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Abstract  –  Form  is  a  rich  concept  that  agglutinates  information  about  the  proportions  and  topological

arrangement of body parts. Modularity is readily observable in both the variation of proportions (variational

modules) and the organization of topology (organizational modules). The study of variational modularity and of

organizational modularity faces similar challenges regarding the identification of meaningful modules and the

validation of generative processes; however, most studies in morphology focus solely on variational modularity,

while  organizational  modularity  is  much  less  understood.  A possible  cause  for  this  bias  is  the  successful

development in the last twenty years of morphometrics, and specially geometric morphometrics, to study patters

of  variation.  This  contrasts  with  the  lack  of  a  similar  mathematical  framework  to  deal  with  patterns  of

organization.  Recently,  a  new  mathematical  framework  has  been  proposed  to  study  the  organization  of

anatomical parts using tools from Network Theory, so-called anatomical network analysis. This essay explores

the potential use of this new framework – and the challenges it faces in identifying and validating biologically

meaningful modules in morphological systems –, by providing an example of a complete analysis of modularity

of the human skull and upper limb. Finally, we suggest further directions of research that may bridge the gap

between variational and organizational modularity studies.
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1. INTRODUCTION

Modularity is a widespread concept in modern science that emerged from the need to parcellate large, complex

systems into smaller, hierarchically nested components (Simon, 1962). The study of modularity is commonplace

in all biological disciplines because modularity affects the way complex biological systems, from genomes to

ecosystems, originate, function, and evolve (Schlosser and Wagner, 2004; Callebaut and Rasskin-Gutman, 2005;

Wagner et al., 2007). In morphology, the study of modularity focuses mostly on identifying regions of the body

with a coordinated change of shape,  by measuring traits covariation using distance-based morphometrics or

landmark-based  geometric  morphometrics  (reviewed  in  Esteve-Altava,  2016).  The  historical  origin  of  this

approach traces back to the influential book  Morphological Integration by Everett  Olson and Robert Miller

(1958)  in  the  context  of  zoological  studies,  and  to  the  seminal  paper  on  The  ecological  significance  of

correlation pleiades by Raissa Berg (1960) in botanical studies. Morphological modules identified on the basis

of shape variation belong to the category of variational modules (Wagner and Altenberg, 1996; Eble, 2005;

Wagner et al., 2007). Variational modularity has been the focus of many scholarly reviews in recent years (e.g.,

Klingenberg, 2008, 2010, 2014; Melo et al., 2016). In short, a variational module is a group of traits that vary

coordinately (i.e., they are morphologically integrated sensu Olson and Miller) and, to some extent, they vary

independently of other groups of traits. Up to two thirds of research studies on morphological integration and

modularity analyze shape variation (Esteve-Altava, 2016), using variational module (more or less explicitly) as a

synonym of morphological module. For this reason, in this essay we used variational modularity to refer to

shape-variational modules as derived from morphometric analyses.

Morphological  modules  are  also accessible to  study on the basis  of  the  topological  interactions established

among  the  constituent  anatomical  parts  of  a  morphological  system.  This  new  conceptual  framework  uses

network models and community detection algorithms to identify modules (Esteve-Altava et al., 2011; Rasskin-

Gutman and Esteve-Altava, 2014). A network is a mathematical object that comprises two sets of elements: a set

of nodes that represent the constituent parts of the system, and a set of links that connect pairs of nodes and

represent interactions among these parts. Morphological systems are easily modeled as networks of body parts;

in fact, networks are widely used already in neuroanatomy, where the brain is modeled as a network in which

nodes represent neurons (or brain regions) and links represent synaptic connections or co-activation patterns

(e.g.,  from fMRIs).  Anatomical  networks  are  abstract  representations  of  an  organism’s  topology (Fig.  1):

understanding topology as the way in which constituent parts are interrelated or arranged in the body (Rasskin-

Gutman and Esteve-Altava, 2014). Although this quantitative approach is relatively new, a more general use of

topology in morphology dates back to the beginnings of comparative anatomy and to Geoffroy Saint-Hilaire’s

principle of connections. Ever since, connections among anatomical parts have been used in building theoretical

models  of  morphological  organization  (e.g.,  Woodger’s  axiomatic  method,  Rashevsky’s  bio-topological
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mapping, and Riedl ’s diagrammatic morphotype) and as a tool to establish homology between two body parts

(see Rasskin-Gutman and Esteve-Altava, 2014 for an historical review). Because anatomical networks focus on

explicit  structural relations among body parts within an organism, independently of their variation, modules

identified using anatomical network analysis belong to the category of organizational modules (Eble, 2005). An

organizational module is a group of elements that establish more and/or stronger interactions within the group

than  outside  it.  Thus,  the  emphasize  is  placed  on  interactions  among  component  parts,  as  an  important

constructional or functional property of form, whether interactions are defined based on structure (topology),

pleiotropy,  development,  or  performance (see Eble, 2005). Henceforth we used organizational modularity to

refer to topology-organizational modules as derived from anatomical network analyses.

