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Over the past two decades, the development of methods

for visualizing and analysing specimens digitally, in

three and even four dimensions, has transformed the

study of living and fossil organisms. However, the initial

promise that the widespread application of such methods

would facilitate access to the underlying digital data has

not been fully achieved. The underlying datasets for

many published studies are not readily or freely available,

introducing a barrier to verification and reproducibility,

and the reuse of data. There is no current agreement or

policy on the amount and type of data that should be

made available alongside studies that use, and in some

cases are wholly reliant on, digital morphology. Here,

we propose a set of recommendations for minimum stan-

dards and additional best practice for three-dimensional

digital data publication, and review the issues around

data storage, management and accessibility.
1. Introduction
Three-dimensional (3D) digital morphological data are com-

monly employed by palaeontologists and biologists in

research. In palaeontology and anthropology, the widespread

application of tomography (especially X-ray computed tom-

ography, CT), laser and structured light scanning, and

photogrammetry has revolutionized the study of mor-

phology [1–4]. In biology, optical microscopy, magnetic

resonance imaging (MRI) and contrast-enhanced CT are

important tools for investigating soft-tissue anatomy [5–10].

The revolution brought about by these technologies has

increased the amount and detail of anatomical information

recovered from fossil and living organisms, transforming

the nature of scientific enquiry in related fields. The resulting

datasets are often reconstructed and presented as 3D digital

models, which are themselves sometimes used in down-

stream analyses, including geometric morphometrics

[11,12], finite element analysis (FEA) [13], multibody

dynamics analysis (MDA) [14] and computational fluid

dynamics (CFD) [15], thereby facilitating quantitative tests

of functional and evolutionary hypotheses [3]. These types

of studies have yielded important advances in our
understanding of the anatomy of living and fossil organisms

(e.g. [10,16,17]), as well as fundamental aspects of their

biology, from feeding mode [18–20] to mobility [21,22],

development [23,24] and physiology [25–27], as well as

developments in taxonomic practice [28,29]. Barriers to data

sharing and access to specimens can be eroded because

data exist as digital files that can be easily copied and readily

distributed, allowing simultaneous analysis by multiple

researchers [30]. These attributes should also enhance the ver-

ifiability and reproducibility of studies, facilitating the reuse

of data and metadata, more in-depth interrogation of any

given dataset, and broader-scale comparative analyses

through the assembly of large datasets of multiple specimens

or taxa.

However, authors of studies involving 3D digital datasets

of biological and palaeontological specimens often do not

publish their supporting data, meaning that results and

conclusions cannot easily be verified or replicated, and that

this potentially valuable source of novel data cannot be

further explored [30]. Ultimately, digital data collected but

unpublished are likely to be lost to science [2,28]. This also

represents a substantial waste of financial and other

resources, and places vulnerable original specimens at greater

risk of damage or loss, as the same specimens are likely to be

reimaged repeatedly to enable different groups of workers to

reproduce the data [28,31]. Consequently, the promise of 3D

digital data has not yet been fully realized.

This is not news [2,28,30]. However, most national and

international funders have imposed regulations on data

access and sharing that are forcing researchers and institutions

to finally confront this challenge [32]. These regulations range

from funder-mandated full release of all data [32], through

declarations that the data are available from authors on

request, to no release of supporting data [32]. When data are

released, they are deposited in a diversity of online databases

(e.g. BIRN, Dataverse, Dryad, EOL, figshare, GigaDB,

Github, MorphoBank, MorphoDBase, MorphoMuseuM, Mor-

phoSource, Phenome10 K, Zenodo), institutional and funder

repositories, physical museums, and research group websites.

At least in part, this diversity of approaches reflects uncertainty

about the available repositories for data deposition and the

cost of storing the comparatively large files associated with

digital imaging-based research. Researchers can also be reluc-

tant to share data that remain part of an active research

programme [33], or to share a subset of data that is part of a

larger, unpublished package. There is also a lack of consensus

and widespread confusion over issues of data ownership and

copyright, and conflict that emerges between institutional pol-

icies asserting copyright ownership (e.g. public museum or

even private collections) and the regulations of funding

bodies and publishers with regard to open data. Consequently,

sharing or publishing supporting data is often a low priority

and has effectively been considered optional when not pre-

scribed by a journal. Partial datasets (e.g. low-resolution

visualizations or external surfaces) can be insufficient for

reproducibility or even verification. As digital morphology

has evolved, most of us in the research community have

failed to achieve what might now be considered best practice

of open data.

