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Abstract 

Pharmacodynamic properties of marbofloxacin were established for six isolates each of the 

pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. 

Three in vitro indices of potency were determined; Minimum Inhibitory Concentration 

(MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration 

(MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were 

modified in three respects: (1) comparison was made between two growth media, an artificial 

broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical 

bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to 

improve accuracy of determinations. Similar methods were used for MBC and MPC 

estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 

0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. 

Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC 

values were significantly lower than those predicted by correction for protein binding; fu 

serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For 

broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). 

Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested 

that, for dose prediction purposes, serum data might be preferable to potency indices 

measured in broths. 

Keywords: 

Marbofloxacin; Minimum Inhibitory Concentration; Minimum Bactericidal Concentration; 

Mutant Prevention Concentration; Pasteurella multocida; Actinobacillus pleuropneumoniae 
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1. Introduction 

 

Internationally accepted methods, guidelines and standards for Minimum Inhibitory 

Concentration (MIC) determination have been set by the European Union Committee on 

Antimicrobial Sensitivity testing (EUCAST) and the Clinical Laboratory Standards Institute 

(CLSI). These standards provide the advantage of consistency in comparing MICs between 

individual experimenters, laboratories and across countries (Papich 2013). For MIC 

determination, EUCAST and CLSI require the use of two-fold dilutions. When plotted on a 

histogram, using a log-base 2 distribution, the distributions are log-normal. These histograms 

facilitate the identification of wild-type distributions. CLSI reports microbiological Cut-Offs 

(COWT) and EUCAST reports Epidemiological Cut-Offs (ECOFF). These are often identical 

but differences occur for some drugs.  

Despite these clear benefits, for the purposes of the present study, the CLSI/EUCAST 

methods of determining MIC have two disadvantages. First, being based on two-fold 

dilutions, there is potential for up to 100% error on single isolate estimates, thus having a 

limitation regarding accuracy for a small number of isolates. To partially meet this concern, 

previously we have used five sets of overlapping two-fold dilutions; this reduces inaccuracy 

from approaching 100% to not exceeding 20% (Aliabadi and Lees, 2001; Sidhu et al., 2010). 

Second, the CLSI/EUCAST standards are based on the use of broths, specifically formulated 

to facilitate bacterial growth in vitro. They differ in composition from biological fluids and 

hence may not reflect bacterial growth conditions in vivo. To enable comparisons between 

broths and biological fluids as growth matrices, and to evaluate possible differences between 

them, previous authors have used serum, plasma and inflammatory exudate (Aliabadi and 
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Lees, 2001, 2002; Nightingale and Murakawa, 2002; Zeitlinger et al., 2004, 2008; Sidhu et 

al., 2010).  

To optimise clinical efficacy and minimise the emergence of resistance to antimicrobial 

drugs, a third consideration is dosage required for differing pathogen loads. For metaphylaxis 

and treatment early in the course of disease, when the pathogen load is absent or low, many 

drugs will either prevent or cure disease, acting in support of natural body defences. 

However, this general consideration does not apply to marbofloxacin, which is recommended 

solely for therapeutic use. The major challenge for antimicrobial drugs is to select a dosage 

regimen which provides a bacteriological cure and avoids the emergence of resistance, when 

pathogen numbers in the biophase are high (Mouton et al., 2011a, 2011b; Martinez et al., 

2012; Papich, 2014). For this reason, a high starting inoculum count of approximately 

10
7
CFU/mL was selected for use in this study, in preference to the inoculum count of 

5x10
5
CFU/mL recommended in CLSI and EUCAST guidelines. 

The product literature for marbofloxacin contains the statement, "Official and local 

antimicrobial policies should be taken into account when the product is used. 

Fluoroquinolones should be reserved for the treatment of clinical conditions which have 

responded poorly, or are expected to respond poorly, to other classes of antimicrobials. 

Whenever possible, fluoroquinolones should only be used based on susceptibility testing. Use 

of the product deviating from the instructions given in the SPC/datasheet may increase the 

prevalence of bacteria resistant to the fluoroquinolones and may decrease the effectiveness of 

treatment with other quinolones due to the potential for cross resistance."  