Figure 1. Network models of the skull (A) and of the upper limb (B). The first feature that catches the eye is the

different organization of each network. On the one hand, the skull network shows a mesh-like organization,

whereas the upper limb network shows a more star-like organization with serially connected nodes radiating

from a central, small mesh. On the other hand, the skull network has a higher density of links (Kmedian = 5, Kmin =

4,  Kmax = 13) than the upper limb network (Kmedian  = 2,  Kmin = 1,  Kmax = 7).  Networks are plotted using the

Kamada-Kawai force-directed algorithm, which renders a natural layout for anatomical networks. Notice that the

visual representation of a network model is trivial as long as the connections among nodes do not change.
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Studies on variational and organizational modules have ontological and epistemological differences, although

both approaches seek to parcellate complex morphological systems into highly integrated regions (Table 1). The

source of these differences are (1) that each approach uses its own definition of form, and consequently, (2) that

they use different methods to analyze organismal forms. Form is a rich concept that agglutinates information

about  proportion  (i.e.,  size  and  shape)  and  structure  (i.e.,  topology  and  arrangement),  as  well  as  other

information  related  to  the  relative  orientation  and  functional  articulation  of  parts  (Rasskin-Gutman  and

Buscalioni,  2001;  Rasskin-Gutman,  2003).  In  this  context  of  multiple  layers  of  morphological  information,

variational modules deal with form at the level of proportions, while organizational modules deal with form at

the level of structure. As a consequence, each approach uses a different set of proxies and formalisms. The raw

data in morphometric-based variational modules are morphometric traits, such as linear distances and landmark

coordinates, and the resulting mathematical objects analyzed are correlation or covariation matrices. In contrast,

the raw data in network-based organizational modules are individual body parts and their topological relations,

and the resulting mathematical objects are network models.

Identifying morphological modules (variational and organizational) from the empirical data described above,

without any previous hypothesis of what are the actual modules, requires to use the adequate mathematical tools.

In morphometrics  we identify variational  modules  from the matrix  of  traits  correlation using,  for  example,

hierarchical clustering (Goswami, 2006) or graph modeling (Magwene, 2001). Note that in the latter method,

graphs (or networks) are only used to summarize, or to help visualizing, statistical relationships among traits

calculated from the correlation matrix; thus, the identification of modules does not rely on a network-based

method as its name would suggest.  However,  it  is possible to identify variational modules from correlation

matrices  using  network-based  methods  (e.g.,  Perez  et  al.,  2009;  Suzuki,  2013;  but  see  MacMahon  and

Garlaschelli, 2015 for methodological considerations). Moreover, correlation matrices can be constructed using a

coordinate-based approach, treating each coordinate as a unit of variation (e.g., Klingenberg, 2008) , or using a

vector-based approach, treating each landmark (2D or 3D) as a unit of variation (e.g., Goswami and Polly, 2010;

Goswami and Finarelli, 2016). Finally, we can validate the identified variational modules of the morphometric

data using statistical tests  (e.g., Fisher’s z-transformation and Student’s t-test, as in Goswami, 2006). On the

other  hand,  in  network-based  methods  we  identify  organizational  modules  using  community  detection

algorithms. Broadly speaking, a network module is a group of nodes with more interactions (i.e., links) within

the group than outside it. The identification of modules in networks has grown in sophistication in parallel with

the application of networks to telecommunications, sociology, and biology (e.g., Palla et al., 2005; Newman,

2006; Fortunato, 2010); and within biology, most notably to ecology (e.g., Olesen et al., 2007), neurobiology

(e.g.,  Sporns, 2011), and molecular biology  (e.g.,  Guimerà and Nunes Amaral,  2005). Community detection
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algorithms  seek  to  delimit  modules  using  the  topological  information  represented  in  the  network  model.

However, identifying modules is computationally costly because of the large number of alternative partitions in

which we can group the nodes of a network. Even in relatively small networks, such as the 21-node network of

the human skull (described in Esteve-Altava et al., 2013) there are about 4.75 x1014 possible partitions. This is

because  the  number  of  potential  partitions  of  a  network  grows  exponentially  with  the  number  of  nodes,

following the Bell’s numbers progression (Bell, 1938). There are many different algorithms to identify modules

in networks, which vary in their heuristic approach. For example, some algorithms search the space of possible

partitions by optimizing a quality function, while others use statistical inference on generative models, dynamic

diffusion  or  spin  processes  (reviewed  in  Fortunato,  2010). Common  validation  methods  include  (1)  the

quantification of a function that measures the overall quality of the partition (which is usually the same used in

optimization  methods,  see  Eq.  1 below)  according  to  the  observed  vs. expected  links  within  and between

modules  (Newman  and  Girvan,  2004),  (2)  evaluating  every  module  individually  to  meet  a  mathematical

definition of module (Fortunato and Barthelemy, 2007), or (3) calculating the significance of modules using

statistical  tests  (e.g.,  a  Wilcoxon rank-sum test  on  internal  vs. external  number  of  links)  or  bootstrapping.

Unfortunately, identifying network modules and validating network partitions are still open problems without

universal agreed solutions (Fortunato and Hric, 2016).

