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This paper discusses the force history and flow topology of accelerating flat

plate wings. The work is a collaborative effort to study fundamental, unsteady

low Reynolds number flows. The motion kinematics are designed to be rel-

evant to the Micro-Air Vehicle flight regime. A combination of experimental

and computational techniques are used to obtain data for comparison. There

is a striking correlation of lift history data and flow topology from both ex-

perimental and computational datasets. It is found that the Leading / Trailing

Edge Vortex core separation during the initial part of a surge motion can be

reasonably well approximated by c·cosα and the Leading /Trailing Edge Vortex

relative advection velocity is estimated to be 0.5 ·U∞. This Leading / Trailing

Edge Vortex relative advection velocity is a useful measure of how quickly the

Trailing Edge Vortex moves away from the Leading Edge Vortex, which can

influence lift for accelerating flat plates at high incidence angles.
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Nomenclature

a Non-dimensional distance over which wing accelerates

as ’Eldredge’ transition smoothing parameter

c Wing chord, m

cl,circ 2D, circulatory lift coefficient

R Resolution of LEV trajectory measurement, [Hz]

s Distance of wing travel, [m]

s/c Non-dimensional distance travelled in chord lengths

t Time, [s]

t1 Time at the start of surge, [s]

t2 Time at the end of surge, [s]

u Velocity in x-direction, [ms−1]

uLEV LEV advection velocity, [ms−1]

uTEV TEV advection velocity, [ms−1]

U∞ Reference velocity, [ms−1]

xLEV x-position of LEV relative to LE of wing

xTEV x-position of TEV relative to TE of wing

α Angle of incidence, [◦]

α0 Maximum angle of incidence, [◦]

Γ Circulation, [m2s−1]

ΓLEV LEV Circulation, [m2s−1]

Γ∞ Theoretical steady state circulation assuming attached flow, [m2s−1]

A Aspect Ratio

LE Leading Edge
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LEV Leading Edge Vortex

LIC Line Integral Convolution

TE Trailing Edge

TEV Trailing Edge Vortex

I. Introduction

The unsteady lift generation of flapping wings is of interest for Micro-Air Vehicle

(MAV) design and additionally to better understand natural fliers. A MAV is a small

aerial vehicle which has classically been described as having a wingspan of 15cm or

less [1]. The MAV scale corresponds to the size and flight speed of small birds and larger

insects and produces Reynolds numbers in the range of 104-105 [2].

The mechanism of how flapping wings generate large stroke averaged lift coefficients

(see for example Lentink and Dickinson [3]) was the motivation for NATO task group,

AVT-149 [4]. The AVT-149 work lead to insight into how lift is connected to wing geometry,

flapping kinematics and Reynolds number etc. To gain a better understanding of unsteady

lift generation mechanisms, one approach is to investigate simplified but well controlled

canonical cases. Dickinson and Götz [5] investigated the unsteady forces and flowfield

for a wing translated in a stationary fluid for Reynolds numbers of O103 and studied the

Wagner effect and Dynamic Stall. Later Beckwith and Babinsky [6] conducted similar

work but with a finite wing, finding that accelerating wings at high incidence can produce

high lift coefficients. Ringuette et al. [7] performed experiments on impulsively started

flat plates normal to the motion direction. Interestingly they described the drag force on

the plate according to Batchelor′s [8] formulation which depends on an impulse which is

dependent upon the circulation of the LEV pair created.

Chen et al. [9] performed a computational study on a flat plate at high incidences at

low Reynolds numbers (in the range of 10 - 200) with accelerations governed by a power

law and found that the computed lift revealed an LEV-induced lift augmentation evident

across all powers and angles of attack. Baik et al. [10] studied both pitching and plunging

aerofoils for Reynolds numbers in the range 5000 - 20,000 and interestingly found that the

Reynolds number has a small effect on aerodynamic force generation.

Despite the very informative studies conducted by other researchers, it is clear that

there is a need for a more detailed investigation the force contributions for accelerating

flat plate wings at high incidences. Past studies have also demonstrated the usefulness

of comparisons between numerical and experimental results for similar kinematics and

Reynolds numbers (see for example Bansmer and Radespiel [11] who investigated an

aerofoil undergoing an acceleration in the direction of the freestream velocity at a Reynolds
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Number of 100,000).

The work described in this paper is the result of studies undertaken as part of the

NATO RTO task group AVT-202, ’Advances in Fundamental Unsteady Low Reynolds Number

Flows’ [12]. This paper focusses on one particular aspect of the work, namely the insight

gained from one of the canonical test cases defined by the task group. A typical flowfield

for one of these simplified flapping motions features flow separation at the leading edge,

a Leading Edge Vortex (LEV) and a starting or Trailing Edge Vortex (TEV). This obser-

vation inspired companion work within the AVT-202 task group on a simple low-order

model [13], where the force is broken down into vortex lift and a non-circulatory, ’virtual

mass’ (inertial) forcea. The vortex lift is assumed to be caused by a LEV/TEV pair. The

work contained herein forms the foundation for the companion work on the task group’s

low-order lift force model. The canonical surging wing case motion kinematics are out-

lined and the results are presented in terms of the aerodynamic forces, the flow topology

and the strength and position of the Leading and Trailing Edge Vortices (LEV and TEV).