The aims of this investigation were: (1) to determine the degree of protein binding of 

marbofloxacin in pig serum; (2) for marbofloxacin and six isolates each of two pig 

respiratory pathogens (A. pleuropneumoniae and P. multocida)   to determine three indices of 
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potency, MIC, Minimum Bactericidal Concentration (MBC) and Mutant Prevention 

Concentration (MPC) using five sets of overlapping two-fold dilutions and to compare each 

index in two matrices, CLSI recommended broths and pig serum. 

 

2. Materials and Methods 

2.1 Marbofloxacin serum protein binding  

Marbofloxacin concentration in pig serum in vitro was determined by high pressure liquid 

chromatography (HPLC) (Aliabadi and Lees, 2002).  The HPLC system comprised a Dionex 

Ultimate 3000 pump and autosampler connected to a Dionex RF 2000 fluorescence detector 

(Thermo Fisher UK Ltd., Hemel Hempstead, UK).  Fluorescence detection was set at an 

excitation wavelength of 295 nm and an emission wavelength of 500 nm. Chromatographic 

data were analysed using Chromeleon and concentrations of marbofloxacin were calculated 

using ratios of peak area marbofloxacin:internal standard.  Marbofloxacin concentrations 

used were 0, 0.0025, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5 and 10 µg/mL, incubated for 30 min. 

Two sample sets were used: (1) spiked marbofloxacin standards in serum to determine total 

concentration; (2) an aliquot of these serum samples filtered using ultra-filtration devices 

(Amicon Ultra Centrifugal filters, Ultracel 10k, Sigma-Aldrich Ltd., Dorset, UK).  The 3 mL 

sample aliquot was placed in the ultra-filter unit and centrifuged at 4000xg for 20 min at 

25
o
C.  The ultra-filtrate was harvested from the reservoir of the system and assayed to 

determine concentration in the protein free fraction.  For each concentration, determinations 

were made on three batches of pig serum. 

                                     % Protein Binding =[total – unbound]    x100 

                                                                      Total 
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2.2 Bacterial isolates 

Twenty isolates of P. multocida were supplied by Don Whitley Scientific (Shipley, West 

Yorkshire, UK). They also supplied three ATCC reference strains for use in MIC tests; A. 

pleuropneumoniae ATCC 27090, Enterococcus faecalis ATCC 29212 and E. coli ATCC 

25922. Eight isolates of A. pleuropneumoniae were supplied by A. Rycroft (Royal Veterinary 

College, Herts., UK). All A. pleuropneumoniae and P. multocida isolates were derived from 

EU field cases of pig pneumonia. They were stored at -80
o
C in 10% Marvel

®
 milk powder, 

15% glycerol in sterile distilled water. The mixture was sterilized by boiling for 5 sec, left to 

cool for 12 h and then boiled again for a further 5 sec.  

Six isolates of each species were selected, based on three criteria: (1) ability to grow 

logarithmically in both CLSI recommended broth and pig serum; (2) susceptibility to 

marbofloxacin, as indicated by MIC determined using doubling dilutions; and (3) selection of 

isolates with the highest and lowest broth MICs plus four isolates with intermediate MICs.  

2.3 Culture methods and bacterial counts 

For A. pleuropneumoniae, Chocolate Mueller Hinton Agar (CMHA) was used for growth on 

a solid medium and Columbia broth supplemented with 2 µg/mL nicotinamide adenine 

dinucleotide (NAD) was the liquid broth. Mueller Hinton agar supplemented with 5% 

defibrinated sheep blood (MHA) was used to grow P. multocida and the liquid medium was 

Cation Adjusted Mueller Hinton Broth (CAMHB).  Organisms were incubated in a static 

incubator at 37
o
C for 18-24 h.   

Bacterial counts were determined by serial dilution and spot plate counts. Ten-fold or 100-

fold dilutions were carried out in Phosphate Buffered Saline. Three 10 µL drops of the 

appropriate dilutions were dropped onto the agar surface and allowed to dry for 10 min 
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before incubating for 24 h. The mean CFU count for each 10 µL was determined, multiplied 

by 100 and then multiplied by the dilution factor to obtain the initial CFU/mL. 