Processes taking place at genetic, developmental, and functional levels, and across ontogenetic and evolutionary

scales, are causally related to the emergence of morphological modularity (review in Klingenberg, 2008, 2014;

Melo et al.,  2016). Thus, a fairly common experiment consists in testing whether an  a priori hypothesis of

modularity based on information from one or more of these levels matches the morphological modules observed

empirically in ontogeny or evolution (Esteve-Altava,  2016).  Testing the fit  of  variational  modules (or more

generally,  of traits covariation) to genetic,  developmental,  and functional  hypotheses has a long tradition in

morphology (see, e.g., Cheverud, 1982, 1989, 1996; Zelditch, 1988; Zelditch and Carmichael, 1989). There are

various methods available to carry out such confirmatory tests, of which the most popular one in recent times is

the Escoufier’s RV coefficient  (Klingenberg,  2009).  However,  some authors have raised concerns about  the

reliability of RV coefficients and proposed alternative methods to validate  a priori hypotheses of variational

modularity. For example, Garcia, Oliveira, and Marroig have proposed the modularity hypothesis index (MHI,

Garcia  et  al.,  2015),  which  renders  lower  type  I  and  II  error  rates  than  the  RV;  Adams has  proposed  the

covariance ratio (CR, Adams, 2016), which (unlike RV) is not sensible to the size of the sample and to the

number of variables,  thus,  allowing to perform comparisons across different  data sets;  lastly,  Goswami and

Finarelli have proposed an approach based on maximum likelihood and the Akaike information index to select

among  alternative  hypotheses  of  modularity (EMMLi,  Goswami  and  Finarelli,  2016).  Note  that  this  latter

method would allow to compare competing partitions, such as those previously validated by one or more of the
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former methods. On the other hand, under the network-based approach, testing the fit of organizational modules

to a priori hypotheses of modularity rely on measuring the similarity between two alternative partitions. These

methods include measures based on pair counting, cluster matching, and information theory (Fortunato, 2010;

Fortunato and Hric, 2016), all of which estimate to what extent the partition identified on a topological basis

resembles  a  previously known partition  based  on  metadata  (e.g.,  genetic,  developmental,  and/or  functional

modules)  or  another  algorithm.  For  example,  in  the  context  of  morphological  organizational  modules,  the

normalized mutual information index (NMI, Danon et al., 2005) has been used to measure the similarity between

the modules identified in the networks of the human limbs and various hypotheses based on the function and

developmental origin of bones and muscles (Diogo et al., 2015).

Even though variational and organizational modularity differ in their epistemological and ontological basis, both

approaches face similar challenges: the identification of reliable modules, their validation, and their comparison

to alternative or a priori hypotheses. These challenges have been reviewed recently in the context of variational

modularity and shape analysis (e.g., Goswami et al., 2014; Klingenberg, 2014; Garcia et al., 2015; Adams, 2016;

Adams and Collyer, 2016; Goswami and Finarelli, 2016; Melo et al., 2016) and we will not discuss them further.

Here we focus on these challenges in the context of organizational modularity and anatomical network analysis,

by presenting a working example of how to identify, validate, and compare network modules in the anatomical

networks of the skull  and the upper  limb of humans.  Then,  we discuss  some ideas about  how to integrate

variational  and  organizational  approaches.  Although,  it  is  not  well-known whether,  and  how,  variation  and

organization work together in structuring and shaping the form of organisms (but see, e.g., Perez et al., 2009;

Esteve-Altava et al., 2013; Suzuki, 2013), the hope is that by bridging the gap between them we will have a

better understanding of morphological modularity, and possibly help to tackle challenges on both sides.

2. STUDYING ORGANIZATIONAL MODULES USING NETWORK ANALYSIS

This section summarizes the process of identifying, validating, and comparing organizational modules using

community detection algorithms and related methods. As an example, we used the anatomical networks of the

skull and of the upper limb skeleton of humans. First, we introduce the concept of network model and how it

formalizes the organization of morphological  parts.  Then,  we present  alternative approaches to evaluate the

quality of partitions and of individual modules, which we apply afterward to validate the modules identified

using a classic community detection algorithm based on the structural equivalence or topological overlap of

nodes (GTOM, Ravasz et al., 2002). As we will  see, the results of this approach will highlight most of the

challenges  we  face  when studying  modularity in  anatomical  networks.  To tackle  these challenges,  we  also

explored  the  use  of  a  more  sophisticated  community  detection  algorithm  based  on  local  optimization  of

statistically significant communities (OSLOM, Lancichinetti et al., 2011). We close this working example by
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quantifying the similarity between network partitions and alternative partitions based on biological criteria, using

information theory measurements. For the most part of the analysis we have used the free software R 3.3.1 and

the package  igraph 1.0.1,  unless otherwise stated; the source code and the network models are available as

Supplementary Materials. The software to run OSLOM is available from the author’s page (www.oslom.org).

2.1. Anatomical Network Modeling

An anatomical network formalizes the way in which body parts are topological related, and, as such, it is a

model  of  the  organization  of  a  morphological  structure.  Topological  relations  (connections)  also  embody

developmental and functional interactions that take place between two body parts. For example, connections

among skull bones are primary sites of bone growth and remodeling, while connections among limb bones are

mobile articulations. Figure 1 shows the network models of the human skull (first published in Esteve-Altava et

al., 2011) and of the human upper limb (first published in Diogo et al., 2015), in which nodes represent bones

and links represent their physical joints (i.e., in the skull, craniofacial sutures and synchondroses; in the limb,

mainly synovial joints).