The academic world has already taken important steps

towards overcoming some of these motivational and

practical obstacles. Platforms for both archiving and sharing

data online are becoming more commonplace, and can
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handle large file sizes. The standard in molecular biology

is GenBank (https://www.ncbi.nlm.nih.gov/genbank/),

where sequence data underpinning studies are accessioned

before publication. For other data formats, journals and pub-

lishers offer a mixed landscape of policies on data publishing

that is in need of standardization [34,35], but many not only

mandate data deposition—some are even prepared to bear

the associated costs, making data deposition easier and ulti-

mately improving science, both in terms of practice and

accessibility. There are also initiatives to integrate data sub-

mission with submissions to peer-reviewed journals,

requiring (or at least allowing) the submission of data in

the article submission process and enabling reviewers to

examine supporting data as part of the review process [36].

However, collectively, these initiatives have not been

integrated [34], and they have not yet translated into

common practice within many subdisciplines in biology,

palaeontology and anthropology.

If a consensus can be established among authors, reposi-

tories, journal editors, peer reviewers and funding agencies,

there is the prospect of finally realizing the potential of

digital morphology in the open-data era. Here, we make

recommendations on the nature and extent of essential and

recommended best practice datasets that should be made

available to support scientific publications using 3D digital

datasets across biological sciences (summarized in tables 1

and 2). We review the requirements of associated metadata,

discuss the current range of repositories available for such

studies and comment on issues affecting their utility.
2. Publishing tomographic data
A range of methods exist for studying 3D specimens through

the creation of two-dimensional (2D) image stacks (i.e. tom-

ography), including X-ray CT (encompassing medical CT,

micro-CT and synchrotron tomography), MRI, neutron tom-

ography, optical tomography, histological microtomy and

physical tomography [1,3,4,37,38]. All of these techniques

generate datasets consisting of up to several thousand paral-

lel sections or slices (tomograms) through a specimen, with

each tomogram represented by an image file. Various tech-

niques exist for the construction of 3D digital models from

sets of tomograms [1].
(a) Data essential for scientific verification
(i) The image stack
Image stacks are the starting point for most tomographic

studies. These provide immediate insight into internal and

external features, and form the basis for any subsequent

construction of 3D models. Image stacks exist in a range of

non-proprietary file formats, but the most common include

DICOM, TIFF, JPEG, PNG, VOL, RAW and BMP [39]. All

such files can be opened and viewed in free software such

as IMAGEJ, DRISHTI, SPIERS, HOROS and 3D SLICER [40], and

can be converted into different formats, although this can

be more difficult with DICOM files, which exist in a multi-

tude of sub-formats, not all of which can be handled by all

software. For most purposes, TIFFs (16- or 8-bit) provide

the best balance of accessibility, file size and data quality

(lossless compression), but any lossless, standard image

file-types are sufficient. Most JPEG formats enforce a lossy
compression scheme that may degrade over multiple save

operations; lossless JPEG formats do exist (JPEG-LS, JPEG

2000), but they are not widely used. These differences

underlie the importance of specifying the file standard used

[39]. Minimally, image stacks should retain the contrast resol-

ution (bit-depth) and spatial resolution used in the study. In

cases where the image stack is derived from K-space filling

(e.g. MRI) or a series of angular projections (e.g. X-ray CT),

the process of generating the image stack is largely auto-

mated and we do not consider it necessary to publish the

raw projections.

(ii) Metadata
An image stack alone will not contain all the information

necessary to make full use of the data. For example, scale is

only preserved if the resolution (e.g. voxel size or slice spacing)

is encoded in the files, and for some datasets slice spacing is not

constant and requires per-slice documentation. In the case

of DICOMs, this information is typically retained within the

file or can be added to the file with a header tag editor

(e.g. IMAGEJ). Otherwise, a text file detailing the voxel or pixel

size and slice spacing is the minimum necessary information

that must accompany publication of any image stacks.

Additionally, metadata information should include full details

of how the images were acquired (including scan settings), and

further information on data copyright, repository and acces-

sion of specimens scanned and, if appropriate, comments on

preparation or specimen storage for biological specimens

(table 1). This information is necessary to reproduce studies,

as well as to evaluate if better-quality data could be obtained

with a different set of parameters [41]. Minimally, these data

should be provided in a simple text file (e.g. TXT or VGI)

associated with the dataset, regardless of whether the

information is provided in any study based on the data.

