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Cellular preservation of musculoskeletal
specializations in the Cretaceous bird Confuciusornis
Baoyu Jiang1,2, Tao Zhao1, Sophie Regnault3, Nicholas P. Edwards4, Simon C. Kohn5, Zhiheng Li6,

Roy A. Wogelius4, Michael J. Benton5 & John R. Hutchinson3

The hindlimb of theropod dinosaurs changed appreciably in the lineage leading to extant

birds, becoming more ‘crouched’ in association with changes to body shape and gait

dynamics. This postural evolution included anatomical changes of the foot and ankle, altering

the moment arms and control of the muscles that manipulated the tarsometatarsus and

digits, but the timing of these changes is unknown. Here, we report cellular-level preservation

of tendon- and cartilage-like tissues from the lower hindlimb of Early Cretaceous

Confuciusornis. The digital flexor tendons passed through cartilages, cartilaginous cristae and

ridges on the plantar side of the distal tibiotarsus and proximal tarsometatarsus, as in extant

birds. In particular, fibrocartilaginous and cartilaginous structures on the plantar surface of the

ankle joint of Confuciusornis may indicate a more crouched hindlimb posture. Recognition of

these specialized soft tissues in Confuciusornis is enabled by our combination of imaging and

chemical analyses applied to an exceptionally preserved fossil.
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B
irds evolved remarkable changes in their form, function,
behaviour and other biological aspects after their origin
from theropod dinosaur ancestors in the Jurassic period.

Much as flight evolved after its origin in this lineage, the bipedal
posture of birds and their ancestors seems to have evolved.
Reduction of the tail and its musculature as well as shifts in the
body’s centre of mass and enlargement of the pectoral limbs
are consistent with the inference that birds adopted a more
crouched (flexed) limb pose across their evolution; a trend that
began within Theropoda1–3. Important questions such as how did
particular taxa stand and move (and thus what was the timing
and tempo of this postural evolution), or what anatomical,
biomechanical and physiological mechanisms contributed to
these functions, remain daunting. A major problem is the
absence of direct evidence of the structure of many soft tissues
that would have influenced pelvic limb function4.

Here, we document a fossil of an Early Cretaceous bird,
Confuciusornis sanctus, which has some strikingly well-preserved
soft tissues around its ankle joint. Microscopic analyses of
these tissues indicate that they include tendons or ligaments,
fibrocartilages and articular cartilages, with microstructure
evident at the cellular level. Further chemical analyses reveal
that even some of the original molecular residues of these soft
tissues may remain, such as fragments of amino acids from
collagen, particularly in the fibrocartilage. This concurs with
accruing evidence that some biomolecules may survive, under
exceptional circumstances, over many millions of years5–12.
Our reconstruction of the soft tissues around the ankle joint
in this Confuciusornis specimen leads to the conclusion
that Confuciusornis had evolved a more derived form and,
presumably, function of the ankle region (for example,
neomorphic, rudimentary tibial cartilage and hypotarsus),
revealing new details of how early birds began to adopt more
crouched hindlimb postures.

Results
Specimen discovery and morphology. Exceptional soft tissues
were discovered in an otherwise unprepared Confuciusornis
specimen (MES-NJU 57002, Museum of Earth Sciences,
Nanjing University) that was collected from the most productive
Confuciusornis-bearing layer of the Yixian Formation in the
Sihetun area, Liaoning Province, in NE China, by the first author.
The exceptional preservation was enabled by taphonomic
processes of charcoalification of carcasses by a hot pyroclastic
density flow13. Photomicrography, backscatter scanning
electron microscopy (BSEM), computed tomography (CT)
scanning, X-ray microdiffraction and energy dispersive X-ray
spectroscopy (EDX) analyses of the surrounding sediments
and long bone mineralizations were described in a prior
study13. The specimen bears a suite of morphological chara-
cteristics that are diagnostic of Confuciusornis, such as a straight
femoral shaft, ball-shaped femoral head with a distinct capital
fossa, straight tibiotarsus, proximally fused and very short
tarsometatarsus, slit between metatarsal III and IV proximally,
metatarsal I attached distally to the lateral side of metatarsal II,
slender and splint-shaped metatarsal V, and highly recurved
claws with horny sheaths14–16 (Supplementary Fig. 1).
The proximal and distal tarsals were completely fused to the
tibia and metatarsals II–IV, respectively; no sutures are evident
in the fully ossified distal tibiotarsus and proximal tarsometa-
tarsus. These skeletal traits indicate that the specimen was
skeletally mature17, even though its body size is perhaps slightly
small as indicated by the shorter length of its tarsometatarsus
compared with previously published specimens (Supplementary
Table 1).