A graph is a mathematical object that comprises a set of elements (vertices) and a set of pairwise-relations

among elements (edges). A network is a graph with a non-trivial topology (e.g., not regular or random), although

most often the terms graph and network are used as synonyms. Likewise, nodes (N) and links (K) are used as

synonyms of vertices and edges,  respectively.  For simplicity,  we modeled the networks of our examples as

undirected (i.e., links have no direction) and unweighted (i.e., links are either present or absent), which is the

simplest type of network. A network can be mathematically formalized as a binary adjacency matrix ( Aij) of

dimension N x N, in which the presence of a link between nodes i and j is coded as 1 and the absence as 0.

2.2. Definition of Module and Validation Partitions

A module (i.e., a community in network theory) is a subset of nodes more strongly connected with each other

than with nodes outside the subset. To estimate how well a given partition of the network identifies the modules,

Newman and Girvan (2004) defined the parameter modularity (commonly referred as Q),

Q=∑
s=1

m

[ k sK−( ds2K )
2

] , (Equation 1)

where  m is the number of modules of the partition,  ks is the number of links within module  s,  ds is the total

number of links of nodes in s (both inside and outside s), and K is the total number of links in the network. 

The parameter Q quantifies how strongly connected are the modules identified compared to a randomization of

the network. Q is 0 when the number of links within modules is no better than expected in the randomization;
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higher values indicate a stronger modularity than expected, being Q = 1 the theoretical maximum. In practice,

Newman and Girvan reported that strongly modular networks show values between 0.3 and 0.7. The expected

error  of  Q can be calculated using a jackknife procedure where each link is  considered as an independent

observation. It is worth noticing that the value of Q is specific of each partition and network; thus, we can use it

to compare among different partitions of a same network, but not to compare two different networks. In short,

one network is not more modular than another because it has a higher value of Q for its best partition.

Equation 1 also includes the condition that one group of nodes has to fulfill to be a module, that is, having

relatively more connections within the module than outside, which corresponds with the definition of module:

k s
K

−( d s2K )
2

>0 . (Equation 2)

As a consequence, it is possible to have a partition of a network in which not all groups of nodes are modules

according to Eq. 2. In turn, individual modules fulfilling Eq. 2 might have, in turn, sub-modules that also fulfill

Eq. 2, but where not identified by the community detection algorithm. This situation produces a resolution limit

in those community algorithms that directly or indirectly seek to find the partition of the network that renders the

maximum modularity  (Fortunato  and  Barthelemy,  2007).  The  underlying  reason  of  this  resolution  limit  is

precisely that most networks have a hierarchical grouping of nodes into nested sub-modules. Alternatively, we

can also validate each module of a partition statistically, for example, using a Wilcoxon rank-sum test on internal

(ks) vs. external (ds – ks) number of links. Here we test the null hypothesis that there is no statistical difference

between the number of internal and external links against the alternative hypothesis that the number of internal

links is greater than the number of external links (i.e., the definition of a module). In our example, we used the

Wilcoxon rank-sum on the modules identified by the first of the community detection algorithms used.

2.3. Identifying Modules with Community Detection Algorithms

The  first  community  detection  algorithm  shown  is  based  on  a  hierarchical  clustering  of  the  generalized

topological overlap similarity matrix among nodes (GTOM, Ravasz et al., 2002), which is a classic method that

uses  a  heuristic  approach  to  identify modules.  Heuristic  methods  are  designed  to  overcome  the  otherwise

computationally costly task of seeking and evaluating all the possible partitions of the network, by using an a

priori reasoning of which nodes we would expect to group together. The heuristic of GTOM is that nodes that

connect to the same other nodes (i.e., share neighbors) have a higher chance to belong to a same module.

The topological overlap between two nodes is the number of common neighbors between two nodes, defined as

ΤΟi , j=
J (ni , n j)

min
k

(k i ,k j)
, (Equation 3)
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where J(ni,nj) is the number of neighbors in common between nodes i and j. TO is 1 when the two nodes share all

their neighbors, that is, they connect to exactly the same other nodes.  TO is 0 when the two nodes have no

neighbor in common. By calculating the topological overlap over all pairs of nodes we get the GTOM, which is

equivalent to a distance or dissimilarity matrix.

We can group nodes into clusters by using an agglomerative hierarchical cluster analysis on GTOM (in our

example we used the average-linkage as in Ravasz et al., 2002; Esteve-Altava et al., 2013). The output is a

hierarchical grouping of nodes, as in the two dendrograms shown in Figure 2. In order to identify the modules of

the network we need then to decide at what level to cut the dendrogram. To make this decision we used (as it is

customary in most hierarchical algorithms) the parameter Q explained before (Eq. 1). Thus, we measured Q for

each possible partition of the dendrogram to identify the best partition, which is the one having the highest Q or

Qmax (Fig. 2; perpendicular dashed line in red). We can then calculate the statistical significance of each module

or, as it is the case, of any cluster of the dendrogram, to evaluate the quality of each individual module identified

by cutting the dendrogram at the level of Qmax (Fig. 2; circles on the dendrogram clusters).