(iii) Three-dimensional models
Typically, tomographic studies involve the reconstruction of

3D models from image stacks, in some cases after image seg-

mentation or other preparation (see below). 3D models are

normally triangle-mesh geometries generated via isosurfacing

(usually known as surface models) [1]. Publication of the 3D

models resulting from isosurfacing allows for the interactive

examination of specimen morphology in three dimensions. A

wide range of free software is available for this task [1,3],

although no ideal general-purpose file format exists for com-

plex models (see below). 3D models may have been modified

after initial isosurface construction, for example through

smoothing, island removal or hole filling. Consequently, the

most appropriate model to publish to enable verification is

the final model (or models) on which the results of the study

are based, or which is used in downstream analyses.

The 3D models generated using tomographic data are

available in a range of different file formats [1,42]. The choice

of file type may be influenced by various factors including

file size and whether colour/texture information is required;

it is essential that openly accessible, standard formats are

used (e.g. STL, PLY or OBJ), but there is no single ‘ideal’ file

format. The stereolithography (STL) format is the most

widely used standard for publishing 3D triangle meshes

derived from tomographic techniques, and it is simple and

supported by the vast majority of 3D visualization programs,

including freely available software [1]. STL files are also

https://www.ncbi.nlm.nih.gov/genbank/
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Table 1. Summary table of recommendations for types of data files that should be published in support of published articles. Everything in the ‘essential’
column must be provided to enable reproduction of the study (assuming the information about how the 3D model was produced is sufficiently detailed). By
contrast, the ‘recommended’ column represents our suggestions for improving the transparency of the process and should be provided where possible (i.e. when
storage space is not a major problem, like in studies based on scans of single specimens). 3D models should be provided at the resolution at which analyses
are conducted.

mode imaging method essential (for verification) recommended (as best practice)

3D models tomography —full-resolution image stack (e.g. TIFF)

—final 3D models used in study (e.g. STL)

—text file with description of scan settingsa, voxel

size, techniques used to produce 3D models,

and specimen information (e.g. copyright,

repository, and accession number)

—prepared dataset (i.e. segmented images)

consisting of image stack and/or project

folder (e.g. AVIZO label fields, SPIERS

masks)

—unregistered image stack (for physical and

optical tomography)

laser or structured

light scanning

—final 3D models used in study (e.g. STL)

—text file with description of scanner settings,

resolution, techniques used to produce 3D

models, and specimen information (e.g.

copyright, repository, and accession number)

—3D models retaining texture informationb

(e.g. PLY or OBJ)

—original capture data (i.e. data acquired

by scanner)

photogrammetry —final 3D models used in study (e.g. STL)

—text file with description of how images were

acquired, scale, techniques used to produce 3D

models, and specimen information (e.g.

copyright, repository, and accession number)

—3D models retaining texture informationb

(e.g. PLY or OBJ)

—original capture data (i.e. photographs)

additionally for downstream functional analyses:

morphometrics —landmark coordinates and rules defining

automated landmark capture

—images used in 2D landmark analysis (e.g. TIFF)

—3D models used in 3D landmark analysis

(e.g. STL)

—text file with description of how analysis was

performed and specimen information (e.g.

copyright, repository, and accession number)

functional

analyses

—3D models used in functional analysis

—project file with details of material properties

and boundary conditions used in analysis

—project file with results

aThis should include: details of the scanner, current, voltage, number of projections, exposure time and filter thickness (if any).
bEssential if critical to the analysis.
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compatible with most modern 3D printers, offering potential

for wider applications in specimen conservation, public out-

reach or teaching [3,43]. However, STL files cannot store data

on colour, texture or scale. Where these are an essential part

of the study, an alternative format such as PLY, OBJ with

MTL or VAXML [1,39,42] will be required. These formats are

also recommended for meshes with a high number of triangles,

which can result in very large file sizes in the STL format.

(b) Additional data required for best practice
(i) Prepared datasets
While some tomographic datasets are reconstructed as 3D

models without any modification or markup, this is unusual.

Most datasets are subjected at least to segmentation, the semi-

automated or manual differentiation of voxels (3D pixels)
into distinct regions-of-interest (using, for example, ‘label

fields’ in AVIZO or ‘masks’ in SPIERS). Some datasets also

require semi-automated or manual modification of the data

(e.g. through brightness modifications) to better separate

specimen from background (we term this ‘editing’). These

processes involve a degree of subjective interpretation; this

is especially true for palaeontological datasets, which are

often very noisy and can require extensive manual interven-

tion to extract maximal information from the original data.

