Day -4 before calving to 16.2 h/d, on Day -2 before calving. When data were 348 

analyzed by individual 2 h periods in the 24 h before calving, Jensen (2012) found that lying 349 

time increased from 12 h before calving (31.4 min) to 2 h before calving (42.8 min). Cows 350 

remain recumbent during the second stage of labor as the calf moves through the birth canal 351 

(Schuenemann et al., 2011). These findings suggest cows may become more uncomfortable and 352 

spend less time lying down during the few days before calving, but increase their lying time in 353 

the hours before calving as they begin labor. 354 

For lying bouts, Miedema et al. (2011) showed lying bout frequency increased from the 355 

dry period to the 24 h before calving (16.4 ± 4.8 vs. 24.2 ± 6.8 bouts per 24 h). Beginning 18 h 356 

before calving in the current study, subsequent individual 2 h periods significantly affected lying 357 

bouts. The greatest deviation from baseline values occurred in the 2 h immediately preceding 358 

calving (1.8 ± 0.1 lying bouts). Over a similar period, Jensen (2012) showed lying bouts per hour 359 

increased from 0.83 bouts per hour at 12 h before calving, to 2.79 bouts per hour at 2 h before 360 

calving. The incremental increase in lying bouts and the changes in lying time indicate dairy 361 



cattle may become restless in response to labor pain, but will remain recumbent longer for the 362 

final 4 h before calving. 363 

Lying and rumination time are similarly correlated, with cows ruminating more 364 

frequently when lying (Albright, 1993; Schirmann et al., 2012). Although lying time decreased 8 365 

h before calving in the current study, it increased and surpassed baseline levels for the final 4 h 366 

before calving. Simultaneously, an expected increase in rumination was not observed for this 367 

same period. This suggests an uncharacteristic change in normally correlated behaviors to occur 368 

in the hours immediate preceding calving, which could be used in calving prediction models.  369 

Calving Prediction Methods  370 

 The bihourly prediction method reported in this study was developed under the 371 

assumption that following identification of the day before calving, the bihourly analysis could 372 

commence. A flaw with this approach would be if the daily analysis failed to identify the day 373 

before calving, the bihourly analysis would not commence. For example, a cow calving at 1030 374 

h, would have a day of calving alert at 0000 h, and another alert identifying the 8 h period before 375 

calving between 0200 h and 0959 h on that same day. This was performed because fewer 376 

computations were required than examining all bihourly data, for all cows, at each individual 377 

time point. This method accomplished the same goal of providing a timely alert without the need 378 

for numerous computations. 379 

 Calving prediction using a combination of automatically collected behavioral variables 380 

has previously been attempted. Maltz and Antler (2007) described calving prediction methods 381 

using changes in daily step number, lying behavior, and number of times passing into a feeding 382 

area for 12 cows over 7 d. Maltz and Antler (2007) achieved a sensitivity of 83.3% and a 383 

specificity of 95.2% in predicting the day of calving. Ouellet et al. (2016) also evaluated a 384 



combination of variables (rumination time, vaginal temperature, and lying behaviors) for their 385 

calving prediction accuracy and achieved a 77% sensitivity, and 77% specificity. Similar to the 386 

current study, variable combinations were most useful in calving prediction than when variables 387 

were considered separately in these studies.  388 

Although favorable results were observed in the current study, few technologies monitor 389 

rumination, lying behavior, and activity in combination. Commonly, technologies measure 390 

rumination and activity, or activity and lying behavior. To the knowledge of the authors, few 391 

technologies currently monitor all these behaviors in unison. A two-technology approach, such 392 

as that used in this study could be useful in calving prediction, but would not currently be 393 

economically justifiable on commercial farms. In the absence of a two-technology calving 394 

prediction approach, machine-learning techniques applied to technologies like the IceQube may 395 

be the best option in behavior-based calving prediction.  396 

Farm-specific algorithms using neural networks may be useful in creating accurate alerts, 397 

particularly during calving because standard operating procedures vary between farms. Using 398 

data to train machine-learning techniques and create farm-specific prediction techniques could 399 

lead to more accurate and farm-specific event prediction for not only calving prediction, but 400 

health and estrus detection as well. Using technologies similar to the IceQube or HR Tag for 401 

calving prediction or applying machine-learning techniques to existing prediction techniques 402 

could provide additional uses for these technologies. This would increase perceived usefulness 403 

by producers and potentially increase technology adoption (Borchers and Bewley, 2015). 404 