Histological sectioning and tissue identification. Two
approximately parallel sections oblique to the sagittal plane were
prepared from the specimen. Section 1 cuts from the medial
surface of the distal tibiotarsus, passing through the medial
condyle and a cavity between the tibiotarsus and tarsometatarsus,
to the lateral surface of the proximal tarsometatarsus of the
right pelvic limb. Section 2 is lateral to section 1, cutting
through the medial and lateral condyles, to the lateral surface
of the tarsometatarsus (Fig. 1; also see Supplementary Fig. 1b
in ref. 13).

Blackened soft tissues with residual, desiccated linear biological
structure are exposed intermittently on the plantar surface of
the distal tibiotarsus and then across the ankle joint to the
proximal tarsometatarsus (Fig. 1f,g). Scanning electron micro-
scopy-based energy-dispersive X-ray analysis shows that the
tissues comprise mainly carbonaceous materials13 (Suppleme-
ntary Fig. 2). Three types of soft tissues are recognizable.

Tissue type 1 is exposed from the distal tibiotarsus, through
the space between the tibiotarsus and tarsometatarsus, to the
proximal tarsometatarsus. It is composed of parallel arrays of
wavy fibrils forming bundles of 1–10 mm in diameter, separated
by linear fissures (‘t/l’, Figs 2a,b and 3; Supplementary Fig. 3).
This tissue bears the hallmarks of tendons or ligaments, such as
the wavy appearance, parallel arrangement and hierarchical
organization of the fibrils18,19, distinct from purely sedimentary
features or other tissues. Hence, we interpret tissue type 1 as
tendon and/or ligament.

Tissue type 2, with thickness up to 0.5 mm, occurs in the areas
on the distal tibiotarsus and the proximal tarsometatarsus where
the tendons/ligaments would have wrapped around the condyle
and cotyle. It consists of oval or round cellular structures 5–10mm
in diameter that are either embedded in a matrix composed of a
network of interwoven fibrils and tiny mineralized zones, or
arranged in rows between parallel fibres (‘fc’, Figs 2 and 3a–c).
These features are typical of fibrocartilage20,21, and hence we
interpret this tissue’s identity as fibrocartilage. The fibrocartilages
appear to be locally (at least partly) ossified, as indicated by the
presence of small mineral precipitates in the matrix and
mineralized cellular structures on the upper surface of the
underlying bone (‘m’, Figs 2c,d and 3a–c).

Tissue type 3 is preserved along both articular facets of
the tarsometatarsus and tibiotarsus. It contains two thin layers
of densely packed, paired cellular structures in a matrix composed
of a network of interwoven fibrils: an inner mineralized layer
and an outer unmineralized layer (Fig. 2e,f). The cellular
structures are oval or round and about 10 mm in diameter. The
structures, resembling the lacunae left by paired cells of articular
cartilage in their shape, size and positions of occurrence22,
indicate that the articular cartilages are partly preserved.
The mineralized and unmineralized layers correspond
respectively to the calcified and uncalcified zones of articular
cartilages. This interpretation is supported by gross morphology
and histology of the corresponding extant avian tissues (Supple-
mentary Figs 4,5 and 6), and previous reports of cartilage
preservation in fossils23.