Using the GTOM algorithm the human skull network shows a relatively weak (Qmax < 0.3) modular partition in

two modules. One module groups mainly the bones of the neurocranium (cranial base and vault) and the other

groups the bones of the face (Fig. 2A, in red and blue, respectively). Both modules (clusters 24 and 23 in the

dendrogram) are statistically significant, and include some sub-modules that are also significant (clusters 26 and

28) together with non-significant groups (e.g., vomer-palatines cluster) and singletons (e.g., the zygomatics).

This pattern suggest that the human skull might have a partially hierarchical modularity, with some nodes having

a lesser contribution. In contrast, the upper limb network shows a strong modular partition (Qmax > 0.5) in eight

modules (Fig. 2B). One module groups the bones of the pectoral girdle, stylopod, and zeugopod (in green); two

modules group the bones of the wrist (in  purple); and five modules group the phalanges of each of the five

digits. However, only two of these modules are statistically significant (clusters 40 and 46), which means that the

GTOM algorithm returns bad modules as part of the best partition. Thus, we could ask whether is possible to

find higher in the hierarchy a significant module without non-significant sister modules, so that all  modules

identified are significant. For example, in Figure 2, the purple module corresponds to cluster 45, which include

the significant cluster 46 plus its sister cluster that is not significant. This shows that in a partition of the network

using the Qmax a significant module can split into two sub-modules, not all of which being significant. In fact, the

only partition of the upper limb network where all its modules are significant is the one-module partition (cluster

33), which would indicate that the whole network cannot be further divided into statistically significant modules

(i.e., it is not modular, but fully integrated).
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Figure 2. Modules identified with GTOM in the human skull (A) and upper limb networks (B). The dendrogram

grouping the bones comes from the hierarchical cluster analysis of the TOM. The perpendicular dashed line in

red indicates the partition of the dendrogram having the highest modularity (skull:  Qmax = 0.27,  Qerror = 0.05;

upper limb: Qmax = 0.52, Qerror = 0.08). The circles on each bifurcation of the dendrogram indicate the statistical

significance of that cluster in a Wilcoxon rank-sum test of internal  vs. external connections:  black, p-value <

0.001; gray, p-value < 0.01; white, p-value < 0.5; bifurcations without a circle are non-significant.
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These examples illustrate two of the difficulties that the identification of modules in anatomical networks face:

(1) the identification of weak partitions (as in the skull) and (2) of non-significant modules (as in the upper

limb), which may be related to each other. The first difficulty is inherent to small size networks (e.g., tetrapod

skull networks have between 20 and 60 nodes, Esteve-Altava and Rasskin-Gutman, 2014). The small size of

networks hinders a correct statistical evaluation of their modules, in particular, when modules comprise only a

few nodes (e.g., half of the modules of the upper limb had only three nodes); a small size also makes more

difficult to discriminate between order and stochasticity in the connectivity patterns of the whole network. The

second difficulty is imposed by the algorithm we choose. Many algorithms deal with the identification of rather

simplistic  modular  organizations,  letting  aside  (or  underestimating)  the  presence  of  nested  or  overlapping

modules, or even a partial or total lack of modularity. For example, it is possible that the anatomical networks of

our examples are not truly hierarchical at this level, or that there is some degree of overlapping between their

modules, or that these networks are not modular in part or in its wholeness after all.

To tackle these difficulties we used a second community detection algorithm based on the local optimization of

statistically significant communities (OSLOM, Lancichinetti et al., 2011). OSLOM is specifically designed to

identify significant modules locally, as well as the presence of hierarchical organization, overlapping modules

(i.e., covers), partial modularity, and singletons (i.e., nodes not assigned to any module). Here, the module’s

significance is taken as a fitness function that measures the probability of that module in a network without

modularity  (i.e.,  a  randomization  of  the  empirical  network  that  keeps  the  same  degree  distribution).  This

probability is returned for every module identified as an estimation of the probability to find this module in the

randomized network (bs). In short, the algorithm optimizes the module’s significance by iteratively adding and

deleting nodes, looking for the most significant configuration available. This process is then iterated at a higher

level to look for hierarchical groups. Because OSLOM evaluates the significance of modules individually, it can

recover overlapping modules. Moreover, because the algorithm focuses on how individual nodes rise or lower

the local significance of modules, it can also identify nodes (or groups of nodes) that do not fit within any

module (i.e., singletons).

In contrast to the first community detection algorithm presented, OSLOM is stochastic, which means that the

output results may vary from one run to another. OSLOM returns the results of the majority consensus, that is,

the result  found in more than 50% of the runs. Finally,  two parameters need to be specified explicitly:  the

tolerance, which controls the significance threshold of modules; and the  coverage, which controls whether to

merge or to split sub-modules; together they affect the number of modules identified and their size. The authors

advice that if the network lacks of a well-defined modularity, the choice of parameters values might affect the
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results. Thus, for each anatomical network we ran 1000 iterations, setting the coverage to 0.5 (the default value),

and testing tolerances between 0.1 (default) and 0.5.

