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ABSTRACT 1 

Most recent initiatives to sequence and assemble new species’ genomes de-novo fail to 2 

achieve the ultimate endpoint to produce contigs, each representing one whole 3 

chromosome. Even the best-assembled genomes (using contemporary technologies) consist 4 

of sub-chromosomal sized scaffolds. To circumvent this problem, we developed a novel 5 

approach that combines computational algorithms to merge scaffolds into chromosomal 6 

fragments, PCR-based scaffold verification and physical mapping to chromosomes. Multi-7 

genome-alignment-guided probe selection led to the development of a set of universal avian 8 

BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian 9 

genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and 10 

peregrine falcon (Falco peregrinus) to chromosome level comparable, in continuity, to avian 11 

reference genomes. Both species are of interest for breeding, cultural, food and/or 12 

environmental reasons. Pigeon has a typical avian karyotype (2n=80) while falcon (2n=50) is 13 

highly rearranged compared to the avian ancestor. Using chromosome breakpoint data, we 14 

established that avian interchromosomal breakpoints appear in the regions of low density of 15 

conserved non-coding elements (CNEs) and that the chromosomal fission sites are further 16 

limited to long CNE “deserts”. This corresponds with fission being the rarest type of 17 

rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid 18 

capture strategies using the current BAC set provide the basis for assembling numerous 19 

avian (and possibly other reptilian) species while the overall strategy for scaffold assembly 20 

and mapping provides the basis for an approach that (provided metaphases can be 21 

generated) could be applied to any animal genome.  22 

23 
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INTRODUCTION 1 

The ability to sequence complex animal genomes quickly and inexpensively has initiated 2 

numerous genome projects beyond those of agricultural/medical importance (e.g., Hu et al. 3 

2009; Groenen et al. 2012) and inspired ambitious undertakings to sequence thousands of 4 

species (Zhang et al. 2014a; Koepfli et al. 2015). De novo genome assembly efforts 5 

ultimately aim to create a series of contigs, each representing a single chromosome, from p- 6 

to q- terminus (“chromosome-level” assembly). Assembling genomes using next generation 7 

sequencing (NGS) technologies however typically relies on integration of the NGS data with 8 

a pre-existing chromosome-level reference assembly built with previous 9 

sequencing/mapping technologies (Larkin et al. 2012). Indeed, use of short read NGS data 10 

rarely produces assemblies at a similar level of integrity as those provided by traditional 11 

methodologies because of: a) an inability of NGS to generate long error-free contigs or 12 

scaffolds to cover chromosomes completely; and b) a paucity of inexpensive mapping 13 

technologies to upgrade NGS genomes to chromosome level. Even for projects with 14 

sufficient read-depths and long insert libraries, software algorithms at best, produce sub-15 

chromosomal sized “scaffolds” requiring physical mapping to assemble chromosomes. 16 

Newer technologies such as optical mapping (Teague et al. 2010) including BioNano (Mak et 17 

al. 2016), Dovetail (Putnam et al. 2016), and PacBio long read sequencing (Rhoads and Au 18 

2015) provide a long-term solution to this problem. To date, however, such approaches 19 

suffer from multiple limitations: for instance, BioNano contigs do not extend across multiple 20 

DNA nick site regions, centromeres or large heterochromatin blocks while PacBio 21 

sequencing requires hundreds of micrograms of high molecular weight DNA which is often 22 

not easy to obtain. 23 

 24 

Bioinformatic approaches, e.g., the Reference-Assisted Chromosome Assembly algorithm 25 

(RACA; Kim et al. 2013), were developed to approximate near chromosome-sized fragments 26 

for a de novo assembled NGS genome. RACA use requires a genome from the same clade 27 

(e.g., Order for mammals) of the target species being assembled to chromosomes (Kim et 28 
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al. 2013), sequencing of long-insert libraries and, at best, produces sub-chromosome sized 1 

predicted chromosome fragments (PCFs) that require further verification and subsequent 2 

chromosome assembly. It is worth mentioning that unlike RACA other reference-assisted 3 

assembly algorithms e.g., Ragout (Kolmogorov et al. 2014) or Chromosomer (Tamazian et 4 

al. 2016) do not use the target genome short- and long-range paired read data to verify 5 

synteny breaks in/between scaffolds, meaning that the target species-specific 6 

rearrangements could be missed from the reconstructed PCFs/pseudochromosomes making 7 

the reconstructed target chromosome structures more heavily biased to the reference 8 

genome(s) than when using RACA. RACA algorithm applied to the Tibetan antelope and 9 

blind mole rat genomes significantly improved continuities of these assemblies but they still 10 

contain more than one large PCF for most chromosomes (Kim et al. 2013; Fang et al. 2014). 11 

Therefore, a novel, integrative approach that would allow de novo assembled genomes to 12 

retain structures of the target species karyotypes is a necessity.    13 

 14 

A dearth of chromosome-level assemblies for nearly all newly sequenced genomes limits 15 

their use for critical aspects of evolutionary and applied genomics. Chromosome-level 16 

assemblies are essential for species that are regularly bred (e.g., for food or conservation) 17 

because a known order of DNA markers facilitates establishment of phenotype-to-genotype 18 

associations for gene-assisted selection and breeding (Andersson and Georges 2004). 19 

While such assemblies are established for popular livestock species, they are not available 20 

for those species widely used in developing countries (e.g., camels, yaks, buffalo, ostrich, 21 

quail) or species bred for conservation reasons (e.g., falcons). Chromosome-level 22 

information is essential for addressing basic biological questions pertaining to overall 23 

genome (karyotype) evolution and speciation (Lewin et al. 2009). Karyotype differences 24 

between species arise from DNA aberrations in germ cells that were fixed throughout 25 

evolution. These are associated with repetitive sequences used for non-allelic homologous 26 

recombination (NAHR) in evolutionary breakpoint regions (EBRs) where ancestral 27 

chromosomes break and/or combine in descendant species genomes (Murphy et al. 2005). 28 
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An alternative theory however, suggests that proximity of DNA regions in chromatin is the 1 

main driver of rearrangements and repetitive sequences play a minor role (Branco and 2 

