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Abstract 16 

Objective To describe an ultrasound guided thoracic paravertebral block in canidae. 17 

Study design Prospective experimental cadaveric study. 18 

Animals Twelve thawed fox cadavers 19 

Material and methods A 15 MHz linear transducer was used to visualise the paravertebral 20 

space at the level of the fifth thoracic vertebrae. Iohexol (300 mg mL-1) at 0.2 mL Kg-1 was 21 

injected into the right and left paravertebral spaces under ultrasound guidance using a Tuohy 22 

needle. The needle was advanced in a lateral to medial direction using an in-plane technique. 23 

Injections were performed by two operators, each performing twelve injections in six fox 24 

cadavers. A thoracic computed tomography was then performed and evaluated by a single 25 

operator. The following features were recorded; paravertebral contrast location (yes/no), 26 

length of contrast column (number of intercostal spaces), location of contrast relative to the 27 

fifth thoracic vertebrae (cranial/caudal/mixed), epidural contrast contamination (yes/no), 28 

pleural contrast contamination (yes/no) and mediastinal contrast contamination (yes/no).  29 

Results All the injections resulted in paravertebral contrast distribution (24/24). The mean 30 

length of the contrast column was five intercostal spaces. Contrast spread was caudal to the 31 

injection site in 54% (7/24), cranial in 29% (4/24) and mixed in 17% (3/24). Pleural 32 

contamination was observed in 50% (12/24) on injections; respectively 42% (10/24) and 4% 33 

(1/24) of the injections resulted in mediastinal and epidural contamination.  34 

Conclusions and clinical relevance Injection of the paravertebral space in canidae is possible 35 

using the technique described. Possible complications include epidural, pleural and 36 

mediastinal contamination. To establish clinical efficacy and safety of this technique, further 37 

studies are required.  38 

 39 

Keywords  block, local anaesthesia, paravertebral, thoracic, ultrasound 40 
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Introduction  42 

The thoracic paravertebral space (TPVS) is a wedge shaped space located on either side of the 43 

vertebral column.  The TPVS is filled with adipose tissue that contains the intercostal nerve, 44 

intercostal vessels and the sympathetic trunk (Krediet et al. 2015). The parietal pleura forms 45 

the anterolateral boundary. The vertebral body, the intervertebral disc and the intervertebral 46 

foramen form the base. The transverse process and the superior costotransverse ligament form 47 

the posterior boundary. The endothoracic fascia lies between the parietal pleura anteriorly and 48 

the superior costotransverse ligament posteriorly and is attached to the periostium of the 49 

vertebral body (Karmakar & Ho 2007).  50 

The endothoracic fascia divides the TPVS into two compartments: an anterior compartment 51 

(or extrapleural) and a posterior compartment (also called subendothoracic). The sympathetic 52 

ganglion is contained in the anterior compartment. The spinal nerve is positioned in the 53 

posterior compartment. The spinal nerves are segmented into small bundles within the TPVS 54 

which make them accessible to local anaesthetic solution injected into the TPVS. Thoracic 55 

paravertebral (TPVB) involves injecting local anaesthetic alongside the thoracic vertebra 56 

close to where the spinal nerves emerge from the intervertebral foramen (Karmakar & Ho 57 

2007). Ipsilateral somatic and sympathetic nerve blockade are achieved with the TPVB. In 58 

human medicine the main indications for TPVB include breast, thoracic surgery and pain 59 

management following thoracic trauma and thoracotomies (Karmakar & Ho 2007). The 60 

ultrasound-guided TPVB is a well validated technique in human medicine (Krediet et at 2015) 61 

while it has not previously described in veterinary patients. 62 

The aim of this descriptive study was to investigate the ultrasound anatomy and a technique to 63 

approach to the in canidae patients, define the distribution of the contrast within the TPVS 64 

and recognise potential complications. 65 

 66 

Materials and Methods 67 
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Twelve thawed fox (vulpes vulpes) cadavers were included in the study. Cadaver foxes were 68 

donated by an independent, pest eradication company in accordance with local RVC Ethical 69 

approval, (URN 2015 1417). 70 

Cadavers were 5.0 ± 1.4 kg with a body condition score between 3 and 4 out of 9 on the 71 