 Future work in calving event prediction will need to focus on the sensitivity and 405 

specificity of these technologies. In comparison to calving alerts, larger specificity values have 406 

traditionally been more valued in estrus and health because of the cost associated with missed 407 



events (ISO, 2007; Hogeveen et al., 2010; Rutten et al., 2013). In animal illness detection, false 408 

positives (type I errors) can cause financial losses through unnecessary treatment (Burfeind et al., 409 

2010). These same principles are not as applicable in calving prediction. Identifying a laboring 410 

non-laboring cow as calving could cause unnecessary treatment or handling. False negatives may 411 

be more costly with calving prediction because they are instances where systems do not detect 412 

actual calving events. The consequences of missed calving events could be extremely 413 

detrimental (dystocia, stillbirth, cow death, etc.) and may outweigh the comparative increase in 414 

farm labor from incorrectly identified calving events. Accordingly, calving prediction methods 415 

should be more sensitive and less specific if both cannot be concurrently obtained. Future 416 

research in calving prediction and economic modeling may need to explore this relationship 417 

more closely. 418 

 Additional benefits of calving prediction may be realized if calving alerts are generated 419 

from both large and small time intervals. Large time intervals would allow dairy producers 420 

ample time to move cows to maternity pens if they choose, and closely monitor cows during 421 

labor to provide assistance as necessary. Advanced knowledge of calving time would allow 422 

producers the opportunity to provide high-risk cows with calcium supplements to reduce the risk 423 

of hypocalcemia after calving (Oetzel and Miller, 2012),  or potentially reduce labor-associated 424 

pain through the provision of NSAIDs during the calving process (Newby et al., 2013).  425 

Another use for calving prediction tools would be to distinguish between eutocial and 426 

dystocial calvings. Proudfoot et al. (2009) described cows experiencing dystocia as more restless 427 

24 h before calving than eutocial cows. Including calving ease evaluations in future machine-428 

learning techniques may allow models to discern between dystocial and eutocial calvings. In the 429 

current study, farm staff did not record adequately specific calving ease indications and this data 430 



were not included in machine-learning analyses. A follow-up study with a larger sample size of 431 

cows is required to determine if cows experiencing dystocia can be identified using precision 432 

dairy monitoring technologies. 433 

CONCLUSIONS 434 

Precision dairy monitoring technologies traditionally used for health and estrus alert 435 

generation effectively quantified behavioral changes around calving. Application of machine-436 

learning-based calving prediction methods to this data was effective in performing retrospective 437 

calving prediction. Combining activity, rumination time, and lying behavior variables in neural 438 

network machine-learning methods generated sensitive and specific alerts at the daily and 8 h 439 

level. In the absence of rumination data, technologies monitoring only activity and lying 440 

behaviors could accurately predict the day and 8 h period before calving events using neural 441 

network machine-learning techniques. Future work will need to identify calving events within 442 

smaller periods to provide alerts on which farmers can make meaningful management decisions.  443 
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Table 1. Adjusted least-squares means ± SE from daily mixed models accounting for parity for 14 d of prepartum behavioral data in 574 

dairy cattle (n = 53 calvings). Results for: neck activity1, rumination time1, natural logarithm for number of steps2, total motion2, lying 575 

time2, and lying bouts2 are shown. 576 

Days before calving 

HR Tag  IceQube 

Neck activity 

(units/d) 

Rumination 

time 

(min/d) 

 

Number of 

steps 

(steps/d) 

Total motion 

(units/d) 

Lying time(h/d)3 

Lying bouts 

(bouts/d) Primiparous Multiparous 

-14 343.5 ± 22.7a   395.9 ± 18.2a  2121.8 ± 1.1a   161776.8 ± 1.4d 11.3 ± 0.6 12.9 ± 0.5 9.1 ± 0.6b 