Pombo 2006). Regardless of the mechanism, comparisons of multiple animal genomes 3 

show that between EBRs are evolutionary stable homologous synteny blocks (HSBs). Our 4 

studies in mammals (Larkin et al. 2009) and birds (Farré et al. 2016) suggest that at least the 5 

largest HSBs are maintained non-randomly and are highly enriched for conserved non-6 

coding elements (CNEs) many of which are gene regulatory sequences and miRNAs (Zhang 7 

et al. 2014b). We recently hypothesized that a higher fraction of elements under negative 8 

selection involved in gene regulation and chromosome structure in avian genomes (~7%) 9 

(Zhang et al. 2014b) compared to mammals (~4%) (Lindblad-Toh et al. 2011) could 10 

contribute to some avian-specific phenotypes and the evolutionary stability of most avian 11 

karyotypes (Farré et al. 2016). Whilst a high density of CNEs in avian multi-species 12 

(ms)HSBs supports this hypothesis (Farré et al. 2016) a more definitive answer might be 13 

obtained by examining the fate of CNEs in the “interchromosomal EBRs” (flanking 14 

interchromosomal rearrangements) of an avian genome with a highly rearranged karyotype. 15 

 16 

In this study we focused on two avian genomes. The first, the peregrine falcon (Falco 17 

peregrinus) has an atypical karyotype (2n=50) (Nishida et al. 2008). Falcon’s ability to fly at 18 

speeds >300 km/h and its enhanced visual acuity make it the fastest predator on Earth 19 

(Tucker et al. 1998). A prolonged period of extinction risk due to persecution around the 20 

World War II and secondary poisoning from organochlorine pesticides (e.g., DDT) in the 21 

1950s-60s (Ferguson-Lees and Christie 2005) led to its placement on the CITES list of 22 

endangered species. The second avian genome that was focused on here, the pigeon 23 

(Columba livia) has a typical avian karyotype (2n=80) similar to those of reference avian 24 

genomes: chicken, turkey and zebra finch. Pigeon is one of the earliest examples of 25 

domestication in birds (Driscoll et al. 2009) contemporarily used as food and in sporting 26 

circles (Price 2002). Pigeon breeds can vary significantly in appearance with color, pattern, 27 

head crest, body shape, feathers, tails, vocalization and flight display variations (Price 2002) 28 
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inspiring considerable interest in identifying the genetic basis for these variations (Stringham 1 

et al. 2012; Shapiro et al. 2013). For the above reasons, both species genomes were 2 

sequenced (Shapiro et al. 2013; Zhan et al. 2013), however their assemblies are highly 3 

fragmented and chromosome-level assemblies are thus essential.  4 

 5 

The objective of this study was therefore to develop a novel, inexpensive, transferrable 6 

approach to upgrade fragmented genome assemblies (i.e. pigeon and falcon) to the 7 

chromosome level and to use them to address novel biological questions related to avian 8 

genome evolution. The method combines computational algorithms for ordering scaffolds 9 

into PCFs retaining local structures of the target genome chromosomes after verification of a 10 

limited number of scaffolds, and physical mapping of PCFs directly to chromosomes with a 11 

universal set of avian bacterial artificial chromosome (BAC) probes. Studying a highly 12 

rearranged genome (falcon) compared to the avian ancestor sheds light on why 13 

interchromosomal rearrangements are infrequent in bird evolution. 14 

15 

 Cold Spring Harbor Laboratory Press on December 1, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 

7 
 

RESULTS 1 

Our method involves: (1) the construction of PCFs for fragmented assemblies based on the 2 

comparative and sequence read data implemented in the RACA algorithm; (2) PCR and 3 

computational verification of a limited number of scaffolds that are essential for revealing 4 

species-specific chromosome structures; (3) creation of a refined set of PCFs using the 5 

verified scaffolds and adjusted adjacency thresholds in RACA; (4) the use of a panel of 6 

“universal” BAC clones to anchor PCFs to chromosomes in a high-throughput manner (Fig. 7 

1). 8 

 9 

Construction of PCFs from fragmented assemblies 10 

Predicted chromosome fragments were generated for fragmented falcon and pigeon whole-11 

genome sequences using RACA (Kim et al. 2013). For falcon, the zebra finch chromosome 12 

assembly was used as reference (divergence 60 MYA) and the chicken genome as outgroup 13 

(divergence 89 MYA). We generated a total of 113 PCFs with N50 of 27.44 Mb (Table 1). 14 

For pigeon (≥69 MY divergence from both the chicken and zebra finch), chicken was used 15 

as reference and zebra finch as outgroup because: a) fewer pigeon scaffolds were split in 16 

this configuration (Supplemental Table S1) and b) due to the high similarity of pigeon and 17 

chicken karyotypes (Derjusheva et al. 2004). This resulted in 150 pigeon PCFs with N50 of 18 

34.54 Mb (Table 1). These initial PCF sets contained 72 (15.06%) and 78 (13.64%) 19 

scaffolds, for falcon and pigeon respectively, that were split by RACA due to insufficient read 20 

and/or comparative evidence to support their structures. 21 

 22 

Verification of scaffolds essential for revealing species-specific chromosome 23 

architectures 24 

All scaffolds split by RACA contained structural differences between the target and reference 25 

chromosomes, suggesting their importance for revealing the architecture of target species 26 

chromosomes. The structures of these scaffolds were tested by PCR amplification across all 27 

the split regions defined to <6 kb in the target species scaffolds. Of these, 41 (83.67%) and 28 
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58 (84.06%) resulted in amplicons of expected length in pigeon and falcon genomic DNA, 1 

respectively (Supplemental Table S2). For the split regions with negative PCR results we 2 

tested an alternative (RACA-suggested) order of the flanking syntenic fragments (SFs). Out 3 

of these, amplicons were obtained for 2/4 in falcon and 7/7 in pigeon, confirming the 4 

chimeric nature of the original scaffolds properly detected in these cases (Supplemental 5 