Finally, we present a brief explanation of how the data contained herein contributes to the

companion work on the aforementioned low-order model.

A. Motion Kinematics

All the case data discussed in this paper involve a flat plate wing with a rounded Leading

Edge (LE), surgingb over a streamwise distance of either 1 chord (1c, fast case) or 6 chords

(6c, slow case). The wing (of Aspect Ratio (A) 4 for the canonical case) is accelerated (over

1c or 6c) at a constant incidence of 45◦ to a Reynolds number of 20,000 (canonical case)

and continues to translate at a constant velocity thereafter. The canonical case is designed

to be simplistically representative of MAV flight regime style kinematics. Figure 1 shows

a breakdown of the motions that make up typical flapping stroke on a flying insect. The

work described here focusses exclusively on the simple linear translation in the hope of

gaining a greater appreciation of the underlying fundamental physics of flapping flight.

Variations of the wing Aspect Ratio (A) and Reynolds number are highlighted where

appropriate. The kinematics are represented simplistically in Figure 2.

Both the fast acceleration over 1c and slow acceleration over 6c cases have a constant

acceleration, which produces a theoretical velocity variation, which is quadratic in space

as shown in Figure 3. They show the non-dimensional velocity, u/U∞ plotted against

’advective time’, s/c. The velocity is non-dimensionalised by the steady state freestream

velocity. Advective time is the distance travelled by the wing, s non-dimensionalised by

the wing chord, c. While under acceleration, the surge velocity profile is described by the

a’Virtual’ or ’Added’ mass is an inertial reaction force which contributes to lift when a wing is accelerated
in a fluid from rest and a mass of fluid is accelerated with the wing.

b’Surging’ here refers to a constant acceleration from rest to a steady state velocity in a quiescent fluid.
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boundary conditions for experiments differ from each other as well. The Cambridge

group uses a physical A= 2 wing and a skim plate acting as an image plane, whereas

the United States Air Force Research Lab uses a sting mounted wing with a physicalA=

4 wing. The difference in experimental boundary conditions could therefore have some

effect on the flows experienced. For the Cambridge setup, there may be some influence of

the the gap between the wing and the skim plate, so to mitigate this, the gap is set at 1mm

after the recommendation of Son et al. [19] who suggest that if a symmetry plane is used,

the gap should be less than 2mm. For the United States Air Force Research Laboratory

setup, the plastic strut will influence the flow in the central region of the wing. In practice

however, it is found that generally such effects are small or difficult to discern. There are

also some variations in the Reynolds number between cases, but it will be shown that there

seems to be Reynolds number independence across the datasets. It is also recognised that

despite all efforts to adhere closely to the acceleration velocity profile, across the methods,

small differences in the transition region between the surge motion and constant velocity

motion thereafter may affect force measurements but again it will be shown that the effect

is relatively small.

III. Results

The canonical case is first discussed in terms of force history and flow topology. This

allows a general appreciation of how specific flow features correlate to the forces at given

instances. In the companion paper on the low-order model of the lift force, the LEV and

TEV trajectories extracted from the data here are used to give position information and

an approximation of their relative advection velocity.

A. Force History

Figure 8 compares lift coefficient histories for the fast and slow surge cases respectively.

The lift is plotted against an advective timescale, s/c.c It is immediately recognised that

there is good agreement between different datasets. Considering the fast case of Figure 8 a,

at first, there is an initial spike in lift, followed by a drop. The same trends are captured

by all datasets astonishingly well, namely, the initial peak in lift, followed by a short,

sharp drop, then a slow decay in lift before (with the exception of the data of Stevens) a

second maximum in lift and finally an asymptotic decay to a steady state lift coefficient.

Consider Figure 8c, which shows a zoom of the early portion of the lift history. The peak

lift coefficient occurs towards the end of the first chord of travel within 15% of s/c = 1 for

all cases. The rates of growth, up to the first lift maximum are also quite similar in trend,

cThe advective time s/c as used here, corresponds to the non-dimensional distance travelled.

11 of 27

American Institute of Aeronautics and Astronautics

Page 11 of 16

Submitted to AIAA Journal. Confidential - Do not distribute.

AIAA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

with the data having an approximately linear increase.