2.4 Minimum Inhibitory and Minimum Bactericidal Concentrations 

MICs were determined by microdilution for six isolates each of A. pleuropneumoniae and P. 

multocida, in accordance with CLSI guidelines, except for: (a) using five sets of overlapping 

two-fold serial dilutions to increase accuracy; (b) making determinations in serum as well as 

broth; and (c) growing cultures to 0.5 McFarland Standard  (approximately 1-2x10
8 
CFU/mL) 

and this was diluted ten-fold to obtain a starting inoculum of 2x10
7 

CFU/mL. This is higher 

than, and therefore also a deviation from the CLSI guidelines, which recommend a starting 

count of 5x10
5 

CFU/mL. The higher count was selected to provide a medium to heavy 

microbial load. 

Marbofloxacin, media and culture were added successively to each well of 96-well plates. 

Plates were sealed and incubated statically at 37
o
C for 24 h. Spot plate counts were prepared 

immediately after plate inoculation. Tests on each isolate were undertaken in triplicate. 

Control ATCC isolates were used at a count of 5x10
5 

CFU/mL as per CLSI guidelines. A 

positive control well contained medium and pathogen only and a negative control contained 

medium and marbofloxacin solution. Blank controls contained medium only. For MBC, wells 

were examined for growth to determine MIC and, in addition to that well, five subsequent 

concentrations higher than MIC were examined by spot plating. This indicates a 3log10 

reduction in inoculum count. 

2.5 Mutant Prevention Concentration  

After growing fresh cultures on agar, approximately 100 single colony forming units (CFU) 

were used to inoculate culture from plates into a volumetric flask containing 200 mL of pre-

warmed broth.  This was incubated statically overnight at 37
o
C.  Next day, 1 mL of culture 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

  8 

was added to 9 mL of broth and placed in an orbital incubator for 4 h at 37
o
C and 180 rpm.  

After 4 h, the bacterial suspension yields 1-2x10
11 

CFU/mL. A spot plate was used to confirm 

inoculum density.   

Final drug concentrations were 1, 2, 4, 8, 16, 32, 64 and 128 multiples of MIC for each of six 

isolates of each species. These ranges were narrowed down two further times, for example if 

MPC was 64xMIC the next range would be 32, 36, 40, 44, 48, 52, 56, 60 and 64 x MIC, and 

the final range if the MPC was 36xMIC would be 32, 32.5, 33, 33.5, 34, 34.5, 35, 35.5 and 

36xMIC. Five hundred µL of marbofloxacin solution were applied to cold, dry agar plates 

and left to dry. Culture (100µL) was added to the plate and allowed to dry.  Plates were 

incubated at 37
o
C for 72 h and checked for growth every 24 h.  MPC was the lowest 

marbofloxacin concentration inhibiting bacterial growth completely after 72 h incubation.  

A test was performed to validate the modified MPC method used; the results were identical to 

those obtained using the method described by Blondeau (2009) (data not shown).    

2.9 Data analysis 

Data were recorded on Microsoft excel, processed using GraphPad Prism v6 and analysed 

using IBM SPSS Statistics 22 by Kruskal-Wallis H with  post-hoc Mann-Whitney U test. 

 

3. Results 

3.1. Protein binding 

The marbofloxacin concentration curve was linear up to 10 µg/mL.  The mean (SD) 

percentage protein binding was 49.4 (9.61) and was independent of concentration (Table 1). 

For three batches of serum, SDs were in the range 0.84-1.45 for concentrations of 0.05 to 10 

µg/mL and in the range 8.99 to 16.0 for lower concentrations.  
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3.2.Minimum Inhibitory, Minimum Bactericidal and Mutant Prevention Concentrations 

Table 2 presents data as geometric means (SD) for MIC, MBC and MPC for broth, serum and 

serum values corrected for protein binding.  Table 3 indicates serum:broth ratios and fraction 

unbound (fu) serum:broth ratios for MIC, MBC and MPC.  