Table S2). To estimate which of the remaining split regions (>6 kb; 36 in falcon and 40 in 6 

pigeon PCFs) were likely to be chimeric, we empirically identified two genome-wide 7 

minimum physical coverage (Meyerson et al. 2010) levels, one for falcon and one for pigeon, 8 

in the SFs joining regions for which (and higher) the PCR results were most consistent with 9 

RACA predictions. If the new thresholds were used in RACA without additional scaffold 10 

verification (e.g., by PCR) or mapping data, they would lead to splitting of nearly all scaffolds 11 

with large structural misassemblies in falcon and ∼6% of them would still be present in 12 

pigeon PCFs. The number of scaffolds containing real structural differences with the 13 

reference chromosomes that would still be split by RACA was estimated as ∼56% in the 14 

falcon and ∼43% in pigeon PCFs (Supplemental Table S2). To reduce the number of the real 15 

structural differences split in the final PCF set, PCR verification of selected scaffolds and use 16 

of independent (cytogenetic) mapping have been introduced.  17 

 18 

Creation of a refined set of pigeon and falcon PCFs  19 

For new reconstructions the adjusted physical coverage thresholds were used. In addition, 20 

we kept intact those scaffolds confirmed by PCR, but split those shown to be chimeric and/or 21 

disagreeing with the cytogenetic map (see below) resulting in a total of 93 PCFs with N50 22 

25.82 Mb for falcon and 137 PCFs with N50 of 22.17 Mb for pigeon, covering 97.17% and 23 

95.86% of the original scaffold assemblies, respectively (Table 1). The falcon RACA 24 

assembly contained six PCFs homeologous to complete zebra finch chromosomes (TGU4A, 25 

9, 11, 14, 17 and 19) while five pigeon PCFs were homeologous to complete chicken 26 

chromosomes (GGA11, 13, 17, 22 and 25). Only 3.50% of the original scaffolds used by 27 
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RACA were split in pigeon and 3.14% in falcon final PCFs (Table 1). The accuracy for the 1 

PCF assembly was estimated as ~85% for falcon and ~89% for pigeon based on the ratio of 2 

the number of SFs to the number of scaffolds (Kim et al. 2013). 3 

 4 

Construction of a panel of comparatively anchored BAC clones designed to hybridize 5 

in phylogenetically divergent avian species and link PCFs to chromosomes 6 

Initial experiments on cross-species BAC mapping using FISH on five avian species with 7 

divergence times between 28 and 89 MY revealed highly varying success rates (21-94%), 8 

with hybridizations more likely to succeed on species closely related to that of the BAC origin 9 

(Table 2). To minimize the effect of evolutionary distances between species on 10 

hybridizations, genomic features that were likely to influence hybridization success were 11 

measured in chicken, zebra finch and turkey BAC clones (Supplemental Tables S3, S4). The 12 

classification and regression tree approach (CART; Loh 2011) was applied to the 101 13 

randomly-selected BAC clones (Table 2). The obtained classification shows 87% agreement 14 

with FISH results (Supplemental Fig. S1). Correlating DNA features with actual cross-15 

species FISH results led us to develop the following criteria for selection of chicken or zebra 16 

finch BAC clones very likely to hybridize on metaphase preparations of phylogenetically 17 

distant birds (≥69 MY of divergence; where the hybridization success rate of random BAC 18 

clones was <70%): the BAC had to have ≥93% DNA sequence alignable with other avian 19 

genomes and contain at least one conserved element (CE) ≥300 bp. Instead of a long CE, 20 

the BAC could contain only short repetitive elements (<1290 bp) and CEs of at least 3 bp 21 

long (Supplemental Fig. S1; Supplemental Table S4). The hybridization success rate with 22 

distant avian species for the set of newly selected clones obeying these criteria was high 23 

(71-94%; Table 2). The success rates for the selected chicken BAC clones only ranged from 24 

90% to 94%. From these chicken clones, 84% hybridized with chromosomes of all avian 25 

species in our set (Supplemental Fig. S2). 26 

As a final result, we generated a panel of 121 BAC clones spread across the avian genome 27 

(GGA 1-28 +Z (except 16)) that successfully hybridized across all species attempted. The 28 
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collection was supplemented by a further 63 BACs that hybridized on the metaphases of at 1 

least one species that was considered phylogenetically distant (i.e. ≥69 MY; split between 2 

Columbea and the remaining Neoavian clades) and a further 33 that hybridized on at least 3 

one other species (Fig. 2; Supplemental Table S5). 4 

 5 

Physical assignment of refined PCFs on the species’ chromosomes 6 

In order to place and order PCFs along chromosomes, BAC clones from the panel described 7 

above and assigned to PCFs based on alignment results were hybridized to falcon (177 8 

clones) and pigeon (151 clones) chromosomes (Table 3). The 57 PCFs cytogenetically 9 

anchored to the falcon chromosomes represented 1.03 Gb of its genome sequence (88% of 10 

the cumulative scaffold length). Of these, 888.67 Mb were oriented on the chromosomes 11 

(Table 3; Supplemental Table S6). The pigeon chromosome assembly consisted of 0.91 Gb 12 

in 60 pigeon PCFs representing 82% of the combined scaffold length. Of these 687.59 Mb 13 

were oriented (Table 3; Supplemental Table S7). Visualizations of both newly assembled 14 

genomes are available from the Evolution Highway comparative chromosome browser (see 15 