There are some subtle differences in how the lift increases up to the first maximum,

with the data of Stevens showing a higher lift while surging and a peak lift that is 10%

greater than any other, whereas the data of Granlund has a peak lift that is 17% lower than

any other. There is also a very noticeable difference in the initial value of lift at s/c = 0 for

all cases, which varies from cl ≈ 0.2 (Mancini) to cl ≈ 0.6 (Stevens). Some of the differences

which are observed may be accounted for by the type of data filtering and smoothing

applied by each group. Returning to Figure 8 a, after the first maximum, there is initially

a small but nonetheless, sharp drop in lift, this is followed by a slow decay which persists

until approximately s/c = 6. The datasets of Gozukara, Mancini and Granlund then all

show a similar second maximum in lift around s/c = 7.5. Interestingly, this feature is

apparent in the data of Stevens, although there is a smaller, less distinct second maximum

a little earlier at around s/c = 6. The data of Stevens however shows that it takes long

advective timescales for a steady state condition to be approached (around 20s/c in this

case).

The experimental datasets generally show good agreement with the single CFD dataset

of Gozukara, giving confidence in both the accuracy of the experimental datasets and

the quality of the CFD. A typical deviation from the mean at s/c = 5 for example is

approximately ±10%.

The slow surge lift history of Figure 8 b shows a rise in lift, peaking at approximately

s/c = 6. There is an absence of a secondary rise in forces. The lift trace of Stevens shows a

flattening of the lift coefficient around s/c = 15. The value of the asymptotic lift coefficient

here is approximately 25% of that observed where the curve flattens in the fast surge case,

suggesting that this is not yet the true steady state lift coefficient. It may be that a much

longer advective timescale is required to study this phenomenon.

B. Flow Topology

The discussion in this section is qualitative, with a quantitative investigation of the vortex

dynamics and strength to follow in subsequent sections.

Figures 9 and 10 show the comparison of flow visualisation with vorticity fields with

vectors superimposed from PIV and CFD data for the fast surge case. All figure dimensions

are non-dimensionalised by the wing chord, c, clockwise fluid rotation is coloured blue

with anti-clockwise rotation coloured red.

The data of Figure 9 are arranged to show the comparison of the initial development

of the flow and the formation of the LEV, followed by the breakup of the LEV. There is

no TEV structure present within the limited field of view for PIV data but this is clearly

visible in the flow visualisation and CFD data for s/c= 0.5 and 1.5. A distinct LEV structure

has already formed at s/c= 0.5. In the PIV data, a shear layer emanating from the TE is also
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s/c = 5.0, although there is some new recirculating flow close to the LE, this is not coherent

like the LEV previously observed. At s/c = 8.0, there is no flow visualisation available but

comparison of the PIV and CFD shows that a body of slowly recirculating fluid has formed

above the wing, which is unusual and may be a streamline pseudo-reattachment of the

flow. This pseudo-reattachment likely explains the presence of the second lift maximum,

which was noticed to occur around s/c = 7.5.

Figure 11 compares flow visualisation and PIV data (Re= 20,000) in the first and second

columns respectively with CFD data (Re = 660) in the third and fourth columns for the

slow surge case. Once more, all dimensions are non-dimensionalised by the wing chord,

c. Data is again presented with clockwise fluid rotation coloured blue with anti-clockwise

rotation coloured red. The CFD in the third column shows vorticity with velocity vectors

superimposed for a direct comparison with PIV data. In addition Figure 11 also shows

images generated using the Line Integral Convolution (LIC) technique [20] to visualise

the CFD data.

Initial cross-examination of the flow visualisation, PIV and CFD data suggests that

there is some agreement in the general nature of the flow structures observed.

Turning in detail to the flow visualisation in the left hand column of Figure 11, there

is initially at s/c = 1.5, a LEV structure visible and this is also reflected in the PIV and CFD

data. By s/c = 3, there is an absence of a clear LEV structure. Upon closer inspection of the

vector field, there is a clockwise rotational tendency above the wing, however the vorticity

colouring suggests that this rotation is weak. The CFD data does however seem to show a

more distinct LEV. A direct comparison of the PIV flowfields may be made with the CFD

flowfields of the third column. The CFD vectors show more distinct vortical structures

and these are made very apparent by the LIC processing in the right hand column. In

contrast, the flow visualisation and PIV data suggests that such structures are weak if they

exist at all and the flow is more akin to separation. There may be some Reynolds number

effect here but this is not strongly reflected in the force history.

C. LEV and TEV Position

The previous analysis of the flow topology has shown that LEV structures are particularly

noticeable in the fast surge case, where they slowly advect away from the wing as it

continues to move in translation. Here, vortex trajectories are tracked relative to the LE for

the LEV and Trailing Edge (TE) for the TEV respectivelyd. The position of the individual

LEV and TEV in space enables their core separation, (xLEV - xTEV) to be estimated and

this in turn allows their relative advection velocity (uLEV - uTEV) to be determined. These

dFlowfields with the TEV visible are not shown in this paper but positional data was extracted from PIV
datasets.
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