Chemical analyses of possible soft tissues. Tendons, ligaments
and cartilage are mainly composed of collagen and the
proteoglycan aggrecan24. Survival and detection of residual amide
functional groups derived from precursor proteins within fossil
specimens is well documented via Fourier transform infrared
(FTIR) and time-of-flight–secondary ion mass spectrometry
(ToF–SIMS)5–11,25. We tested our inferences based on the
morphological similarities of these putative soft tissues to
tendons, ligaments and fibrocartilages with chemical analyses.
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FTIR analysis was applied to the tissues exposed on the
polished section in reflection mode and the spectra were
compared with those of modern intact collagen and aggrecan26.
As shown in Fig. 4a, the fossilized soft tissues have three main
strong absorbance regions. The region of 960–1,160 cm� 1 is
strongest with a prominent peak at 1,033 cm� 1, followed by that
of 1,400–1,700 cm� 1 with two strong peaks at 1,510 and
1,652 cm� 1, respectively. The region of 1,200–1,300 cm� 1 is
relatively weaker, with a peak at 1,248 cm� 1. The peaks at
1,652 and 1,510 cm� 1 correspond to the diagnostic amide I and
II absorbances, respectively, which appear distinctly in the spectra
of collagen and aggrecan. The presence of the amide I peak at
1,652 cm� 1 in both fossil spectra, combined with the additional
structure in both spectra from 1,652 to 1,400 cm� 1, indicate
that organic material is present within the fossil specimen and

that products from the breakdown of proteinaceous material
most likely contributed to this organic matter. The peak at
1,033 cm� 1 presumably is a Si-O stretch mode from
microcrystallites of a silicate phase within the fossil. Absorption
due to the amide II band, at 1,550 cm� 1 in the reference spectra,
may be present within the broad elevated region of absorbance in
the fossil tissue, and may even be slightly shifted to lower
wavenumbers and thus contribute to the peak visible at
B1,510 cm� 1. At 1,248 cm� 1 in the fossil specimen, the
broad peak would be consistent with amide III but may be
convolved with sulfate as seen in the aggrecan spectrum. This
region (1,400–1,700 cm� 1) that includes the amide I and amide
II peaks provides the most prominent FTIR absorption peaks of
collagen from modern cartilage26,27. FTIR mapping shows that
the areas of this strong absorbance correlate with those of the
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Figure 1 | Osteology and putative soft tissues of the Confuciusornis hindlimb. Specimen MES-NJU 57002 (right lower limb), showing position of

sections. (a,b) Three-dimensional digital images, constructed from microCT scan data, showing approximately dorsal (a) and plantar (b) views of the right

distal hindlimb and positions of sections. (c,d) Close-up view of the ankle joint in approximately medial (c) and lateral (d) views. (e–g) Photomicrographs

of the ankle joint before sectioning (e), in section 1 (f), and in section 2 (g). (h) Approximately sagittal microCT slice showing positions of horizontal

microCT slices. (i–p) Continuous horizontal microCT slices across the distal tibiotarsus (i–l) and proximal tarsometarsus (m–p). cl, condylus lateralis;

cm, condylus medialis; crl, crista lateralis; crm, crista medialis; hr, hypotarsal ridge; mt, metatarsal; S1/S2, sections 1/2; sb, spongy (cancellous/trabecular)

bone; st, soft tissue; su, sulcus; tib, tibiotarsus; tmt, tarsometatarsus. Scale bar, 5 mm in a–e and g, 500mm in f, 1 mm in h–p.
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putative tendons/ligaments and fibrocartilages (areas 2, 3, 5–7 in
Fig. 4e,f), although they also overlap the areas of fissures
(the black areas in Figs 3a–c and 4e) where the signal probably
is interfered with signal from epoxy. These FTIR spectra and
mapping imply that amino acid residues may be present.

ToF–SIMS with imaging capability was applied to putative soft
tissues on the polished section (the square area in Fig. 4e).
Spectrum and image data were acquired in the bunched mode
(m/Dm B6,000) at a spatial resolution of B5 mm at analysis
depths up to 1 and 1.7 nm, respectively. The spectra presented in
Fig. 4b and Supplementary Fig. 7f–j were obtained at analysis
depth up to 1 nm from the areas enclosed by the blue line in
Supplementary Fig. 7a,b, which mainly consist of the inferred soft
tissues. Ion images reveal that the spatial signal intensity

distribution for peaks at 275.16, 293.17 and 413.26 AMU in
negative ToF–SIMS spectra highly correlates with the distribution
of the inferred fibrocartilages (Fig. 4i; Supplementary Fig. 7e,k),
and in contrast to those for NH4

þ (Fig. 4j) and Alþ (Fig. 4g) in
positive ToF–SIMS spectra, which superimpose with the
distribution of fissures that may contain epoxy and the enclosing
sediments, respectively. Spatial signal intensity distribution of
mass values for peaks at 277.15 AMU (Supplementary Fig. 7c)
and 415.26 AMU (Supplementary Fig. 7d) in positive ToF–SIMS
spectra also weakly superimposes on the distribution of the
inferred soft tissues, but is interfered with by the signal from the
sedimentary matrix and probably epoxy in the fissures. Ion
images acquired at analysis depth up to 1.7 nm (Supplementary
Fig. 7i–t) are consistent with those at analysis depth up to 1 nm.