Supplemental Results) and our avian UCSC browser hub.  16 

 17 

Pigeon chromosome assembly 18 

No deviations from the standard avian karyotype (2n=80) were detected for pigeon with each 19 

mapped chromosome having an appropriate single chicken and zebra finch homeologue. 20 

Compared to chicken, the only interchromosomal rearrangement identified was the ancestral 21 

configuration of GGA4 found as two separate chromosomes in pigeon and other birds 22 

(Derjusheva et al. 2004; Hansmann et al. 2009; Modi et al. 2009) (Fig. 3A; Supplemental 23 

Fig. S4; http://eh-demo.ncsa.uiuc.edu/birds). Nonetheless, 70 intrachromosomal EBRs in the 24 

pigeon lineage were identified (Supplemental Table S8).    25 

26 

 Cold Spring Harbor Laboratory Press on December 1, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 

11 
 

Falcon chromosome assembly 1 

Homeology between the chicken and the falcon was identified for all mapped chromosomes 2 

with the exception of GGA16 and GGA25 (Fig. 3B; Supplemental Fig. S5; http://eh-3 

demo.ncsa.uiuc.edu/birds). In total, 13 falcon-specific fusions and six fissions were detected 4 

(Supplemental Table S8). Each of the chicken largest macrochromosome homeologues 5 

(GGA1 to GGA5) were split across two falcon chromosomes. Both GGA6 and GGA7 6 

homeologues were found as single blocks fused with other chicken chromosome material 7 

within falcon chromosomes. Among the other chicken macrochromosomes, only GGA8 and 8 

GGA9 were represented as individual chromosomes. Of the 17 mapped chicken 9 

microchromosomes, 11 were fused with other chromosomes. A total of 69 intrachromosomal 10 

EBRs were detected in the falcon lineage (Supplemental Table S8; Supplemental Results). 11 

Consistent with our previous report (Farré et al. 2016) falcon intrachromosomal EBRs were 12 

found highly enriched for the LTR-ERV1 transposable elements (TEs; t-test p-value <0.05; 13 

Supplemental Table S9). Both fusion and fission EBRs were not significantly enriched for 14 

any type of TEs.       15 

 16 

Fate of CNEs in avian inter- and intrachromosomal EBRs 17 

The falcon chromosome assembly provided us with a set of 19 novel interchromosomal 18 

EBRs not previously found in published avian chromosome assemblies (Fig. 3B; 19 

Supplemental Table S8). To investigate the fate of CNEs in avian EBRs, we calculated 20 

densities of avian CNEs in the chicken chromosome regions corresponding to the chicken, 21 

falcon, pigeon, flycatcher and zebra finch intrachromosomal and interchromosomal EBRs 22 

defined to ≤100 kb in the chicken genome (Fig. 4; Supplemental Table S10). Avian EBRs 23 

had significantly lower fraction of CNEs than their two adjacent chromosome intervals of the 24 

same size each (up- and downstream (p-value = 3.35e-07; Supplemental Table S11)). 25 

Moreover, the interchromosomal EBRs (fusions and fissions) had on average ~12 times 26 

lower density of CNEs than the intrachromosomal EBRs (p-value = 2.40e-05; Supplemental 27 
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Table S11). The lowest density of CNEs was observed in the fission breakpoints (p-value = 1 

0.04; Fig. 4, Supplemental Table S11).  2 

To identify CNE densities and the distribution associated with avian EBRs at the genome-3 

wide level, we counted CNE bases in 1 kb windows overlapping EBRs and avian msHSBs 4 

>1.5 Mb (Farré et al. 2016). The average density of CNEs in the EBR windows was lower 5 

(0.02) than in msHSBs (0.11). The density of CNEs in the fission EBRs was the lowest 6 

observed, zero CNE bases (‘zero CNE windows’), while in the intrachromosomal EBRs the 7 

highest among the EBR regions (0.02; Supplemental Table S12). The genome-wide CNE 8 

density was 0.09, closer to the density observed in msHSBs. Of ~347 Mb of the chicken 9 

genome found in the ‘zero CNE windows’ 0.5% were associated with EBRs and 15% with 10 

msHSBs. To investigate if these intervals are distributed differently in the breakpoint and 11 

synteny regions we compared distances between the ‘zero CNE windows’ and the closest 12 

window with the average msHSB CNE density or higher in EBRs, msHSBs, and genome-13 

wide. The median of the distances between these two types of windows was the lowest in 14 

the msHSBs (∼4 kb), intermediate in the intrachromosomal (~19 kb) and fusion EBRs (∼23 15 

kb), and highest in the fission EBRs (∼35 kb) (Supplemental Table S13). All these values 16 

were significantly different from the genome-wide average distance of ∼6 kb (p-values <2.2e-17 

16) and also significantly different from each other (p-value ≤0.004; Supplemental Table 18 

S12; Supplemental Fig. S6).   19 

20 
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DISCUSSION 1 

In this study we present a novel integrative approach to upgrade sequenced animal 2 

genomes to the chromosome level. We have previously reported a limited success with the 3 

use of high-gene density and low-repeat content BAC clones for cross-species hybridization 4 

(Larkin et al. 2006; Romanov et al. 2011). However, the use of such probes for whole-5 

genome chromosomal assembly has not hitherto been demonstrated. That is, in this study, 6 

we made use of the whole-genome sequences from multiple species and applied a 7 

systematic approach to design a panel of universally hybridizing BAC probes along the 8 

length of each chromosome. Using these probes as a basis, and in combination with 9 

comparative sequence analysis, targeted PCR and optimized high-throughput cross-species 10 