Thus, publication of the original tomographic dataset and

final 3D model may not be sufficient to enable other research-

ers to assess the association between the two. Segmenting

and/or editing a tomographic dataset can be very time-

consuming and therefore difficult to reproduce in practice;

without access to prepared datasets, most secondary users

would not be able to fully interrogate the data underlying a

http://rspb.royalsocietypublishing.org/


Table 2. Summary of the principles of open data for digital morphology.

data publication

—all the data required to replicate and verify a published study must be made available immediately upon publication

—published data must include original image stacks (for tomography), final 3D models (for tomography and surface-based methods), landmark data (for

morphometrics), and files containing details of the analysis set-up and parameters (for functional analysis); metadata outlining how these data were

collected and processed, together with information on copyright and details of the original specimens under study, must also be provided

—additionally, as best practice, original capture data (for surface-based methods), unregistered images (for optical and physical tomography), prepared

datasets (for tomography) and results files (for functional analysis) should be provided

—data files should ideally be published in widely accessible standard formats, such as TIFF for image stacks, STL or PLY for 3D models, and TXT for

metadata; however, where no standard format exists (e.g. many functional analyses), proprietary file formats may be used

data storage

—data underlying a published study must be deposited in a suitable repository

—data repositories should guarantee the preservation of data in their published form indefinitely, while also facilitating easy access; moreover, repositories

should ensure that a unique and persistent identification code (e.g. DOI) and all relevant metadata are associated with the published data

—data should be published under a standard copyright licence (e.g. creative commons), and the licence chosen (e.g. CC-BY, CC-BY-NC) should enable the

greatest use by the widest possible audience, while still respecting genuine concerns over ethical issues and commercial activities; depending on the

licence under which the data were published, a system for monitoring data access and/or usage (e.g. digital watermarking) could be implemented

—data producers should devise a strategy for meeting the costs of long-term data storage (e.g. applications for external funding) at an early stage in

their research; in some cases, costs may be minimized by reducing file sizes using lossless data compression

data reuse

—data producers should provide a statement of intent outlining how they intend to exploit their published dataset over a short specified time frame (e.g.

six months to 1 year); other researchers are free to reuse these data for other purposes immediately following publication and for any purpose (within

the restrictions of the copyright licence) after the conclusion of this stated time frame

—data users should contact data producers to discuss research plans in case of overlapping interests; where appropriate, this may include collaborative

projects leading to joint outputs (e.g. publications)

—data users must credit the original published dataset upon reuse; journal editors and reviewers should ensure that this practice is correctly followed in

all relevant publications
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3D model. In such instances, prepared datasets should be

released. No standard file format exists, but labels and

masks can be released in the native formats by the software

used to generate them, or as binary image stacks, which

can then be readily reconstructed as a 3D model in a variety

of software packages [1,42].

Development of back-projection algorithms can improve

signal to noise ratio in generated image stacks and, hence,

recent open-data mandates at synchrotron facilities require

archiving of the radiograph projections, not the resulting

slice data [44]. Thus, it may be sensible for authors to archive

the raw projection libraries themselves. This is especially

important where access to the same specimen may be pro-

blematic, or as a precaution in case unique specimens are

damaged, lost or destroyed.
(ii) Image registration
For physically destructive and optical tomography, tomo-

grams need to be registered (aligned relatively and

absolutely in the X, Y and Z planes, either manually or

semi-automatically) prior to any reconstruction of 3D

models. This adds a potentially subjective step that may

have a bearing on downstream analyses, and so we rec-

ommend publishing both the original (unregistered) and

registered image stacks as best practice.
3. Publishing three-dimensional data from
surface-based methods

Alternative surface-based methods exist for digitizing only

the exterior features of specimens in 3D, most notably laser

or structured light scanning [45] and photogrammetry

[1,46,47]. For photogrammetry, data begin as 2D photo-

graphs, whereas in surface-scanning techniques, the 3D

shape is usually directly captured as 3D point clouds, with

or without texture capture (colour) for each point. In photo-

grammetry, a 3D polygonal mesh with texture data is

generated and warped onto the 3D surface (typically auto-

matically), giving each triangle a colour value. Scanning

methodologies may directly visualize point clouds, or may

generate and visualize a 3D triangle mesh, with or without

texture mapped onto triangles or vertices.
(a) Data essential for verification
(i) Three-dimensional models
The production of the initial 3D surface from photographs

or surface scans is largely automated. The most critical

data are the final 3D surface files, which may be fused from

the original component meshes (e.g. in STL, PLY or OBJ

formats) [39]. In cases where the surface texture (i.e. colour

information) is directly relevant to the outcomes of a study,

http://rspb.royalsocietypublishing.org/
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the published 3D models must retain this information

(i.e. should be provided in PLY or OBJ formats). Surface

models are not normally segmented into multiple geometric

objects, so single-file models in PLY or STL format are

practical.