Fig. 2d
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Figure 2 | Probable tendons/ligaments and fibrocartilages in the Confuciusornis ankle. The intertarsal joint region of the specimen MES-NJU 57002

(Fig. 1f,g). (a) BSE-SEM image of the square area in Fig. 1f, showing the tarsometatarsus at the top right of the image and the tibiotarsus on the left, with

intervening tendon/ligament material (t/l). Within the tendon/ligament, there are regions of fibrocartilage matrix (fc) and cells (arrows) arranged in rows

between parallel fibres. (b) Close-up view of the square area in a. (c) BSE-SEM image of the square area in Fig. 1g, showing the tibiotarsus on the left and

the tarsometatarsus on the right. A large area of mineralization (m) is visible in the fibrocartilage on the plantar aspect of the ankle joint. (d) Close-up view

of the square area in c. Cellular structures (arrows) are embedded in a matrix composed of network of interwoven fibres and smaller mineralizations.

(e) BSEM images show that the articular facets of the tarsometatarsus and tibiotarsus in the Confuciusornis specimen contain two thin layers of densely

packed, paired cellular structures: an inner calcified layer (yellow arrows) and an outer uncalcified layer (blue arrows). (f) Close-up view of the square area

in e. Scale bar, 200mm in a and c, 100 mm in e, 50mm in b, 10 mm in d, 20mm in f.
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This rules out the possibility that spectra resulted from outermost
surface contamination.

A characteristic feature of the secondary ion spectrum of
an organic molecule M is the appearance of the quasi-molecular
ions (MþH)þ (Mþ cation)þ , and (M�H)� (ref. 28). The
fragment ions of 275.16 and 293.17 AMU (¼ 275.17þ 1H2O) in
negative spectrum and 277.15 AMU in positive spectrum probably
represent a similar molecule with a mass of 276.16 AMU. Likewise,
the measured peaks at 413.26 AMU in negative spectrum and
415.26 AMU in positive spectrum possibly represent a similar
molecule with a mass of 414.26 AMU. There are many candidate
molecules with the measured ToF–SIMS peak masses and we
cannot resolve definitive sequence assignments, because all we
have is mass data. Considering that proteins may be degraded
into peptides of various sizes in variable states of protonation/
deprotonation, the measured mass peaks were tentatively
interpreted by comparing probable peptide sequences with the
peaks resolved via ToF–SIMS. The 276.16 AMU peptide needed to
explain the 275.16 negative peak and 277.16 positive peak could
possibly be a Gly-X-Y tripeptide (for example, Gly-Ser-Asn or
Gly-Ser-Hyp). The mapped distribution of this mass fragment
indicates that it is indeed derived from regions within the fossil
that display the presence of amino acids. Because Gly-X-Hyp is
one of the most common sequences in collagen, the distribution
of this proposed moiety (Fig. 4j; Supplementary Fig. 7) is

consistent with the presence of collagen residue as inferred from
the FTIR data. The required peptide mass at 414.26 AMU

(to explain the peak at 413.26 AMU in the negative spectrum and
415.26 AMU in the positive spectrum) is more problematic.
Although it could represent protein-derived residue, given its
distribution we do not base any conclusions on this resolved
mass. However, we conclude that the B276 AMU data are
consistent with the presence of Gly-X-Y residues. Therefore, the
ToF–SIMS maps and spectra strengthen the inference from the
FTIR spectra that amino acid residues from collagen may be
present in the fibrocartilage zones of this specimen.