Figure 3. Modules identified with OSLOM in the human skull (A) and upper limb networks (B). For the skull,

two modules were identified, one cranial (red) and one facial (blue), which overlap at the frontal and zygomatic

bones (red-blue gradient pattern). For the upper limb, only one module was identified (green), while the rest of

the bones do not form a module (gray).

OSLOM  returns  two  overlapping  modules  in  the  human  skull  network  and  one  module  plus  a  group  of

singletons in the upper limb network (Figure 3). For the skull network, OSLOM returns a slightly different

arrange of modules depending on the value of tolerance (Fig. 4). For tolerance = 0.1, it returns no modules,

which indicates that the network is highly integrated. For tolerance = 0.11, it identifies a  core-cranial module
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that includes the occipital, sphenoid, parietal, and temporal bones (bs = 0.017). For larger values of tolerance

(between 0.12 and 0.2), it identifies two modules that are similar to the cranial and facial modules identified by

the first algorithm. In all instances, the cranial and the facial modules overlap in the frontal and zygomatic bones,

which are shared between the modules. Interestingly, in most cases only one of the two zygomatic bones (left or

right) participates in the overlap, which one does it specifically varies from rune to run, but since both have

equally connected to both modules this difference is trivial. For this reason we consider both zygomatic bones as

part of the overlap between the modules (Fig. 3A). Sporadically, for tolerance = 0.2, a broader overlap occurs

which also includes the sphenoid bone (Fig. 4; blue circle). In general, the cranial module has a better estimated

posterior significance that the facial module for all tolerance values, which means that a module like the cranial

one is less likely to occur in a randomized network. In contrast, for the upper limb network, OSLOM returns

only one  module  (bs =  0.153)  grouping together  the  bones  of  the  girdle,  the  stylopod  (humerus),  and  the

zeugopod (radius and ulna); while all the bones of the autopod (wrist and fingers) are not assigned to any module

(i.e.,  they are  singletons,  see  above).  The  one  module  identified  corresponds  to  the  statistically significant

module identified using the GTOM algorithm (Fig. 2B; cluster 40, in green); the other non-significant modules

identified using GTOM are not returned by OSLOM, where these bones are singletons (Fig. 3B, in gray).

Figure 4. Significance of the cranial (red dots) and facial module (blue dots) identified with OSLOM for a range

of tolerance values. The facial module is only identified for tolerances greater than 0.11 and always with a

significance higher than the cranial module. The blue circle indicates the value of an alternative, less frequent

facial module that includes also the sphenoid bone (see Main Text).
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2.4. Comparing between two partitions (or how to test a Ho)

We compared the partition of the skull and upper limb networks identified with the two algorithms to alternative

partitions based on different  developmental criteria.  For the skull  (Table 2),  we compared the partitions by

GTOM and OSLOM to a partition of bones by their ossification mechanism (dermal, endochondral, and mixed)

and to a partition of bones based on their cellular origin (mesoderm, neural crest, and mixed). For the upper limb

(Table 3),  we  compared the  partitions  by GTOM and OSLOM to  two partitions  of  the  limb based  on  its

developmental patterning, the traditional one (girdle, stylopod, zeugopod, and autopod) and a variant that also

includes the mesopod region (girdle, stylopod, zeugopod, mesopod, and autopod). For simplicity, we considered

all the singletons of the upper limb (i.e., bones not assigned to any module) as forming one module of their own.

We compared partitions using an index based on information theory, the  normalized mutual information index

(NMI, Danon et al., 2005). NMI measures the similarity of two partitions based on the additional amount of

information needed to infer one partition from the other (similar partitions would need less information) and

normalizes it by dividing by the arithmetic mean of the entropy of both partitions as

Inorm (P1 ,P2)=
2(H (P1)−H (P1|P2))
H (P1)+H (P2)

, (Equation 4)

where  H(P1) is the Shannon entropy of the first partition and  H(P1|P2) is the conditional entropy of the first

partition given the second partition. NMI is 1 when the two partitions are identical, and it is 0 when they are

totally different. For convenience we express the similarity between to partitions in percentages.

The partitions of the skull based on the ossification mechanism and on the cellular origin of bones are different,

46.8% similarity, which is almost half of the similarity between the results of GTOM and OSLOM, 70.8%. 

This result  is  expected because the two latter  partitions  are  both based on topology (GTOM  vs. OSLOM),

whereas the two developmental partitions are based on different criteria (ossification vs. cell origin). Partitions

by  GTOM  and  OSLOM  are  more  similar  to  that  based  on  cellular  origin  of  bones,  52.6%  and  68.3%,

respectively, than to that based on ossification mechanism of bones, 24.7% and 30.8%, respectively.

In both comparisons, OSLOM outperforms GTOM in identifying a division of the human skull similar to those

based on developmental criteria.

The partitions of the upper limb based on the alternative developmental patterning of the limb (with and without

a  mesopod)  are  similar,  as we would expect,  70.8%,  which is  almost  the  double of  the similarity between

partitions of GTOM and OSLOM, 35.2%. It is surprising here the low similarity between both algorithms, which
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might be related with the number of modules identified by each algorithm, seven and one, respectively. The

partition by GTOM is more similar to that  of  the developmental  patterning with the mesopod,  45.1%, than

without the mesopod, 33%; whereas the partition by OSLOM is more similar to that without the mesopod, 84%,

than with the mesopod, 56.1%. In both cases, again, OSLOM outperforms GTOM in identifying a division of the

human upper limb similar to those based on developmental patterning.