(ii) Metadata
A text file of metadata should be provided that documents

details of the imaging settings and techniques used to gener-

ate the 3D model (table 1). Preparation of 3D meshes may

involve a range of operations, including trimming irrelevant

data, realigning or reorienting components of the mesh,

fusion into a single mesh, smoothing, hole filling and/or

manual manipulation of the location of individual point coor-

dinates or surfaces. These operations should be detailed in

the metadata file. Where such operations are non-trivial

and/or involve interpretation, those data (photographs,

raw point clouds) are an essential provision, in open and

widely accessible formats, where possible.

(b) Additional data required for best practice
(i) Models including texture information
Colour data from the surface can provide useful information

to help interpret the specimen (e.g. taphonomic preservation).

As best practice, this should be included if available, in PLY

or OBJ format.

(ii) Original capture data
The photographs or data captured by the scanner or the 3D

data generated by the photogrammetry software allow

verification of the processes used to generate the model

and should be included as best practice. For 3D scanning,

in some cases it may only be feasible to release the raw

data in proprietary formats but, where possible, widely

compatible (e.g. STL) surfaces should be exported. For

methods that involve the digital alignment of different

aspects of a specimen, or significant manual intervention

in the model construction, the unfused data should be

released as the accuracy of the original alignment may be

of variable quality.
4. Downstream analyses (morphometric and
functional analyses)

It is important to consider not only the generation of 3D

models, but also the data that may be produced in the

course of downstream analyses to which these data are sub-

jected. Common types of analysis include: (i) size and

shape analyses through topological and landmark-based

techniques such as geometric morphometrics; and (ii) assess-

ment of the functional performance of specimens through

computer modelling approaches, such as FEA, multibody

dynamics analysis (MDA) or CFD. These studies are often

based on 3D models with the data subsequently analysed

in specialist software packages [1].

(a) Data essential for verification
(i) Morphometric data
For morphometric approaches, the original landmark

coordinates and the rules defining landmark location
should be provided as these constitute the raw data for

the morphometric analyses. For 2D landmark data, a TPS

file or similar format links landmarks to their constituent

images. Where 3D landmark data points are collected

via a 3D digitizer, it is common practice to tabulate the

specimen number of the digitized specimen. Where the

analyses are based on 3D surfaces or digital models, it is

desirable that the models (surface or volume) used in the

analysis should be published in an accessible format

(following the guidelines outlined above).

(ii) Downstream functional data
Functional analyses typically convert 3D digital datasets

into proprietary formats for specific methodologies, such

as FEA, CFD and MDA. Free software packages do exist,

but typically industry standard commercial packages are

employed. These have the advantage of reliability and

standardized algorithms underpinning the computational

analysis.

(iii) Project files or metadata
Specialist software has the disadvantage that it outputs data

in proprietary file formats that may not be widely accessible

to many potential users. For morphometrics, a text file detail-

ing any corrections or transformations applied to the data

and an explanation of the analyses should be published. If

the morphometric analysis is conducted in the R environ-

ment, an annotated R script is a convenient solution. For

3D functional analyses, the (usually proprietary) files con-

taining the analysis set-up and parameters, either with or

without the results files, are required for model verification.

This addition enables a user with access to the appropriate

software to replicate the analyses. Full metadata should be

provided with details of processing techniques used to gener-

ate the final model, as well as a description of any parameters

specified by the user in the analysis (table 1).

(b) Data required for best practice
(i) Project and results files
Analytical techniques used to investigate the function and bio-

mechanical performance of 3D modelled taxa will produce a

range of additional digital data, which should also be made

available in order to replicate studies. In the case of FEA, pro-

grams use volumetric meshes consisting of a finite number of

elements. For MDA and CFD, formats such as the parasolid

standard are often essential to perform the analyses. Further

parameters and boundary conditions are then defined in

specialist software (e.g. ABAQUS, ANSYS, STRAND 7, ADAMS, OPEN-

SIM, GAITSYM, COMSOL). Ideally, both the model set-up as well

as the result files would be published alongside a study. For

commercial packages, viewing software is sometimes avail-

able which allows the display of models and results files,

but no additional analyses. Some industry software packages

have text-editor-readable files that list and detail the location

and nature of boundary conditions (e.g. INP files for ABAQUS

FE software).
5. Data repositories
Researchers have a responsibility to ensure that all of the

data necessary to reproduce a published study are made
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available. As explained above, for 3D digital datasets these

data may include original 2D images, prepared/segmented

3D images, 3D geometries and relevant metadata. These

datasets can be, in toto, very large by today’s standards;