For P. multocida MIC, the coefficient of variation ranged from 6-44% for the three repeat 

estimates in broth and between 0-63% in serum. The greatest variation was seen for the 

isolates with higher MIC values, and the lowest variations between the three repeats were for 

isolates with low MIC values. Nevertheless, even when variation percentage appears high, in 

reality, this roughly equates to a standard doubling dilution. For example, for 63% coefficient 

of variation in serum, the less susceptible isolate out of six had a lower MIC value of 0.03 

µg/mL and higher MIC value of 0.06 µg/mL. Similarly, for A. pleuropneumoniae, the 

coefficient of variation ranged from 0-13% for the three estimates in broth and between 0-

22% in serum.  

The mean serum:broth MIC ratio for A. pleuropneumoniae was 0.79:1 and for P. multocida it 

was 1.12:1. The growth medium thus did not significantly affect MIC for either organism. 

However, after correcting serum values for protein binding, the fu serum:broth ratio was 

0.40:1 for A. pleuropneumoniae and 0.50:1 for P. multocida; fu serum MICs were 

significantly lower than broth MICs (P<0.01 for A. pleuropneumoniae and P<0.05 for P. 

multocida) indicating approximately two-fold greater potency of marbofloxacin in serum. For 

MPC the fu serum:broth ratios were similar to fu serum:broth MIC ratios; 0.50:1 (A. 

pleuropneumoniae, P<0.05) and 0.67:1 (P. multocida, P>0.05).  

MBC:MIC ratios were higher for serum than broth for both organisms (Table 4), whereas 

MPC:MIC ratios were not significantly different for serum compared with broth. For A. 

pleuropneumoniae, the MPC ranged from 11 to 19xMIC in broth and 12-20xMIC in serum.  
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Similar results were obtained for P. multocida in broth (12-20xMIC) and serum (12-

20xMIC). For A. pleuropneumoniae the MPC:MIC ratio was 13.7:1 in broth and 17.2:1 in 

serum, and corresponding values for P. multocida were 14.2:1 and 18.8:1. 

 

4. Discussion 

4.1 Growth medium and drug potency 

For some drug classes, potency differences between artificial broths and biological fluids 

may be small and may therefore not significantly impact on dose determination, provided the 

non-protein bound plasma/serum drug concentration is corrected for (Gonzales et al.,2013; 

Toutain et al., 2016). For other drug classes, however, differences between broths and 

biological fluids may be large (Brentnall et al., 2012, 2013; Toutain et al., 2016). Honeyman 

et al. (2015) compared potencies of several tetracyclines in broth and a 50% broth:50% serum 

mixture and established marked differences in MIC for the two growth matrices, depending 

on both chemical structure and bacterial species. Brentnall et al. (2012) reported, after 

correction for serum protein binding, for a calf isolate of Mannheimia haemolytica, a MIC in 

serum 6 times greater than the broth MIC for oxytetracycline. In stark contrast, Toutain et al. 

(2016) reported, again after correction for serum protein binding, MICs some 80-fold smaller 

in calf serum compared to broth for tulathromycin for M. haemolytica and P. multocida 

isolates (six per species) from calves. Furthermore, Zeitlinger et al. (2011) commented “in 

order to be able to extrapolate data from various models to in vivo situations, models should 

always attempt to mimic physiological conditions as closely as possible”.  Therefore, the 

quantitative determination of pharmacodynamic indices, not only with improved accuracy but 

also in biological matrices, must be regarded, for some drug classes, as appropriate in 
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applying PK/PD integration and modelling methods to dose determination in subsequent 

studies.  

For human isolates of Streptococcus pneumoniae, serum:broth MIC ratios for four 

fluoroquinolones, ciprofloxacin, levofloxacin, trovafloxacin and moxifloxacin, were 4:1, 1:1, 

8:1 and 2:1, respectively (Balcabao et al., 2001), indicating matrix variability between 

fluoroquinolones for a single bacterial species. Similarly, for calf isolates of P. multocida, 

bovine serum:MHB MIC ratios for marbofloxacin ranged from 1:1 to 7:1 and for M. 

haemolytica the ratio ranged from 0.012:1 to 2.5:1 (Shan et al., 2014; Illambas et al., 2013; 

Potter et al., 2013).  These data from several sources suggest: first, that serum MIC values 

should be considered on both a drug-by-drug and bacterial species-by-species basis to allow 

for the inactive protein bound fraction; and second, corrected serum values may not be the 

same as, and therefore might be used in preference to, the broth MIC for application to 

prediction of dosage for some drugs. Even better, if available, would be values of MIC 

determined in biophase fluids, in this instance, pulmonary epithelial lining fluid (PELF).   