BAC hybridizations the approach herein presented thus represents a unique methodology to 11 

achieve chromosome-level reconstruction for scaffold-based de-novo assemblies that could 12 

be applied to any animal genome provided an actively growing population of cells can be 13 

obtained to generate metaphase preparations.  14 

 15 

In this study we provide proof of principle for this new approach by generating such 16 

assemblies for two previously published, but highly fragmented, avian genomes. The 17 

resulting chromosome level assemblies contain >80% of the genomes (compared to current 18 

estimates of genome size) and, in continuity are comparable to those obtained by combining 19 

the traditional sequencing and mapping techniques (Deakin and Ezaz 2014) but require 20 

much less cost and resources. Given that it has been suggested that estimates of genome 21 

size based on cytology are inaccurate and usually overestimated (Kasai et al. 2012; Kasai et 22 

al. 2013) techniques such as flow cytometry should be used to estimate genome size more 23 

accurately (Kasai et al. 2012; Kasai et al. 2013). Flow cytometry will ultimately be able to 24 

determine the extent to which the genomes are actually covered by new procedures to 25 

upgrade their assemblies and will be invaluable in pointing out any remaining gaps to fill. 26 

Indeed, this approach could be augmented further by chromosome specific DNA sequencing 27 
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such as has recently been demonstrated in the B chromosomes of two deer species 1 

(Makunin et al. 2016) 2 

 3 

Molecular and cytogenetic studies to date, suggest that the majority of avian genomes 4 

remain remarkably conserved in terms of chromosome number (in 60-70% of species 5 

2n=~80) and that interchromosomal changes are relatively rare (Griffin et al. 2007; Schmid 6 

et al. 2015). Exceptions include representatives of Psittaciformes (parrots), Sphenisciformes 7 

(penguins) and Falconiformes (falcons). This study represents the first reconstruction of a 8 

highly rearranged avian karyotype (peregrine falcon). It demonstrates that fusion is the most 9 

common mechanism of interchromosomal change in this species, with some resulting 10 

chromosomes exhibiting as many as four fused ancestral chromosomes. There was no 11 

evidence of reciprocal translocations and all microchromosomes remained intact, even when 12 

fused to larger chromosomes. Recently we suggested possible mechanisms why avian 13 

genomes, with relatively rare exceptions, remain evolutionarily stable interchromosomally 14 

and why microchromosomes represent blocks of conserved synteny (Romanov et al. 2014; 15 

Farré et al. 2016). Absence of interchromosomal rearrangement (as seen in most birds) 16 

could either suggest an evolutionary advantage to retaining such a configuration or little 17 

opportunity for change. A smaller number of transposable elements in avian genomes 18 

compared to other animals would indicate that avian chromosomes indeed have fewer 19 

opportunities for chromosome merging using NAHR, explaining the presence of multiple 20 

microchromosomes. Our study provides an additional support for this hypothesis as in falcon 21 

lineage only intrachromosomal EBRs were significantly enriched in transposable elements, 22 

while interchromosomal EBRs (flanking both fusions and fissions) were not found 23 

significantly enriched. On the other hand, a strong enrichment for avian CNEs in the regions 24 

of interspecies synteny in birds and other reptiles suggests evolutionary advantage of 25 

maintaining established synteny (Farré et al. 2016), implying that fission events should be 26 

rare in avian evolution. In this study, we present the first analysis of a significant number of 27 

interchromosomal EBRs by analysis of the falcon genome, demonstrating that those rare 28 
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interchromosomal rearrangements that are fixed in the avian lineage-specific evolution did 1 

indeed appear in areas of a low density of CNEs. This applies to both fission and fusion 2 

events. Our results demonstrate moreover that, to be suitable for chromosomal fission, the 3 

sites of interchromosomal EBRs are restricted further as they need to be significantly more 4 

distant from the areas with high CNE density than the equivalent intervals found in the 5 

regions of multispecies synteny, other EBR types, or on average in the genome. This might 6 

also explain why falcon-specific fission breakpoints appear to be reused in other avian 7 

lineages as intrachromosomal EBRs. Study of intrachromosomal changes in pigeons, 8 

falcons (this study) and Passeriform species (Skinner and Griffin 2012; Romanov et al. 9 

2014) suggests that these events might have a less dramatic effect on cis gene regulation 10 

than interchromosomal events. Indeed, intrachromosomal EBRs appear in regions of 11 

significantly higher CNE density than interchromosomal EBRs. Why then, do species such 12 

as falcons and parrots undergo wholesale interchromosomal rearrangement (previously 13 

reported), but (according to this study) with fission restricted to a few events and fusion more 14 

common? Absence of positive selection for change in chromosome number (or lack of 15 

templates for NAHR) possibly explains why there was little fixation of any interchromosomal 16 

change among birds in general (Bush et al. 1977; Fontdevila et al. 1982; Burt et al. 1999; 17 

Burt 2002), however why this positive selection has been re-introduced (or barriers to it have 18 

been removed) in selected orders is still a matter of conjecture.   19 

 20 

The design and use of a set of BAC probes intended to work equally well on a large number 21 

of diverged avian species created a resource for physical mapping that is transferrable to 22 

multiple species. In this regard, mammals are the greatest priority as they are the most 23 

studied phylogenetic Class of organisms in the scientific literature. Reasons for this include 24 

human interest (e.g. clinical studies), biomedical models (e.g. mouse, rat, rabbit, pig), 25 

companion animals (e.g. cat, dog) and agricultural mammals (pig, sheep, cattle etc.). Many 26 

are on the CITES threatened/endangered list, and, with impending global warming, tools for 27 

the study of ecology and conservation of these animals is a priority; many extinct species 28 
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also still attract considerable interest. Of the >5,000 extant species however, only ~20 have 1 

genomes assembled to chromosomes (with primates, rodents and artiodactyls 2 

disproportionally overrepresented) with more than ten of the 26 orders having no 3 

chromosome level assemblies at all. Recently a further >50 de-novo mammalian assemblies 4 

have been produced (more are inevitable); these however, at best, are collections of sub-5 

chromosomal sized scaffolds. Moreover, several hundred are currently being assembled to 6 

scaffold level by individual projects or consortia such as Genome10K (Koepfli et al. 2015). 7 