X-ray chemical analyses. Connective tissues such as cartilage or
tendons/ligaments normally have high-sulfur content and their
dominant sulfur species is sulfate. Synchrotron rapid-scanning
X-ray fluorescence mapping revealed that the sulfur content of
the soft tissues was higher than the overlying bone, the embed-
ding sediments and the fissures between them (Fig. 4d).
Subsequent X-ray absorption near-edge spectroscopy showed that
the sulfur speciation in this region of the fossil is dominated by
sulfate (Fig. 4c). This is wholly consistent with the FTIR peak at
1,248 cm� 1, which relates to an overlapping absorbance region of
Amide III from collagen and sulfate from aggrecan. Since the
region of high sulfur was confined to the soft tissues, the sulfur
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may derive from original sulfate or the breakdown of original
organosulfur compounds.

Summary of chemical analyses. These chemical analyses support
our inference that the segmented biological structures probably
are the preserved residues of tendons/ligaments and cartilages.
Interestingly, an ion image of spatial signal intensity distribution
for Feþ (Fig. 4h) in the positive ToF–SIMS spectra can also be
directly superimposed onto the inferred distribution of soft
tissues, which supports the hypothesis that iron may be involved
in the preservation of soft tissue5,11.

Morphological interpretations of likely soft tissues. The deepest
tendons that cross the plantar surface of the lower leg in
extant birds are parts of the digital flexor muscles4,29,30. This
implies that the preserved residual tendons/ligaments are
remnants of those digital flexor tendons, and intertarsal

ligaments closely associated with them. The tendons/ligaments
pass through two cartilaginous structures, a sulcus on the
distal tibiotarsus and a ridge on the proximal end of the
tarsometatarsus.

The sulcus is delimited by two cristae against the condyles on
the distal tibiotarsus. The cristae, about 1 mm thick, are porous
and locally fragmented. Their lower parts are fused to the
underlying bone, and their upper surfaces are irregular and
covered by partly mineralized fibrocartilages in the area
contacting with tendons/ligaments (Figs 1e–l and 3a,b). Partly
intact preservation of spongy condyles and continuous cortical
bone across the cristae and sulcus (Fig. 1i–l) indicate that the
cristae are not derived from compression or displaced cortical
bone, even though the bone apparently underwent some
compression during fossilization. The fibrocartilaginous nature
of the cristae is supported by the distinct light grey colour
of the cristae in comparison with the brown colour of the
remaining bone exposed in a further two Confuciusornis
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specimens from the Institute of Vertebrate Paleontology and
Paleoanthropology, Chinese Academy of Sciences (IVPP; IVPP
18156 and IVPP 13175; Supplementary Fig. 6). The sulcus and
the contacting fibrocartilage anatomically correlate with the
caudal intercondylar sulcus and the tibial cartilage that is situated
in the sulcus in extant birds29,30.

The ridge on the proximal end of the tarsometatarsus is
composed of fibrocartilage and a crescent-shaped mineralization
B0.1 mm thick on its plantar side (Figs 1g,2c,d and 5). It is
elevated and inflated in its medial to central position. Distal to
the ridges, sulci are formed on the central to lateral position of
the proximal tarsometatarsus, which connect to the grooves

against metatarsals II, III and IV in the area where the metatarsals
are not fused (Fig. 1m–p). Such a cartilaginous ridge with
sulci distal to it can be observed in other Confuciusornis
specimens (for example, IVPP18156 and IVPP 18168; Suppleme-
ntary Fig. 6). The ridge occurs at the position of the hypotarsus in
ornithuromorph birds31, but it is less distinct and more
cartilaginous compared with the latter structure, even with
those seen in early ornithuromorph birds, such as the Late
Cretaceous Patagopteryx, Pengornis, Yixianornis, Apsaravis and
Ichthyornis, which have a flat bony projection or unprojected
discrete surface without canals and sulci32–34. In contrast, the
ridge resembles an intermediate state of the hypotarsus in the
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use in b–d. (b) Inferred distribution of the preserved tendons/ligaments, fibrocartilages, articular cartilages, cartilaginous cristae and ridges in the right

ankle joint of Confuciusornis. Medial view emphasizing the wrap-around tendons of the digital flexors, associated fibrocartilage and mineralization.