2.5. Biological Interpretation of Network-based Organizational Modules

What does it mean for a group of bones to be in a same network module? The answer to that question depends

on what are the actual biological functions of the topological interactions or relations that we formalized as the

network links. This is best illustrated by our example of the human skull, which consistently shows a modular

partition in two modules, one grouping the bones of the cranial vault and base (cranial module) and one grouping

the bones of the face (facial module). We built the network model of the human skull by formalizing craniofacial

sutures and synchondroses as the links of the networks. Among the most important functions of the sutures and

synchondroses of the skull is to act as primary sites of bone growth and remodeling (Opperman, 2000; Rice,

2008; Lieberman, 2011). In other words, a link represents a shared (i.e., correlated) growth of the two bones

linked. Because a network module is a group of bones more densely connected among them than to other bones

outside the module, bones that belong to the same module share more growth relations among them (on average)

than with other bones. Thus, we would interpret the facial and cranial modules as semi-independent units of

growth  (Esteve-Altava  et  al.,  2013).  Alternative  interpretations  of  network  modules  are  possible  because

connections among anatomical parts rarely carry one single biological function. For example, in addition to

being growth sites, we know that connections among skull bones have an also an important biomechanical role,

being key actors in processes of stress diffusion and tension release (Rafferty et al., 2003; Moazen et al., 2009;

Curtis et al.,  2013). In this context,  we would interpret the cranial and facial modules of the skull as semi-

independent biomechanical units.

Our example of the upper limb network is  useful  to illustrate the  a posteriori interpretation of modules as

evolutionary units or as constrains to evolvability. In the upper limb, both algorithms identify a well-defined

module comprising the bones of the girdle, stylopod, and zeugopod; but algorithms differ in how to group the

bones of the autopod. GTOM groups them en 7 different modules, whereas OSLOM finds they are all singletons

with not clear modular organization. The fact that most of the autopod modules identified by GTOM are not

significant supports the result of OSLOM. In the upper limb network, links represent physical articulation, via

cartilaginous joints, among bones. This pattern of articulation in the limb is highly conserved in evolution, and

deviations of this connectivity pattern to accommodate functional adaptations of the upper limb (e.g., to run,

burrow, flight, swim, etc) take place mostly at the autopod level (Lewis, 1989). In fact,  a similar pattern of

15

. CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/097261doi: bioRxiv preprint first posted online Jan. 1, 2017; 

http://dx.doi.org/10.1101/097261
http://creativecommons.org/licenses/by/4.0/


connections between the girdle, stylopod, and zeugopod bones is already present in Devonian tetrapodomorphs,

which  still  lack  of  a  well-defined  autopod  (Clack,  2009).  Thus,  we  can  interpret  this  module  as  a  highly

integrated evolutionary unit, which imposes a constraint to its evolvability. In contrast, the bones of the autopod

do not group in a module, being free to vary semi-independently of the proximal module and to accommodate

functional  needs  without  disrupting more  proximal  structures.  The  fact  that  the  autopod is  an  evolutionary

novelty  of  tetrapods  (albeit  its  developmental  homologies  with  fin  rays,  e.g.,  see  Nakamura  et  al.,  2016)

reinforces the idea of its semi-independent evolvability.

3. BRIDGING THE GAP BETWEEN VARIATIONAL AND ORGANIZATIONAL MODULARITY

Are shape-variational modules causally related to topology-organizational modules? The answer to that question

depends on the existence of an actual relationship between shape and topology in the generation of organismal

forms. Some sort of relation exist between shape and topology due to the fact that landmarks covariation is

constrained by the topological contiguity of the body parts on which landmarks are are located (Chernoff and

Magwene, 1999; Magwene, 2001, 2008; Klingenberg, 2009). This was first reported in a study on the factors

determining individual bone shapes covariation in the human skull by Karl Pearson and Wu Dingliang, who

found that contiguity (i.e., adjacency or connection) between two bones correlates with a covariation of shape

between them (Pearson and Woo, 1935). This study showed that the adjacency of bones (i.e., a connection in a

network model) is the most important factor, after symmetry, in explaining the co-variation in shape of two skull

bones.  Unfortunately,  the  correlation  between  topology  and  shape  has  not  been  the  subject  of  further

experimental studies since then. As a consequence, it is unknown whether this correlation comes from a one-way

causation (from topology to shape or the other way around) or from a two-way causal relationship; furthermore,

it is possible that this correlation is caused by a third factor acting on both features (e.g., growth), or even, it

might be an artificial correlation due to flaws in the design of the experiment.