World Small Animal Veterinary Association Global Nutrition Committee scale. The TPVBs 72 

were performed using a S9v Sonoscape ultrasound machine with a 15MHz linear transducer 73 

(Sonoscape, China). Injections were performed by two operators (PM, JV), each operator 74 

performing twelve injections in six cadavers. 75 

 76 

Cadavers were positioned in lateral recumbency with the targeted paravertebral space 77 

positioned uppermost. The thoracic region was clipped and ultrasonographic gel (Blue 78 

ultrasound gel; Henleys Medical, UK) was applied to the skin. The transducer was placed in a 79 

transverse orientation adjacent to the dorsal spinous process of the fifth thoracic vertebrae. 80 

The transverse process and rib of the fifth thoracic vertebrae were identified and the 81 

transducer moved caudally in order to locate the TPVS. The transducer was then positioned 82 

parallel to the neck of the rib, oblique to the TPVS (Fig. 1). The TPVS  appeared as a wedge-83 

shaped hypoechoic area with hyperechoic boudaries dorsally (intercostal membrane) and 84 

ventrally (pleural membrane) (Fig. 1). An epidural 20-gauge, 50 mm Tuohy needle (Pebax 85 

catheter, Vygon France) was used for the injections. The needle was advanced into the TPVS 86 

in a lateral to medial direction using an in-plane technique. The bevel of the needle was 87 

orientated away from the pleura. A decrease in resistance was felt as the needle penetrated the 88 

internal intercostal membrane, passing into the TPVS. This was often accompanied by a 89 

popping sensation. In order to simulate the antemortem technique, aspiration was performed 90 

to help avoid intravascular injection. Ioexol (300 mg mL-1) at 0.2 mL Kg-1(Omnipaque 300, 91 

GE Healthcare, Germany) was injected into the right and left paravertebral spaces at the level 92 

of the fifth thoracic vertebrae over a 30 second period. Visualization of movement of the 93 
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pleural membrane during injection was recorded for each subject (yes/no). After rotating the 94 

cadaver onto the other side, the technique was repeated on the contralateral side.  A thoracic 95 

computed tomography (CT) scan was then performed with the cadaver in sternal recumbency. 96 

All scans were obtained using a 16-slice MDCT scanner (MX 8000 IDT, Philips Medical 97 

Systems, Cleveland, USA). The CT settings were: helical acquisition, slice thickness 3mm, 98 

image reconstruction interval 1.5mm, helical pitch 0.688, tube rotation time 0.75s, x-ray tube 99 

current 150 mAs, x-ray tube potential 120kVp, matrix 512x512 and medium frequency (‘soft 100 

tissue’) reconstruction algorithm. Scans were performed in a cranial to caudal direction. 101 

Images were evaluated using “Bone” windowing (window level 300 window width 1500).   102 

The CT scans were reviewed by a single operator (IJ). The following features were recorded; 103 

paravertebral contrast location (yes/no), length of contrast column (number of intercostal 104 

segments), location of contrast relative to the fifth thoracic vertebrae (cranial/caudal/mixed), 105 

pattern of  contrast spread (linear/intercostal/cloud) epidural contrast contamination (yes/no), 106 

pleural contrast contamination (yes/no), mediastinal contrast contamination (yes/no), contrast 107 

contamination of other areas (yes/no).  108 

Data was analysed with IBM SPSS Statistic for Windows 21.0 (IBM Corp., NY, USA). 109 