MIC, MBC and MPC are widely used indicators of antimicrobial drug activity and were used 

in this study to compare marbofloxacin potency for the pig pneumonia pathogens, P. 

multocida and A. pleuropneumoniae, in two matrices, pig serum and CLSI recommended 

broths. Protein binding is a major factor (and unfortunately often the only factor) considered 

in seeking to explain medium differences in potency; only free drug is microbiologically 

active (Wise, 1986; Zeitlinger et al., 2004, 2008). Thus, a higher drug concentration is 

predicted for the same level of inhibition as in broths, in which albumin concentrations are 

generally very low.  Protein binding of drugs is species dependent; previous investigators 

have reported protein binding values for marbofloxacin of 15-28% (dogs) and less than 30% 

(calves) (Aliabadi and Lees, 2002; Bidgood and Papich, 2005).  
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Protein binding of marbofloxacin in pig serum was 49% in this study. This value is higher 

than a non-literature estimate of less than 10% for pig serum, though there may be variation 

between different manufactures/products. (NOAH Compendium, 2016).  The value reported 

in the present study was obtained using a well recognised method, previously used in this 

laboratory. Moreover, percentage binding was independent of concentration over a wide 

range (0.0025-10 µg/mL) and was relatively consistent (range of 45.1 to 59.2 over the 

concentration 0.01 to 10 µg/mL and small/moderate SD) for three separate batches of pig 

serum. Nevertheless, drug binding to serum protein can vary widely with methodology 

(Gonzalez et al., 2013) and, for a single drug, intra-species differences have been reported. 

An example is oxytetracycline in calves – reported literature percentage binding values were 

53 (Lees), 50 (Pilloud) and 18.6 (Ziv). Therefore, in future studies, it will be important to 

determine protein binding of marbofloxacin in pig serum obtained from different sources, 

differing breeds, ages and indeed between healthy and diseased animals.  

For both organisms investigated, correcting the serum MIC for protein binding yielded fu 

serum MICs significantly less than broth MICs. The fu serum:broth MIC ratio for A. 

pleuropneumoniae, predicted by correction for binding to be 1:1, was 0.40:1. Consequently, 

correction of serum MIC for protein binding is necessary but not sufficient for determination 

of potency differences between the two matrices. A similar significant difference, fu 

serum:broth ratio=0.50:1, was obtained for P. multocida. Therefore, for these organisms, 

dosage prediction from in vivo pharmacokinetic data and in vitro broth MIC data, would be 

approximately twice as high as that based on serum MICs. In reporting these potency 

differences between serum and broth, after correction for binding to protein in serum, it 

should be noted that serum bound drug will be released over time, extending the duration of 

action of the drug.  
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Also of importance for prediction of dosage and determination of efficacy is drug 

concentration in the biophase. Marbofloxacin distributes extensively to most tissues 

(including the lung), at higher concentrations than in serum/plasma. As discussed by 

Gonzalez et al. (2013) and Foster et al. (2016) disease and drug-related factors contribute to 

differential tissue distribution. For bacterial infections in the pig lung, the biophase is 

pulmonary epithelial lining fluid (PELF). In this regard, the data of Foster et al. (2016) for 

another fluoroquinolone, enrofloxacin, in calves may be noted. They reported area under 

curve values  (h*µg/mL) of  17.79 (plasma), 8.89 (interstitial fluid) and 4.03 (PELF).  

One factor, potentially accounting for differences in MIC between broths and serum 

corrected values, is differing bacterial growth rates. Zeitlinger et al. (2008) compared growth 

curves, in the absence of antimicrobial drugs, of S.aureus and Pseudomonas aeruginosa in 

Mueller Hinton Broth (MHB) and serum.  Slower logarithmic growth was obtained for both 

species in serum compared to broth, and this might be expected to provide more rapid kill in 

serum for a given drug concentration, as a consequence of a smaller microbial challenge. 