Building a mammalian universal BAC set would be a greater challenge than in birds as 8 

mammalian genomes have more repetitive sequences and are about three times larger thus 9 

more BACs would be needed to achieve the same level of mapping resolution. On the other 10 

hand, the development of advanced mapping and sequencing techniques (e.g., Dovetail, 11 

BioNano or PacBio) will eventually provide an opportunity to replace RACA PCFs with longer 12 

and more complete sub-chromosomal sized superscaffolds or sequence contigs requiring 13 

fewer BACs to anchor them to chromosomes. The availability of large numbers of high-14 

quality mammalian BAC clone libraries from many species makes our approach more 15 

applicable to mammals than to any other animal group. If we add the fact that our avian BAC 16 

set is showing good success rates on lizard and turtle chromosomes (unpublished results), 17 

building chromosomal assemblies for all vertebrate and ultimately all animal groups 18 

supported by universal collection of BACs is a realistic objective for the near future.19 
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METHODS 1 

Avian genome assemblies, repeat masking and gene annotations 2 

The chicken (ICGSC Gallus_gallus 4.0; Hillier 2004), zebra finch (WUGSC 3.2.4; Warren et 3 

al. 2010), and turkey (TGC Turkey_2.01; Dalloul et al. 2010) chromosome assemblies were 4 

downloaded from the UCSC Genome Browser (Kent et al. 2002). The collared flycatcher 5 

(FicAlb1.5; Ellegren et al. 2012) genome was obtained from NCBI. Scaffold-based (N50>2 6 

Mb) assemblies of pigeon, falcon, and 16 additional avian genomes were provided by the 7 

Avian Phylogenomics Consortium (Zhang et al. 2014a). All sequences were repeat-masked 8 

using Window Masker (Morgulis et al. 2006) with -sdust option and Tandem Repeats Finder 9 

(Benson 1999). Chicken gene (version of 27/04/2014) and repetitive sequence (version of 10 

11/06/2012) annotations were downloaded from the UCSC genome browser (Rosenbloom et 11 

al. 2015). Chicken genes with a single ortholog in the human genome were extracted from 12 

Ensembl Biomart (v.74; Kinsella et al. 2011).  13 

 14 

Pairwise and multiple genome alignments, nucleotide evolutionary conservation 15 

scores and conserved elements  16 

Pairwise alignments using chicken and zebra finch chromosome assemblies as references 17 

and all other assemblies as targets were generated with LastZ (v.1.02.00; Harris 2007) and 18 

converted into the UCSC “chains” and “nets” alignment formats with the Kent-library tools 19 

(Kent et al. 2003; Supplemental Methods). The evolutionary conservation scores and DNA 20 

conserved elements (CEs) for all chicken nucleotides assigned to chromosomes were 21 

estimated using PhastCons (Siepel et al. 2005) from the multiple alignments of 21 avian 22 

genomes (Supplemental Methods). Conserved non-coding elements obtained from the 23 

alignments of 48 avian genomes were used (Farré et al. 2016). 24 

 25 

Reference-assisted chromosome assembly of pigeon and falcon genomes 26 

Pigeon and falcon PCFs were generated using the Reference-Assisted Chromosome 27 

Assembly (RACA; Kim et al. 2013; Supplemental Methods) tool. We chose zebra finch 28 
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genome as reference and chicken as outgroup for falcon based on the phylogenetic 1 

distances between the species (Jarvis et al. 2014). For pigeon both chicken as reference 2 

and zebra finch as outgroup and the vice versa experiments were performed as pigeon is 3 

phylogenetically distant from chicken and zebra finch. Two rounds of RACA were done for 4 

both species. The initial run was performed using the following parameters: 5 

WINDOWSIZE=10 RESOLUTION=150000 MIN_INTRACOV_PERC=5. Prior to the second 6 

run of RACA we tested the scaffolds split during the initial RACA run using PCR 7 

amplification across the split intervals (see below) and adjusted the parameters accordingly 8 

(Supplemental Methods). 9 

 10 

PCR testing of adjacent SFs 11 

Primers flanking split SF joints within scaffolds or RACA predicted adjacencies were 12 

designed using Primer3 software (v.2.3.6; Untergasser et al. 2012). To avoid 13 

misidentification of EBRs or chimeric joints we selected primers only within the sequences 14 

that had high quality alignments between the target and reference genomes and found in 15 

adjacent SFs. Due to alignment and SF detection settings some of the intervals between 16 

adjacent SFs could be >6 kb and primers could not be chosen for a reliable PCR 17 

amplification. In such cases we used CASSIS software (Baudet et al. 2010) and the 18 

underlying alignment results to narrow gaps between adjacent SFs where possible. Whole 19 

blood was collected aseptically from adult falcon and pigeon. DNA was isolated using 20 

DNeasy Blood and Tissue Kit (Qiagen) following standard protocols. PCR amplification was 21 

performed according to the protocol described in the Supplemental Methods. 22 

 23 

BAC clone selection 24 

The chromosome coordinates of chicken (CHORI-261), turkey (CHORI-260) and zebra finch 25 

(TGMCBA) BAC clones in the corresponding genomes were extracted from NCBI clone 26 

database (Schneider et al. 2013). We removed all discordantly placed BAC clones (based 27 

on BAC end sequence (BES) mappings) following the NCBI definition of concordant BAC 28 

 Cold Spring Harbor Laboratory Press on December 1, 2016 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 