-13 355.2 ± 22.6a   401.5 ± 18.2a  2209.5 ± 1.1a   365338.0 ± 1.4cd 11.0 ± 0.6 11.4 ± 0.5 8.2 ± 0.6b 

-12 359.4 ± 23.2a   403.6 ± 18.7a   2262.2 ± 1.1a   323659.8 ± 1.4cd 10.7 ± 0.6 11.8 ± 0.5 8.1 ± 0.6b 

-11 352.2 ± 24.3a   365.0 ± 19.5ab  2309.0 ± 1.1a   294344.6 ± 1.5cd 11.0 ± 0.6 11.7 ± 0.5 9.1 ± 0.6b 

-10 362.0 ± 24.7a   378.8 ± 19.7a  2215.3 ± 1.1a   359216.3 ± 1.5cd 10.8 ± 0.6 11.5 ± 0.5 9.3 ± 0.6b 

 -9 352.5 ± 24.3a   354.6 ± 19.4ab  2130.3 ± 1.1a   214432.7 ± 1.5d 10.6 ± 0.6 12.3 ± 0.5 9.1 ± 0.6b 

 -8 380.0 ± 23.7a   359.9 ± 18.9ab  2234.8 ± 1.1a   304705.4 ± 1.5cd 10.9 ± 0.6 11.6 ± 0.5 9.5 ± 0.6b 

-7 389.5 ± 23.9a   368.3 ± 19.1a  2420.7 ± 1.1a   400696.5 ± 1.5cd 9.9 ± 0.6 12.2 ± 0.5*** 10.3 ± 0.6b 

-6 364.6 ± 23.2a   321.1 ± 18.5ab  2556.5 ± 1.1a   570668.0 ± 1.4bcd 9.1 ± 0.6 12.3 ± 0.5*** 10.5 ± 0.6b 

-5 385.0 ± 23.0a   339.0 ± 18.3ab  2454.2 ± 1.1a   578988.2 ± 1.4bcd 9.3 ± 0.6 12.2 ± 0.5*** 10.3 ± 0.6b 

-4 390.4 ± 22.6a   338.0 ± 18.1ab  2541.5 ± 1.1a 1150505.3 ± 1.4abc 8.2 ± 0.6 11.9 ± 0.5*** 10.8 ± 0.6b 

-3 398.9 ± 22.1a   322.7 ± 17.7ab  2489.6 ± 1.1a 1297357.4 ± 1.4abc   8.1 ± 0.6 11.7 ± 0.5*** 10.1 ± 0.6b 

-2 354.0 ± 22.0a   326.7 ± 17.6ab  2585.3 ± 1.1a 2138156.7 ± 1.4ab   7.4 ± 0.6 11.2 ± 0.4*** 10.3 ± 0.6b 

-1 331.8 ± 22.0a   281.7 ± 17.7b  2708.3 ± 1.1a 4087308.7 ± 1.4a   7.0 ± 0.6 10.2 ± 0.5*** 13.6 ± 0.6a 

a-dLeast-squares means ± SE values within a column displaying different superscripts differ (P < 0.05). 577 

***Least-squares means ± SE values displaying asterisk superscripts indicate a significant day by parity interaction (P < 0.01). 578 

1Variable values measured by the HR Tag, SCR Engineers, Ltd., Netanya, Israel. 579 

2Variable values measured by the IceQube sensor, IceRobotics, Ltd., Scotland. 580 

3A significant parity by day interaction was found for lying time. Lying time for primiparous and multiparous cows is reported.581 



Figure 1. Behavioral differences expressed as least-squares means ± SE in 2 h periods before 582 

calving for: a) neck activity1,3, b) rumination time1, c) number of steps2, d) total motion units2, e) 583 

lying time2, and f) lying bouts2. Differences were calculated as each cow’s 2 h behavioral data 584 

value minus the average of the same 2 h time of day for the previous three days. A mixed linear 585 

model calculated least-squares means for 14 d of 2 h data (72 h shown) of prepartum behavioral 586 

data (n = 53 calvings). 587 
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f) 604 