Studies in our laboratory have similarly established slower growth rates in pig serum 

compared to broth for P. multocida and A. pleuropneumoniae (Dorey et al., submitted). 

Other possible explanations accounting for influence of matrix on MIC were considered by 

Korz et al. (1995); they suggested that microbial growth might be limited by acidic growth 

conditions.  In the present study, the growth medium became slightly more acidic during the 

logarithmic growth phase for both broth and serum (data not shown). In further studies, other 

factors potentially accounting for serum/broth differences described in this paper were 

investigated (Dorey et al., 2016) 

It is important to emphasise that the differences in MIC (and indeed MBC and MPC) between 

serum and broth reported in this study do not provide a rationale for abandoning broths by 
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diagnostic laboratories in future studies. This would be impractical and unnecessary. Rather, 

the present data suggest only that, for marbofloxacin and the two bacterial species studied, it 

will be possible to apply a scaling factor, to bridge between MICs in broths and pig serum in 

calculating PK/PD (AUC/MIC) breakpoints, which can be used in predicting dosages, such 

predictions, in turn, to be confirmed (or not) first in disease model studies and finally in 

clinical trials.   

4.2 Mutant Prevention Concentration  

Dong et al. (1999) proposed MPC as an in vitro indicator of the propensity of an 

antimicrobial drug to prevent the selection of resistant sub-populations, when high-density 

bacterial populations were exposed to a range of concentrations. The application of MPC to 

determine a dosing regimen that avoids emergence of resistance has been proposed (Zinner et 

al., 2003; Boerlin and Reid-Smith, 2008; Courvalin, 2008).  The concept has become widely 

recognised, because bacterial load during infection may frequently be greater than the 

inoculum count of 5x10
5 
CFU/ml, defined by CLSI and EUCAST for standardized MIC tests. 

The initial count in the present MPC studies was 1-2X10
11

 CFU/mL, considerably higher 

than CLSI recommended count for MIC and even higher than the MIC count used in this 

investigation of 2x10
7 

CFU/mL, by a factor of 10
4
 CFU/mL.  

MPC:MIC ratios in broth and serum were 13.7:1 and 17.2:1, respectively, for A. 

pleuropneumoniae. For P. multocida, corresponding ratios were 14.2:1 and 18.8:1, broth 

serum differences which were not significantly different. These MPC:MIC ratios were less 

than in some published studies but greater than in others. For example, for M. haemolytica a 

62.5:1 ratio was reported for enrofloxacin, based on MIC90 (Blondeau et al., 2012). For 

Mycobacterium smegmeatis the MPC:MIC99 ratio was 22:1 for moxifloxacin, whereas for the 

same drug a 3.2:1 ratio was reported for S. aureus (Blondeau et al., 2012). From these and the 
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present findings, it seems clear that, as for MICs, MPCs must be determined on a drug-by-

drug, matrix-by-matrix and bacterial species-by-species basis.  

Application of MPC, linked to pharmacokinetic profiles, provides a strategy for designing 

dosages to minimise emergence of resistance. Schneider et al. (2014) reported plasma 

marbofloxacin concentrations in the pig exceeding 0.6 and 1.0 µg/mL for 24 h after 

intramuscular doses of 4 and 8 mg/kg, respectively, while concentrations exceeded 1.0 and 

3.0 µg/mL for 12 h for these two doses. For the 8 mg/kg dose, plasma maximum 

concentration was 6.30 µg/mL. As mean serum MPCs in this study were 12.6 and 0.75µg/mL 

for A. pleuropneumoniae and P. multocida, respectively, it is more likely that a dose to avoid 

emergence of resistance is attainable for the latter species. 

In contrast with the similarity of MPC:MIC ratios for broth and serum for both bacterial 

species,  MBC:MIC ratios were somewhat higher in serum than in broth, 3.80:1 versus 2.47:1 

for A. pleuropneumoniae and 4.89:1 versus 1.71:1 for P. multocida.  The possible causes of 

these trends may be that at low antimicrobial drug concentrations where the isolates are 

susceptible, these tests may be influenced by the culture media and environmental conditions, 

however, these external conditions may not be so influential at high drug concentrations. 