Normality was assessed using the Shapiro-Wilk test. Descriptive statistics were used. Means 110 

and standard deviations are reported for parametric data.  111 

Results 112 

Movement of the pleural membrane was observed during 100% (24/24) of injections.  All 113 

injections (24/24) resulted in identification of contrast within the paravertebral space. Linear 114 

spread was observed in all subjects (24/24). In 42% (10/24) of subjects, spread was 115 

considered to be both linear and intercostal.  116 

The mean length of the contrast column was 5.0 ± 1.5 intercostal segments. Contrast spread 117 

was caudal to the fifth thoracic vertebrae in 54% (13/24), cranial in 29% (7/24) and mixed in 118 

17% (4/24). Half of  the injections (12/24) resulted in pleural contamination, 42% (10/24) in 119 
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mediastinal contamination and 8% (2/24) in epidural contamination. Contamination of other 120 

areas was found following 8 % (2/24) of injections, namely the cranial vena cava and right 121 

atrium.  122 

Discussion 123 

Various techniques (blind, neurostimulation or ultrasound guided) have been described for 124 

TPVB in human anaesthesia (Naja et al. 2004; Cowie et al. 2010; Marhofer et al. 2013). A 125 

neurostimulator-guided TPVB has been described in dogs where  needle placement was 126 

verified by twitching of the intercostal muscles (Portela et al. 2012).  This technique was 127 

successful in 75% of subjects (Portela et al. 2012). Contrast was identified within the TPVS in 128 

100% of foxes using the ultrasound guided technique described here; therefore we suggest 129 

that US guided TPVB may be a superior technique. 130 

The in-plane technique described allows direct visualization of the needle during its 131 

advancement. This is essential as penetration of the intervertebral foramen is a possible 132 

complication. The choice of needle is an important consideration. Tuohy needles provide 133 

more resistance and thus enhanced perception of tissue firmness. Fifty millimetre needles 134 

were most suitable for the foxes used in this study. Short needles may not reach the target 135 

while long needles increase the risk of damaging deeper tissues and are more difficult to use. 136 

Linear spread was observed after all injections but in 42% of the cases, it was also associated 137 

with an intercostal one.  A linear pattern of spread may be related to distribution of contrast in 138 

the anterior compartment of the TVPS. This would result in blockade of the sympathetic 139 

ganglion only. An intercostal spread may be related to distribution of contrast within the 140 

posterior compartment. However, we cannot confirm this and further studies are required to 141 

investigate the clinical significance of different patterns of distribution (Naja et al. 2004).  142 

Previous investigators (Portela et al. 2012) obtained different results. They observed mostly 143 

cloud-like rather than linear spread. This difference may have resulted from the technique 144 

used to assess the correct position of the needle. Portela and others (2012) identified the 145 
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TPVS using electro-location and it is plausible to hypothesise that their injections were 146 

performed after stimulating the intercostal nerve that is located in the posterior compartment. 147 

This is supported by other researchers (Naja et al. 2004), who observed that injections into the 148 

posterior compartment were more likely to result in a cloud-like type of spread.  149 

The length of the contrast column within the TPVS was 5.0 ± 1.5 intercostal spaces. This is 150 

comparable to previous reports in humans (Cowie et al. 2010; Marhofer et al. 2013). Our 151 

findings also support the large variation in the distribution of the contrast found in human 152 

patients. (Karmakar & Ho 2007; Marhofer et al. 2013). However, it is difficult to predict the 153 

relationship between regional spreading of contrast in vitro and the clinical efficacy of 154 

injectate in vivo. In most humans, regional local anaesthesia extends beyond the anatomical 155 

distribution of the contrast (Marhofer et al. 2013). Therefore, it is not possible to predict 156 

potential clinical efficacy based on the regional contrast distribution in cadavers.  157 

Contamination of structures other than the TPVS was common using the technique described. 158 

Mediastinal contamination occurred following 42% of injections. In humans, mediastinal 159 

contamination has never been reported using the technique described. Mediastinal 160 

contamination may have occurred because of the close anatomical relationship between the 161 