over 100 GB per specimen is possible in some scenarios,

and there may be some instances where single publications

utilize huge numbers of specimens, the storage of which is

in itself a project. Publishers and other institutions hosting

repositories must manage and facilitate access to the data

they host, with these obligations persisting into the future, ide-

ally indefinitely. Museums and other institutions holding

original specimens often consider digital data as an intrinsic

aspect of the specimen, and request researchers to deposit

these data with them. Many have active programs of 2D and

3D digital curation, and normally make data freely available

for research purposes. Data access for commercial use is a

source of much-needed income, and commercial reuse of

data released for research purposes is a genuine concern. How-

ever, most museums do not yet have systems, policies or

resources in place for the long-term curation and distribution

of digital morphological data [30]. This is not surprising

given the paradigm shift in the concept of the accessioned

specimen brought about by digital morphology, expanding

from the physical specimen to a diversity of avatars.

Digimorph.org pioneered the curation of digital morpho-

logical data for in-house scans generated by the University of

Texas High-Resolution CT Facility (UTCT), and there are

now a number of general and specialist repositories facilitat-

ing the publication and dissemination of supporting data at a

variety of scales (electronic supplementary material, table S1).

Many journals have agreements with such repositories and

will cover charges, even for relatively large datasets. In

addition, many funding agencies cover the costs of long-

term data storage, and many institutions have developed

their own data repositories to manage research data gener-

ated by their own researchers. Out-moded promises to

make data ‘available on request’ should give way to perma-

nent URL links to 3D image data in biology, anthropology

and palaeontology (cf. [35]).
(a) Available data repositories
A range of repositories are available that cater for 3D digital

datasets arising from research in biological sciences (elec-

tronic supplementary material, table S1). These can vary

greatly in terms of the size and types of data they are willing

to accept, as well as the cost of storage. In some cases, the

choice of repository may be prescribed by the funding body

or journal, but this decision will most often be made by the

researcher. Modern facilities for publicly sharing datasets

include national data centres (typically supported by a

research funding body; e.g. RCUK data centres), multidisci-

plinary (e.g. Dryad, datadryad.org; figshare, figshare.com;

MorphoMuseuM, morphomuseum.com; MorphoSource,

morphosource.org; Phenome10 K, phenome10 k.org;

Zenodo, zenodo.org) or discipline-specific (e.g. XROMM,

xromm.org) repositories, and institutional repositories for

data produced in-house (e.g. Bristol University’s Research

Data Repository, data.bris.ac.uk/data; Natural History

Museum London’s Data Portal, http://data.nhm.ac.uk). It is

not entirely clear that all of these are sustainable in the long

term. Traditional repositories of physical specimens can
also store and disseminate data, and many are moving

towards online access to their digital collections.

(b) Necessary standards for data repositories
Digital repositories should have the same qualities as reposi-

tories of physical specimens, in that they should ensure the

long-term persistence and preservation of datasets in their

published form, provide expert curation and stable identifiers

for submitted datasets, and facilitate public access to data

without unnecessary restrictions. However, by their very

nature, they should also ensure that the data are discoverable

online, provided with unique, permanent and citable refer-

ence codes (e.g. DOIs), associated with relevant metadata

(e.g. readme text file), and have links to relevant publications

and funding bodies [2,28].

The specific licence used by the repository should be con-

sidered. Many facilities currently use the CC-BY-NC licence,

which disallows reuse for commercial activities. This may be

desirable where there are concerns over activities such as sell-

ing 3D prints of museum specimens with no benefit to the

institutions charged with maintaining those collections.

Some data repositories (e.g. MorphoSource) allow users to

specify the most appropriate licence for their data. Authors

may prefer to choose the CC-BY licence, which is among

the most open creative common licences available and has

become the standard for open access publication of journal

articles. This licence lets others distribute, edit and build

upon the original data, even commercially, as long as they

credit the original creator. The CC-0 licence (Dryad default)

goes further and allows copyright owners to waive all

rights. CC-BY-ND is less attractive, as it allows sharing but

does not allow the end user to publish derivatives of the data.

3D digital datasets associated with published studies

should be verifiable and fully traceable from production to pub-

lication, and later republication. One option is digital

watermarking, which provides a means of achieving verifica-

tion of the authenticity and integrity of data, and is

imperceptible to the human eye, but also durable in both digital

and printed forms, surviving most image edits, file format con-

versions, data compression, filtering, partial data removal and

smoothing. Another option would be to require users to register

with the repository before data can be downloaded and used, a

practice already imposed by some repositories (e.g. Dryad,

MorphoSource). Registration is usually free and open to

everyone, but allows the repository to track data access.

(c) Costs
When publishing large (e.g. more than 10 GB) 3D digital data-

sets, it is vital to consider the financial costs, which are

typically proportional to the amount of data being stored.