19 
 

placement. Briefly, a BAC clone placement was considered concordant when the estimated 1 

BAC length in the corresponding avian genome is within [library average length ± 2 

3×�������� ���	��	
�] and BAC BESs map to the opposite DNA strands in the genome 3 

assembly. Turkey and zebra finch BAC clone coordinates were translated into chicken 4 

chromosome coordinates using UCSC Genome Browser LiftOver tool (Kent et al. 2002) with 5 

the minimum ratio of remapped bases >0.1.  6 

 7 

For each BAC clone mapped to the chicken chromosomes various genomic features 8 

selected to estimate the probability of clones to hybridize with metaphase chromosomes in 9 

distant avian species were calculated (Supplemental Table S3) using a custom Perl script or 10 

extracted from gene, repetitive sequence, conserved element and nucleotide conservation 11 

score files. The clones selected for mapping experiments were originally obtained from the 12 

BACPAC Resource Centre at the Children’s Hospital Oakland Research Institute and the 13 

zebra finch TGMCBa library (Clemson University Genomics Institute).   14 

 15 

Classification tree 16 

The classification tree was created in R (v.3.2.3; Team 2015) using the classification and 17 

regression tree (CART) algorithm included in the rpart package (v.4.1-10; Therneau et al. 18 

2015). We introduced an adjusted weight matrix setting: the cost of returning a false positive 19 

was twice as high as the cost of a false negative. The tree was visualized with rattle package 20 

(v.4.1.0; Williams 2011). 21 

 22 

Cell culture and chromosome preparation  23 

Chromosome preparations were established from fibroblast cell lines generated from 24 

collagenase treatment of 5- to 7-day-old embryos or from skin biopsies. Cells were cultured 25 

at 40°C, and 5% CO2 in Alpha MEM (Fisher), supplemented with 20% Fetal Bovine Serum 26 

(Gibco), 2% Pen-Strep (Sigma) and 1% L-Glutamine (Sigma). Chromosome suspension 27 

preparation followed standard protocols, briefly mitostatic treatment with colcemid at a final 28 
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concentration of 5.0 μg/ml for 1 h at 40°C was followed by hypotonic treatment with 75mM 1 

KCl for 15 min at 37°C and fixation with 3:1 methanol:acetic acid.  2 

 3 

Preparation of BAC clones for fluorescence in-situ hybridization (FISH) 4 

BAC clone DNA was isolated using the Qiagen Miniprep Kit (Qiagen) prior to amplification 5 

and direct labelling by nick translation. Probes were labeled with Texas Red-12-dUTP 6 

(Invitrogen) and FITC-Fluorescein-12-UTP (Roche) prior to purification using the Qiagen 7 

Nucleotide Removal Kit (Qiagen).  8 

 9 

Fluorescence in-situ hybridization (FISH) 10 

Metaphase preparations were fixed to slides and dehydrated through an ethanol series (2 11 

min each in 2xSSC, 70%, 85% and 100% ethanol at room temperature). Probes were diluted 12 

in a formamide buffer (Cytocell) with Chicken Hybloc (Insight Biotech) and applied to the 13 

metaphase preparations on a 37°C hotplate before sealing with rubber cement. Probe and 14 

target DNA were simultaneously denatured on a 75°C hotplate prior to hybridization in a 15 

humidified chamber at 37°C for 72 h. Slides were washed post-hybridization for 30 sec in 16 

2×SSC/ 0.05% Tween 20 at room temperature, then counterstained using VECTASHIELD 17 

anti-fade medium with DAPI (Vector Labs). Images were captured using an Olympus BX61 18 

epifluorescence microscope with cooled CCD camera and SmartCapture (Digital Scientific 19 

UK) system. In selected experiments, we used multiple hybridization strategies, making use 20 

of the Cytocell Octochrome (8 chamber) and Multiprobe (24 chamber) devices. Briefly, 21 

labeled probes were air dried on to the device. Probes were, re-hybridized in standard 22 

buffer, applied to the glass slide (which was sub-divided to correspond to the hybridization 23 

chambers) and FISH continued as above.  24 

25 
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EBR detection and CNE density analysis 1 

The multiple alignments of the chicken, zebra finch, flycatcher, pigeon and falcon 2 

chromosome sequences were obtained using progressiveCactus (Paten et al. 2011) with 3 

default parameters. Pairwise synteny blocks were defined using the maf2synteny tool 4 

(Kolmogorov et al. 2014) at 100, 300 and 500 kb resolution. Using chicken as reference 5 

genome, EBRs were detected and classified using the ad hoc statistical approach described 6 

previously (Farré et al. 2016). All well-defined (or flanking oriented PCFs) fusion and fission 7 

points were identified from pairwise alignments with the chicken genome. Only the EBRs 8 

≤100 kb were used for the CNE analysis. EBRs smaller than 1 kb were extended ±1 kb. For 9 

each EBR, we defined two windows upstream (+1 and +2) and two downstream (-1 and -2) 10 

of the same size as the EBR. We calculated the fraction of bases within CNEs in each EBR 11 

site, upstream and downstream windows. Differences in CNE densities were tested for 12 

significance using the Kruskall-Wallis test followed by Mann-Whitney U test.  13 

 14 

Comparing CNE densities in EBRs and msHSBs  15 

Chicken chromosomes (excluding GGA16, W and Z) were divided into 1 kb non-overlapping 16 

intervals. Only windows with >50% of their bases with chicken sequence data available were 17 

used in this analysis. All intervals were assigned either to msHSBs >1.5 Mb (Farré et al. 18 

2016), avian EBRs flanking: fusions, fissions, intrachromosomal EBR, and the intervals 19 

found in the rest of the chicken genome. We estimated the average CNE density for each 20 

window type and also the distance, in number of 1 kb windows, between each window with 21 

the lowest CNE density (0 bp) and the nearest window with the average msHSB CNE 22 

density or higher. CNE densities were obtained using bedtools (v.2.20-1; Quinlan and Hall 23 