(c) Cross-sectional reconstructed scan data from the proximal tarsometatarsus as shown in a and used in d. (d) Drawing of histological horizontal

cross-sections through the proximal end of the tarsometatarsus (or metatarsus) of squamate Iguana38, pygostylian bird Confuciusornis, enantiornithine bird

Pengornis, ornithuran bird Yixianornis and crown-group bird Columba39 shows our hypothesis for the evolution of the hypotarsus (hy) and other derived

features of avian ankles. Pink colours are tendinous/ligamentous tissue; white is bone; grey is muscular tissue and yellow is (fossilized) fibrocartilage. From

left to right, as the number of main toes was reduced and the pes narrowed and consolidated, becoming more robust, it became more plantarly projected

(that is, a larger hypotarsus) and formed fibrocartilages, mineralizations and ultimately bony ridges and grooves to enhance the leverage of as well as

enclose and guide the pedal tendons. See Figs 1 and 2 for abbreviations. Not to scale. Virtual ‘histological’ sections for the simple sketches of Pengornis

(IVPP V15336) and Yixianornis (IVPP V12558) were done digitally using microCT scan data from ref. 3, at the approximate same proximodistal position as

the other images, following the procedure shown in a and c.
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ontogeny of extant birds, in which the hypotarsus remains
cartilaginous until the latest stages or after hatching, when it
ossifies from a separate centre located on its distal medial
corner35,36.

Discussion
Overall, this specimen of Confuciusornis reveals the remarkable
preservation of residual tendons/ligaments belonging to or
associated with the digital flexor muscles passing through two
musculoskeletal structures comparable to two novel structures in
the lower legs of crown-group birds: the tibial cartilage and
hypotarsus (Fig. 5). The weaker, more cartilaginous expression of
the two structures in Confuciusornis compared to many extant
birds indicates that they might be either homoplastic or
intermediate character states in the evolution of the highly
derived musculoskeletal apparatus that characterizes crown-
group birds. It may seem implausible that these specializations
could have been overlooked in so many other fossil birds
(for example, thousands of known Confuciusornis specimens),
but they are small and subtly expressed, like those in the late
ontogeny of extant birds.

The evolution of an incipient tibial cartilage and hypotarsus
has important implications for the evolution of hindlimb
function in birds. The digital flexor tendons pass through
specific perforations, sulci or canals in these two structures to
their insertions on the plantar surfaces of the distal ends of the
digits in extant birds29,30. The orientation of these structures
enhances not only the moment arms (leverages), but also the
control of the muscles that flex and manipulate the corresponding
digits4,37. The origin and early evolution of the two guiding
structures is unclear. We infer that there was a transition
between the ancestral state in reptiles, in which digital flexor
tendons contribute to the complex plantar aponeurosis4,38,
and an intermediate state in early ornithuromorph birds,
involving an incipient osseous hypotarsus and tibial cartilage
as interpreted here (Fig. 5)4,31. The largely cartilaginous
nature of these two structures in Confuciusornis hints that
their derived state in crown-group birds may have evolved
from the gradual fusion of mineralized cartilage, similar to
a traction epiphysis—a pre-existing intratendinous (‘metaplastic’)
mineralization that has become secondarily fused to the main
bone39.

Fibrocartilage tends to develop within tendons/ligaments
where they experience compression20,40. It is a dynamic tissue
that can be maintained in vitro when tendon is compressed, and
disappears when the strain is removed. Fibrocartilaginous
wrap-around tendons commonly occur in areas where they are
strongly bent around their pulleys and heavily loaded (such as in
the human ankle), in contrast to areas where they only change
direction when the limb is in certain positions (such as the
human wrist) in which non-fibrocartilaginous tendons tend to
develop20. Thus, the occurrence of the thick fibrocartilage and
cartilaginous structures on the plantar surface of the ankle joint of
Confuciusornis implies that the tendons of digital flexors may
have frequently experienced high compressive loading from being
habitually wrapped around the ankle joint. These tendons
function mainly in flexing the digits, although they contribute
to extending the ankle joint late in the stance (supportive) phase
of locomotion29,30. Their relatively derived position that we infer
here for Confuciusornis and later birds supports the inference that
a more crouched limb position, and overall hindlimb function
that was intermediate between the more vertically-oriented
limbs of early dinosaurs and the more crouched limbs of
extant birds, had evolved by this point in the evolution of birds,
which is consilient with other evidence1–3. The results from the

chemical analyses allow us to conclude that organic residue is
correlated with the structures we have resolved. Our data are
not sufficient to definitively resolve the source of this
residue; however the analytical results are consistent with
these organics being derived from a collagen precursor, thus
inductively strengthening our morphological interpretation.
It is only via the new combination of techniques from
molecular palaeontology and imaging analysis with classic
approaches from comparative anatomy, palaeontology and
biomechanics that we have discovered such remarkably fine
details of fossilized soft tissue preservation in Confuciusornis and
their significance for the evolution of locomotor adaptations in
the bird lineage.