Some repositories do not currently charge for accessions

(e.g. MorphoSource), but for some, accession charges are not

insignificant. The popular online digital repository Dryad

(datadryad.org) currently charges $120 per data package of

20 GB plus $50 for each additional 10 GB. Datasets based on

synchrotron tomography supporting a single publication can

easily run to 100 GB for a relatively small number of scans of

individual specimens, and it is possible to envisage future pro-

jects, especially synthetic papers and large-scale comparative

analyses, generating datasets that are orders of magnitude

greater in size. Publishing such datasets can quickly become

prohibitively expensive; many journals offer to fully or

http://data.nhm.ac.uk
http://data.nhm.ac.uk
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partially cover the costs of depositing digital datasets, but do

not have a clear policy for datasets that are hundreds of GB

to TB in size. Applications for research funding are increas-

ingly budgeting for data storage costs, but this does not

assist projects making use of pre-existing data, or those

where funds for data publication are not available.

One way of minimizing costs is by reducing the total size

of data published without compromising the quality. Crop-

ping of redundant space around a volume representing the

specimen is an obvious first step. Lossless compression of

individual image files is an excellent route to reduce data sto-

rage for image stacks in certain formats. For example, LZW

compression, both lossless and fully reversible, can provide

upwards of 40% reduction in file size on eight-bit TIFFs

with no evident effect on data quality, but it is not routinely

applied. The PNG image format provides a similar level of

lossless compression. Most of the JPEG image formats enforce

lossy compression that degrades data, and should not be

used despite appealingly high compression ratios. Placing

files into ZIP archives (e.g. one ZIP file per image stack)

also reduces disc space through lossless compression and is

more convenient for downloading. However, ZIP and VOL

archives are less secure for long-term storage since, if the

single file containing a dataset becomes corrupted, the

entire dataset will be lost. Corruption of single files within

a large dataset is less serious, and at least some repositories

have procedures in place to detect and remediate bitrot

[31]. We recommend that unarchived copies of the original

data are stored and made available where possible.

In our enthusiasm for recycling 3D digital data and easing

reproducibility of morphological studies based on them, the

environmental costs of storage should be considered. Most

datasets will be accessed infrequently and so there is no

need or justification for their storage on spinning discs.

Many repositories make use of automated tape storage

which is stable and comparatively low in direct costs for

the same reasons that make it environmentally low-cost.
6. Rescuing legacy data and constraints on data
use

An increase in the availability and ease of use of data reposi-

tories raises the prospect of making data available from

previously published studies where the data were not released

at the time of publication. Digital datasets can be uploaded to

online data repositories and linked to past publications. At

present, there are no policies or mechanisms we are aware of

among journals and publishing houses to link archival publi-

cations to newly deposited data. However, there is no material

technical barrier to salvaging legacy data in this way. Publish-

ers are likely to welcome such an initiative as it would

obviously improve data visibility, facilitate reproducibility,

and probably rejuvenate old publications in terms of access,

citations and, ultimately, their marketability.

Obtaining digital characterizations of morphology can be

time-consuming and expensive, and researchers rarely

exhaust their data with the first publication. Funders and

publishers are increasingly removing choice over whether

to release supporting data, and so it can seem unfair that

the researchers who generated datasets have to subsequently

compete to exploit them further. This can be particularly dif-

ficult for lone early-career researchers potentially competing
with large experienced research groups [33]. One potential

solution to this would be the introduction of time-limited

embargos, which can already be facilitated by some data

repositories. However, such embargos violate the most

basic tenet of open data: that of removing barriers to asses-

sing the reproducibility of research [48]. After the point of

publication, it is also effectively impossible to police the

release of supporting data and, consequently, we see no

alternative to the release of data with publication. A possible

compromise may be borrowed from the Bermuda [49], Fort

Lauderdale [50] and Toronto [51] agreements of the genomics

community. These mandate data release at the time they are

obtained but, more germane to morphologists, these agree-

ments provide safeguarding for data generators through

published, time-limited statements of intent of how they pro-

pose to exploit the data [51]. Other researchers are free to

exploit the data for other purposes, and for any purpose

after the stated period of limitation of the statement of

intent [52]. Third-party users with overlapping research inter-

ests are expected to proceed respectfully and in dialogue with

the data generators to identify a mutually agreeable publi-

cation schedule [51]. Invariably, much more is at stake in

such projects, and though these informal agreements are

rarely violated, they are generally well policed by the peer

review process [52], and by the reputational damage suffered

by those who choose not to observe these agreements.