2010). Differences in distances between the two window types in msHSBs and EBRs were 24 

tested for significance using the Kruskall-Wallis test followed by Mann-Whitney U test.  25 

26 
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Densities of TEs in falcon intrachromosomal EBRs, fusions and fissions 1 

The TEs scaffold coordinates reported on Shapiro et al. 2013 were translated to falcon 2 

chromosome coordinates using a custom Perl script. The densities of TEs (>100 bp on 3 

average in the EBR- or non-EBR containing non-overlapping 10 Kbp genome intervals) were 4 

compared for the falcon-lineage specific interchromosomal EBRs, EBRs flanking fusion and 5 

fission events and the rest of the genome as previously described (Elsik et al. 2009; Larkin 6 

et al. 2009; Groenen et al. 2012; Farré et al. 2016).  7 

 8 

DATA ACCESS  9 

The falcon a pigeon chromosome assemblies are deposited at DDBJ/ENA/GenBank under 10 

the accessions MLQY00000000 and MLQZ00000000, respectively. Visualizations of falcon 11 

and pigeon genome assemblies are available from the Evolution Highway comparative 12 

chromosome browser: http://eh-demo.ncsa.uiuc.edu/birds; and our UCSC browser hub: 13 

http://sftp.rvc.ac.uk/rvcpaper/birdsHUB/hub.txt. 14 
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FIGURE LEGENDS 

Figure 1. Methodology for the placement of the PCFs on chromosomes. (A) dual-color 

FISHof universal BAC clones, (B) cytogenetic map of the falcon chromosome 8 (FPE8) with 

indication of the relative positions of the BAC clones along the chromosome, and (C) 

assembled chromosome containing PCFs 7a, 7b and 13b_13a. Blue blocks indicate positive 

(+) orientation of tracks compared to the falcon chromosome, red blocks indicate negative (-) 

orientation and grey blocks show unknown (?) orientation. 

 

Figure 2. Distribution of universal BAC clones along chicken chromosomes. Each rectangle 

represents a chicken chromosome and the lines inside the location of each BAC clone. BAC 

clones are colored accordingly to the maximum phylogenetic distance of the species they 

successfully hybridized. The distribution of spacing between all these BAC clones is shown 

on the Supplemental Fig. S3.  

 

Figure 3. Ideogram of pigeon (A) and peregrine falcon (B) chromosomes. Numbered 

rectangles represent chromosomes and colored blocks inside represent regions of 

homeology with chicken chromosomes. Lines within colored blocks represent block 

orientation. Pigeon chromosomes 1-9 and Z were numbered according to Hansmann et al., 

2009 and the remaining chromosomes according to their chicken homeologues. Falcon 

chromosomes 1-13 and Z were numbered accordingly to Nishida et al. 2008. The remaining 

chromosomes were numbered by decreasing combined length of the placed PCFs. 

Triangles above the falcon chromosomes point to the positions of falcon-specific fusions and 

below chromosomes demarcate the positions of fissions. Black filling within the triangles 

point to the EBR boundaries used in the CNE analysis. 

 

Figure 4. Average fraction of bases within conserved non-coding elements (CNEs) in avian 

EBRs and two flanking regions upstream (-) and downstream (+). 
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TABLES 

Table 1. Scaffold-based RACA assemblies for peregrine falcon and pigeon. 

                  Peregrine falcon                          Pigeon 

Statistics 
Scaffold 

assembly 

Default 

RACA 

Adjusted 

RACA1 

 Scaffold 

assembly 

Default 

RACA 

Adjusted 

RACA1 

No. scaffolds (≥ 10 kb)   723    478    478   1,081    572    572 

No. PCFs NA    113      93     NA    150    137 

Total length (Gb) 1.17   1.14   1.14     1.10   1.07   1.07 

N50 (Mb) 3.94 27.44 25.82     3.15 34.54 22.17 

Fraction of scaffold assembly (%) NA 97.17 97.17     NA 95.86 95.86 

No. scaffolds split by RACA NA 72 (15.062) 15 (3.142)     NA 78 (13.642) 20 (3.502) 
1RACA assembly after the use of adjusted coverage thresholds and post-processing of scaffolds verified by PCR. 
2Percentage of all scaffolds included in the RACA assembly. 
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Table 2. Comparison of zoo-FISH success rate for random and selected set of BAC clones. 

  Chicken BAC clones  Zebra finch BAC clones 

   Success rate (%)   Success rate (%) 

Divergence Random set Selected set 
Ratio 

 Divergence Random set Selected set 
Ratio 

time (MY) N = 53 N = 99  time (MY) N = 48 N = 24 

Chicken NA NA NA NA  89 58.33 75.00 1.29 

Turkey 28 88.68     100.00 1.13  89 54.17 83.33 1.54 

Pigeon 89 26.42       91.92 3.48  69 68.75 70.83 1.03 

Peregrine falcon 89 47.17       93.94 1.99  60 93.75 91.67 0.98 

Zebra finch 89 20.75       90.91 4.38  NA NA NA NA 

Divergence times are the average of the times reported on the ExaML TENT topology from Jarvis et al. 2014.  
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Table 3. Statistics for the chromosome assemblies of peregrine falcon and pigeon.  

 Statistics Peregrine falcon Pigeon 

No. informative BAC clones      177      151 

No. PCFs placed on chromosomes        57        60 

   Combined length (Gb)          1.03          0.91 

   PCF assembly coverage (%)        90.03        85.23 

   Scaffold assembly coverage (%)        87.55        81.70 

No. oriented PCFs        32        26 

   Combined length (Mb)      888.67      687.59 
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