4.3 Conclusions 

The present study reports comparative MIC, MBC and MPC data for two growth matrices, 

broth and pig serum for the pig pneumonia pathogens, A. pleuropneumoniae and P. 

multocida. Significant differences were obtained after correction of serum data for 

marbofloxacin binding to serum protein. In future studies, the present data can be used in 

dose prediction studies, using a scaling factor to bridge between serum and broth differences. 
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Summary 

Moderate growth matrix dependent differences in MIC were demonstrated for marbofloxacin 

for two pathogenic bacterial species harvested from pigs, A. pleuropneumoniae and P. 

multocida. Correction of MIC serum data for drug protein binding revealed significant 

differences from broth MICs, whereby the active (unbound serum) concentration was 2-fold 

lower than predicted. The data indicate that correction for drug binding to serum protein is 

necessary but not sufficient to explain matrix differences in marbofloxacin potency. For both 

growth media, the use of five overlapping sets of two-fold dilutions increased the accuracy of 

MIC, MBC and MPC determinations.  For A. pleuropneumoniae and P. multocida, serum 

MPCs were 17-19 fold higher than MICs.  
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Table 1 

Marbofloxacin serum protein binding  

Concentration (µg/mL) Mean percentage binding (SD) 

10 55.7 (0.84) 

5 49.4 (1.08) 

1 59.2 (0.84) 

0.5 50.8 (1.39) 

0.1 51.3 (1.45) 

0.05 45.1 (1.43) 

0.01 35.0 (15.98) 

0.005 41.2 (8.99) 

0.0025 56.7(11.08) 

Mean 49.4(9.61) 

Serum protein binding over concentration range 0.0025 to 10µg/mL. Values are mean (SD) for three 

batches of serum for each concentration. 
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Table 2 

A. pleuropneumoniae (APP) and P. multocida (PM) MIC, MBC and MPC for broth, serum and fu 

serum†. 

Organism Medium MIC MBC MPC 

APP 
Broth 0.90 (0.24) 2.21 (0.43)  12.68 (2.72)  

Serum 0.71 (0.22) 2.68 (0.49) * 12.60 (4.73)  

 fu Serum 0.36 (0.11)** 1.36 (0.25)* 6.38(3.72)* 

 

PM 
Broth 0.04 (0.06)  0.06 (0.10)  0.57 (0.74)  

Serum 0.04 (0.40) 0.21 (0.76) * 0.75 (8.00)* 

 fu Serum 0.02 (0.20)* 0.10 (0.39) 0.38(1.46) 

†fu serum=serum concentrations corrected for protein binding. Geometric means (SD) of 

marbofloxacin concentrations for each of six isolates of each organism determined in triplicate.  

Significant differences of serum and fu serum from broth values: *P<0.05, **P<0.01. 
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Table 3 

A. pleuropneumoniae (APP) and P. multocida (PM) serum:broth and fu serum:broth MIC, MBC 

and MPC ratios   

Organism Ratio MIC MBC MPC 

APP 
Serum:broth  0.79:1 1.21:1 0.99:1 

fu Serum:broth  0.40:1 0.62:1 0.50:1 

 

PM 
Serum:broth  1.12:1 3.20:1 1.32:1 

fu Serum:broth  0.50:1 1.67:1 0.67:1 

†fu serum=serum concentrations corrected for protein binding 
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Table 4 

A. pleuropneumoniae (APP) and P. multocida (PM) MBC:MIC and MPC:MIC ratios for artificial 

broth and pig serum 

Organism Medium MBC:MIC MPC:MIC 

APP 
Broth 2.47 : 1 13.7 : 1 

Serum 3.80 : 1 17.2 : 1 

PM 
Broth 1.71:1 14.2:1 

Serum 4.89:1 18.8:1 
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Part 1: Highlights 

 

 Pharmacodynamic indices of potency of marbofloxacin  (MIC, MBC, MPC) were bacterial 

species and growth matrix dependent 

 Serum/broth differences in potency may influence PK/PD approaches to dose determination 

in future studies 