 605 

1 Variable measured by the HR Tag, SCR Engineers, Ltd., Netanya, Israel. 606 

2 Variable measured by the IceQube sensor, IceRobotics, Ltd., Scotland.  607 

3A significant parity by day interaction was found for neck activity. Neck activity for 608 

primiparous (dashed line) and multiparous (solid line) cows is reported. 609 

* Denotes significance at *P < 0.05, **P < 0.01, and ***P < 0.001 for effects of 2 h time points, 610 

or effect of parity (in neck activity only) before calving on the deviation from baseline 611 

behavioral values.612 
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Table 2. Prediction of the day before calving1 using daily behavior data from the HR Tag2 and 613 

IceQube3 for 14 d before calving. Machine-learning models were developed using leave one out 614 

cross-validation methods on 80% of observations. Models were then tested using 20% of 615 

observations for testing (n = 53 calvings).4 616 

Analysis Technology Sensitivity Specificity 

Positive 

predictive 

value 

Negative 

predictive 

value 

Random forest 
HR Tag 12.5% 95.6% 20.0% 92.6% 

IceQube 37.5% 89.0% 23.1% 94.2% 

Combination5 25.0% 89.0% 16.7% 93.1% 

Linear discriminant analysis 
HR Tag 25.0% 96.7% 40.0% 93.6% 

IceQube 75.0% 91.2% 42.9% 97.6% 

Combination5 75.0% 93.4% 50.0% 97.7% 

Neural network 
HR Tag 0.0% 98.9% 0.0% 91.8% 

IceQube 50.0% 87.9% 26.7% 95.2% 

Combination5 100.0% 86.8% 40.0% 100% 

1 The day of calving was excluded from daily machine learning analyses. 617 

2The HR Tag (SCR Engineers, Ltd., Netanya, Israel) measured neck activity and rumination. 618 

3The IceQube (IceRobotics, Ltd., Scotland) measured lying bouts, lying time, standing time, step 619 

number, and total motion. 620 

4Sensitivity = TP / (TP + FN) x 100, specificity = TN / (TN + FP) x 100, positive predictive 621 

value = TP / (TP + FP) x 100, negative predictive value = TN / (TN + FN) x 100; where TP = 622 

true positive, TN = true negative, FP = false positive, and FN = false negative. 623 

5Variables from both the HR Tag and the IceQube were used in combination analyses.624 



Table 3. Prediction of the 8 h period on the day of calving (22 h data)1 before calving using 24 h 625 

backward moving averaged bihourly behavior data from the HR Tag2 and IceQube3. Machine-626 

learning models were developed using leave one out cross-validation methods on 80% of 627 

observations. Models were then tested using 20% of observations for testing (n = 53 calvings).4 628 

Analysis Technology Sensitivity Specificity 

Positive 

predictive 

value 

Negative 

predictive 

value 

Random forest 
HR Tag 72.4% 89.3% 77.8% 86.2% 

IceQube 65.5% 83.9% 67.9% 82.5% 

Combination5 72.4% 82.1% 67.7% 85.2% 

Linear discriminant analysis 
HR Tag 79.3% 80.4% 67.6% 88.2% 

IceQube 72.4% 78.6% 63.6% 84.6% 

Combination5 75.9% 75.0% 61.1% 85.7% 

Neural network 
HR Tag 58.6% 92.9% 80.9% 81.3% 

IceQube 79.3% 83.9% 71.9% 88.7% 

Combination5 82.8% 80.4% 68.6% 90.0% 

1The bihourly period immediate preceding calving was excluded from machine learning analyses 629 

2The HR Tag (SCR Engineers, Ltd., Netanya, Israel) measured neck activity and rumination. 630 

3The IceQube (IceRobotics, Ltd., Scotland) measured lying bouts, lying time, standing time, step 631 

number, and total motion. 632 

4Sensitivity = TP / (TP + FN) x 100, specificity = TN / (TN + FP) x 100, positive predictive 633 

value = TP / (TP + FP) x 100, negative predictive value = TN / (TN + FN) x 100; where TP = 634 

true positive, TN = true negative, FP = false positive, and FN = false negative. 635 

5Variables from both the HR Tag and the IceQube were used in combination analyses. 636 