TPVS, the mediastinum and unavoidable post mortem tissue degeneration.   162 

Pleural contamination occurred following 50% of injections, which is much higher than that 163 

reported in humans (Karmakar & Ho 2007). Tearing of the pleural membrane may lead to 164 

leakage of contrast into the pleural space, potentially reducing the efficacy of the injected 165 

pharmaceutical (Komatsu et al. 2015). We oriented the bevel of the Tuohy needle tip away 166 

from the pleura in an attempt to reduce the risk of penetration (Komatsu et al. 2015). 167 

Penetration of the pleural membrane was not observed during any injection using the 168 

technique described. As cadaver specimens were used, it is also possible that pleural 169 

contamination may have occurred secondary to post mortem change. When the  pleura is 170 
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punctured, current guidelines are to change intercostal space and repeat the block (Komatsu et 171 

al. 2015). 172 

Contamination of the epidural space following TPVB has been reported in both dogs and 173 

humans (Purcell-Jones et al. 1989; Cowie et al. 2010; Portela et al. 2012). The previously 174 

described techniques resulted in epidural contamination following 15% of injections (Portela 175 

et al. 2012). In humans, the incidence of epidural contamination may be as high as 70% 176 

(Purcell-Jones et al. 1989; Cowie et al. 2010). Only 8% of injections resulted in epidural 177 

contamination using the technique described. The use of ultrasound to guide needle placement 178 

may have reduced the incidence of epidural spreading. 179 

Contamination of the caudal vena cava occurred following 8% of injections using the 180 

technique described. . Contamination of the systemic venous system has been reported in 181 

humans (Purcell-Jones et al. 1989). The internal vertebral venous plexus lies adjacent to the 182 

paravertebral space. Blood passes from the internal vertebral venous plexus to the azygos vein 183 

and finally into the right atrium (Specchi et al. 2014). Injection of contrast into the internal 184 

vertebral venous plexus may have resulted in contamination of the cranial vena cava and right 185 

atrium. This finding could represent a major concern because of the intravenous toxicity of 186 

local anaesthetics. We were not able to prevent intravascular injection of contrast in our 187 

cadaver specimens. In live animals we would recommend aspirating prior to injection of local 188 

anaesthetic to check for possible intravascular needle placement. The technique was 189 

performed by two operators which may have introduces methodological bias as the study was 190 

not designed to evaluate differences between operators.  191 

Injections were performed on both sides in each subject prior to CT examination. It was 192 

therefore impossible to evaluate potential contralateral spreading of the contrast column 193 

(Karmakar & Ho 2007). The technique described here was performed in foxes. Domestic 194 

dogs (Canis lupus familiaris) and foxes (Vulpus vulpes) are of the same Family (Canidae). To 195 

the authors’ knowledge, no comparative anatomical studies addressing differences between 196 
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the fox and dog have been performed. The authors are aware that this limitation may limit the 197 

potential application of the technique in dogs. However, we suggest that the gross anatomy 198 

and ultrasonographic appearance of the TPVS  is similar in foxes and dogs and therefore 199 

further studies are justified to evaluated the use of this technique in dogs.  200 

Conclusion 201 

Ultrasound-guided TPVB  is possible in canidae. The described technique may be suitable for 202 

use in the domestic dog. Further studies are needed to evaluate this technique in clinical 203 

situations.  204 
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Figure 1 This picture represents a fox cavader A. Ultrasonographic appearance of the thoracic 241 

paravertebral space (TPVS). B. Ultrasonographic landmarks for the TPVS block.  Cr, Cranial; 242 

Cd, Caudal; 1, pleura; 2, transverse process of the fifth vertebra; 3, costotransverse ligament; 243 

4, fifth rib; 5, internal intercostal membrane; 6, paravertebral space; 7, spine. The picture on 244 

the right side represents the fox in lateral recumbency with the positioning of the ultrasound 245 

transducer. 246 
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