Methods
Fossil preparation and imaging. The unprepared Confuciusornis specimen
MES-NJU 57002 was identified by microCT scanning using a 2010 GE phoenix
v|tome|x s240 system. MicroCT scan data are available41. The specimen was
compared with others (Supplementary Table 1) to confirm its identity and adult
status.

The specimen was strengthened by epoxy. Polished cross-sections and
thin-sections were prepared for observation and then imaged using a polarized-
light microscope and scanning electron microscope equipped with back-scattered
electron (BSE) detector and EDX detector. SEM analysis used LEO1530 VP,
which is an environmental s.e.m. capable of operating in variable pressure mode.
Additional s.e.m. image data are available42.

FTIR microscopy. The FTIR map was collected using a Thermo IN10MX
infrared microscope with a cooled MCT detector. Each spectrum was collected
from an apertured area of 30� 30 m at the sample, with a 20 m step in the
x and y directions. The spectra resolution was 8 cm� 1 and 16 scans were
collected at each point. A Kramers–Kronig transformation (applied within the
Picta software) was found to give the best absorption line shapes and was
therefore applied to each spectrum. FTIR data are available43.

ToF–SIMS. ToF–SIMS analysis was carried out using a ToF–SIMS V instrument
(IONTOF GmbH) at the Analysis Center of Tsinghua University. ToF–SIMS
analyses in the static SIMS mode were performed using 30 keV Bi3þ primary ions
and low-energy electron flooding for charge compensation. Spectrum and image
data were acquired in the bunched mode (m/DmB6,000) at a spatial resolution of
B5 mm at 128� 128 pixels. ToF-SIMS data are available44.

Synchrotron X-ray fluorescence and absorption spectroscopy. Synchrotron
X-ray fluorescence (XRF) elemental imaging and X-ray absorption spectroscopy
(XAS) was carried out at Diamond Light Source (DLS, Oxford, UK) microfocus
beamline I18 using Kirkpatrick–Baez mirrors to produce a spot size of
approximately 5 mm, a double crystal Si (111) monochromator to scan incident
beam energy and a 4-element Vortex silicon drift detector. Flux was estimated to be
between 108 and 109 photons s� 1. XRF maps were produced using the PyMCA
freeware45 ROI imaging tool by defining the X-ray emission energy of an
element in the recorded spectra and displaying the intensity of X-ray counts for
that element across the mapped area. A ZnSO4 standard was used to calibrate
the sulfate absorption edge energy in the XAS experiments. XRF46 and XAS47 data
are available.

Comparative anatomy. The right ankle of an adult helmeted guineafowl
(Numida meleagris) was dissected (Supplementary Fig. 4) to supplement the
literature on this region’s morphology in birds. For comparative microscopic anat-
omy, the left ankle of an adult quail (Coturnix coturnix) was also studied histologically
(images of the guineafowl showed similar anatomy but are not included here). The
quail ankle was decalcified in 5% formic acid and cut at an oblique angle similar to the
fossil plane, wax embedded, then sections were cut at 4 m and stained with standard
haematoxylin and eosin for illustrating comparative bone and cartilage tissue anatomy
(Supplementary Fig. 5). Cadavers were donated from local breeders for research
purposes and had died for unrelated reasons.

Data availability. The data that support the findings of this study are available in
figshare with the identifier(s) as follows: microCT scan data41 (doi: 10.6084/
m9.figshare.4595971), additional s.e.m. images42 (doi: 10.6084/
m9.figshare.4595929), FTIR data43 (doi:10.6084/m9.figshare.4595920), ToF–SIMS
data44 (doi: 10.6084/m9.figshare.4595932), XRF mapping data46 (doi: 10.6084/
m9.figshare.4595941) and XAS data47 (doi: 10.6084/m9.figshare.4595938).
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