The simplest way to explore whether shape-variational modules match with topology-organizational modules is

to use organizational modules as null hypothesis of shape variation, to be tested with morphometric methods – a

task which  easier  said  than done.  This  hypothesis  assumes  that  organizational  modules,  as  derived  from a

network analysis of body parts, act as a map of correlations or co-variations imposing structural constraints on

shape. Additionally, we might use an exploratory morphometric analysis to group bones according to their shape

correlation and then use a similarity test, as the one shown in the previous section, to validate the match of both

partitions.  In any case, a well-rounded confirmatory analysis would use both validation approaches, ideally,

using independent datasets.
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Finally, information on shape variation might be directly included in the construction of the anatomical network

model, so it is taken into account when we perform the community detection. For example, shape covariation of

two bones might be used to weigh their connection; thus, we would have a weighted anatomical network where

each link represent a topological connection pondered by the actual shape covariation between the two bones.

Since we only use the covariation of connected nodes, the resulting mathematical object would be different of a

direct network of the matrix of correlations (as in Perez et al., 2009; Suzuki, 2013).

4. CONCLUDING REMARKS

Morphological systems have a multi-level modularity, which is not limited to the underlying modularity of their

generative processes and their consequences on shape, but it is also manifested at a morphological level in the

structural organization of body parts. Anatomical network models and their analysis using community detection

algorithms offer a new, complementary set of tools to identify morphological modules, and study how they

change in development and evolution. We face the challenge now to further develop these tools in morphology,

revealing the causal connections between structure and shape in the origin and evolution of organismal forms. 
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TABLES

Table 1. Ontological and epistemological differences between variational and organizational modules.

Variational Modules Organizational Modules

Natural object complex morphological systems

Level of study
(what is form?)

proportions (shape and size) structure (topological arrangement)

Component parts morphometric traits individualized anatomical parts

Relation among parts correlation or covariation topological boundaries

Mathematical object correlation matrix network model

Module definition a group of traits that co-vary a group of parts densely connected

Identification
(exploration step #1)

cluster analysis community detection algorithm

Validation
(exploration step #1)

statistical test
optimization function Q
Wilcoxon rank-sum test

Confirmation
(a priori hypothesis test)

RV, CR, PLS similarity

Comparison
(with alternative partitions)

EMMLi, z-score similarity

Table 2. Divisions of the human skull compared.

Bone Ossification Cell origin GTOM OSLOM

Occipital Mixed Mesoderm Cranial Cranial

Parietals Dermal Mesoderm Cranial Cranial

Temporals Mixed Mixed Cranial Cranial

Sphenoid Endochondral Mixed Cranial Cranial

Zygomatics Dermal Neural crest Cranial Overlap

Frontal Dermal Neural crest Facial Overlap

Ethmoidal Endochondral Neural crest Facial Facial

Nasals Dermal Neural crest Facial Facial

Maxillas Dermal Neural crest Facial Facial

Lacrimals Dermal Neural crest Facial Facial

Palatines Dermal Neural crest Facial Facial

Nasal conchae Dermal Neural crest Facial Facial

Vomer Dermal Neural crest Facial Facial
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Table 3. Divisions of the human upper limb compared.

Bone Dev. pattern I Dev. pattern II GTOM OSLOM

Clavicle Girdle Girdle Cluster 40 Module

Scapula Girdle Girdle Cluster 40 Module

Humerus Stylopod Stylopod Cluster 40 Module

Radius Zeugopod Zeugopod Cluster 40 Module

Ulna Zeugopod Zeugopod Cluster 40 Module

Trapezoid Autopod Mesopod Cluster 46 Singleton

Trapezium Autopod Mesopod Cluster 46 Singleton

Scaphoid Autopod Mesopod Cluster 46 Singleton

Lunate Autopod Mesopod Cluster 45 (ns branch) Singleton

Triquetrum Autopod Mesopod Cluster 45 (ns branch) Singleton

Pisiform Autopod Mesopod Cluster 45 (ns branch) Singleton

Hamate Autopod Mesopod Cluster 45 (ns branch) Singleton

Capitate Autopod Mesopod Cluster 46 Singleton

Metacarpal 1 Autopod Autopod Digit 1 Singleton

Metacarpal 2 Autopod Autopod Cluster 46 Singleton

Metacarpal 3 Autopod Autopod Cluster 46 Singleton

Metacarpal 4 Autopod Autopod Cluster 45 (ns branch) Singleton

Metacarpal 5 Autopod Autopod Cluster 45 (ns branch) Singleton

Proximal phalanx 1 Autopod Autopod Digit 1 Singleton

Distal phalanx 1 Autopod Autopod Digit 1 Singleton

Proximal phalanx 2 Autopod Autopod Digit 2 Singleton

Middle phalanx 2 Autopod Autopod Digit 2 Singleton

Distal phalanx 2 Autopod Autopod Digit 2 Singleton

Proximal phalanx 3 Autopod Autopod Digit 3 Singleton

Middle phalanx 3 Autopod Autopod Digit 3 Singleton

Distal phalanx 3 Autopod Autopod Digit 3 Singleton

Proximal phalanx 4 Autopod Autopod Digit 4 Singleton

Middle phalanx 4 Autopod Autopod Digit 4 Singleton

Distal phalanx 4 Autopod Autopod Digit 4 Singleton

Proximal phalanx 5 Autopod Autopod Digit 5 Singleton

Middle phalanx 5 Autopod Autopod Digit 5 Singleton

Distal phalanx 5 Autopod Autopod Digit 5 Singleton

ns, non-significant
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