Practice in the genomics community underscores the point

that there is more to gain from open data than the warm glow

of altruism [51,53]. Not only has it led to greater and

more rapid scientific advance [48,51], it can lead to material

personal gain, through proposals for collaborative exploita-

tion of published data, both to achieve stated research

objectives, and to achieve new objectives that would not be

possible without unforeseen collaborators [51,53]. Citation

and access-tracking of published datasets also provide credit

to the authors [31]. Attribution of authorship is mandated

under CC-BY licences and is in any case integral to the aca-

demic culture. Many journals already mandate citation of

published datasets, not (or not merely) the publications

describing research based upon them; this must become

common practice. Further mechanisms for encouraging

researchers to share their data should only add to this motiv-

ation, such as explicitly evaluating the open sharing of data in

hiring, promotion or other reward processes.

Nevertheless, data can be associated with ethical sensi-

tivities that may require the withholding, or restriction on

public distribution, of data (e.g. anthropology or medical

science [54,55]). In such instances, the issues that apply

should be clearly defined so that beyond these boundaries

researchers and publishers can follow an ethos of open-data

publication. Mechanisms already exist to cope with these con-

straints while still making data available, such as data

anonymization and vetted access [51].
7. Outstanding challenges
While the principle of open data has been mandated by the

majority of funders [32], publishers, physical repositories

and researchers are all scrambling to meet the resulting chal-

lenges. Above all, the competing interests over ownership of

digital data need to be resolved between (i) funders who pay

for research, (ii) researchers who collect specimens and create
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the digital datasets, (iii) research facilities where data are col-

lected, (iv) museums that have a duty of care for the physical

specimens and (v) research publishers. Funders, researchers

and publishers may have converged on an ethos of open

data. However, the institutions that are responsible for the

physical specimens have not obviously been invited to

engage in the development of open-data policy, and yet it

is museums that will have to change most in terms of their

policies on the nature of what they consider intrinsic aspects

of the physical specimens that they hold in their care. One sol-

ution for museums might be to comply with research

funders’ requirements, and waive copyright over digital rep-

resentations of their collections, along with its associated

income stream. Another solution would be for these insti-

tutions, which are those best-placed to inform policy on the

curation, storage and distribution of data, to develop digital

collections with the stability to match that of their physical

inventory. Indeed, with the development of cybertypes

[28,29], this may be an inevitable future aspect of the

world’s leading museums. However, if this readily realizable

vision of data repository quality, stability and credibility is to

be achieved, it will require the funders who have mandated

data deposition to cover the costs of establishing and main-

taining such facilities, through block grants, not through

piecemeal funding to researchers. If such change is to be

achieved, it must happen not only in wealthier countries

but worldwide, and thus more amply provisioned funders

should provide further means to help other countries

improve their data-sharing capacities.

Data access is not only important post-publication, to aid

reproducibility, but during peer review, so that the results of

a study and their interpretations can be verified prior to publi-

cation. Providing tomographic or 3D data at the point of

journal submission is, in our experience, a comparatively rare

phenomenon that the publishing infrastructure is not currently

well set up to facilitate. Publishers must develop a more homo-

geneous policy on open data [34], along with procedures to

ensure data sources are acknowledged and linked electroni-

cally to the derivative publications [48]. It is also important

that systems are developed to ease the submission of such

data, and facilitate secure, anonymized distribution of data

to reviewers. Dryad offers an integrated submission system

where publishers can coordinate submission of a manuscript

with submission of data, which can then be accessed securely

by referees and editors. For non-integrated journals, an interim
solution may be to host data at a temporary, hidden URL that

can be forwarded to the reviewers via the journal. Authors may

be cautious about sharing such data ahead of an article being

accepted for publication, and there should be a clear policy

governing the restrictions of use for reviewers.
8. Conclusion
Data sharing is essential in order for the benefits of 3D digital

data to be fully realized by the scientific community, as well

as for the maximum benefit to be gained from the public and

private funding that allows these data to be collected. Not

only are the benefits of 3D digital data not currently being

fully realized, but failure to publish supporting data is ren-

dering many studies based on 3D digital data at least

difficult to reproduce. We have presented a series of propo-

sals for open 3D digital data. These outline the minimal

standards of verifiability that studies should meet before

they are published. We also present more ambitious stan-

dards that we hope can be assumed as normal best practice

(table 1). We have all been guilty of failing to meet these stan-

dards in the past because of technical and other limitations;

however, technology has changed and so must we. There

are costs associated with releasing data, both real and in-

kind, but these are insignificant in proportion to the real

costs of regenerating data, and the reputational costs to indi-

viduals, institutions, journals and editors of publishing

research predicated upon inaccessible data.
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