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Abstract 13 

Eimeria pose a risk to all livestock species as a cause of coccidiosis, reducing 14 

productivity and compromising animal welfare. Pressure to reduce drug use in the 15 

food chain makes development of cost-effective vaccines against Eimeria essential. 16 

For novel vaccines to be successful, understanding genetic and antigenic diversity in 17 

field populations is key. Eimeria species that infect chickens are most significant, with 18 

Eimeria tenella among the best studied and most economically important. Genome-19 

wide single nucleotide polymorphism-based haplotyping has been used to determine 20 

population structure, genotype distribution, and potential for cross-fertilization 21 

between E. tenella strains. Here, we discuss recent developments in our 22 

understanding of diversity for Eimeria in relation to its specialized lifecycle, 23 

distribution across the globe, and the challenges posed to vaccine development. 24 

 25 

 26 

  27 
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Genome sequences pave new roads for anticoccidial vaccine development  28 

Eimeria species, protozoan parasites that can cause the damaging intestinal 29 

disease coccidiosis, pose a significant risk to global poultry production [1, 2]. Members 30 

of the phylum Apicomplexa, the genus Eimeria encompasses at least 1 200 species, 31 

almost all of which are restricted to a single host [3]. Seven Eimeria species are 32 

recognized to infect the chicken, causing a considerable disease burden across the 33 

globe [2, 4, 5]. Similarly, several species are considered to be highly pathogenic in 34 

turkeys (reviewed in [6]). Whilst the pathology associated with each Eimeria species 35 

infecting chickens has long been understood [7, 8], parasite population structures and 36 

the extent of genetic diversity in field populations are only now emerging. Interest in 37 

parasite occurrence, diversity and epidemiology is driven by a global need for cheap 38 

and effective vaccines as alternatives to anticoccidial drugs. Details of regional 39 

variation in Eimeria species prevalence, distribution of genetically and antigenically 40 

distinct strains, and the frequency at which polymorphic strains cross-fertilize, all 41 

provide valuable knowledge that can underpin rational vaccine design and 42 

development. In particular the recent availability of genome sequence resources for 43 

all seven Eimeria species of the chicken [9] provides opportunities to define many of 44 

the variables outlined above [10].  45 

Here we review and discuss recent findings relating to the genetic and 46 

antigenic diversity of Eimeria species which infect chickens in the context of vaccine 47 

development and the potential for future successes based on new sequencing 48 

technologies and the search for novel vaccine candidate antigens.  49 

 50 

Current control strategies for Eimeria which infect chickens 51 
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More than 60 billion chickens are produced in the world every year, yielding 52 

1.1 trillion eggs and more than 90 million tonnes of meat [11]. The poultry industry in 53 

the United States of America (USA) alone is worth in excess of $38.1 billion, which 54 

includes the combined production value of chickens and turkeys [12]. Consequently, 55 

effective means of controlling pathogens which infect chickens are essential and of 56 

increasing importance as trends for expansion and intensification of global poultry 57 

production are maintained (Grace et al., 2012; 58 

https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.p59 

df).  60 

Control of coccidiosis in poultry relies predominantly on chemoprophylaxis, 61 

although resistance to anticoccidial drugs is common in Eimeria field populations [13-62 

15]. Prior to the year 2000, anticoccidial drugs were used in ~95% of flocks where 63 

anticoccidial control was employed, including ~99% of commercial broiler flocks [16]. 64 

More recently, a study from the USA has reported that this percentage has fallen to 65 

between 60 and 99%, depending upon the time of year [16]. While anticoccidial drugs 66 

remain essential to chicken production and these trends are not yet reflected in much 67 

of the world, reductions in drug application throughout the food chain driven by 68 

legislative and consumer pressure is encouraging alternatives for coccidiosis control 69 

[13, 17]. The use of live oocyst vaccines comprising mixes of species of non-attenuated 70 

(formerly wild-type) or attenuated parasites [2] are well established. Oral exposure to 71 

controlled numbers of vaccine oocysts is designed to result in low grade coccidial 72 

infection, inducing a protective immune response that is boosted by re-infection as 73 

the live vaccine re-circulates through the chicken house. However, vaccine production 74 

costs and the requirement for multiple parasite lines in each vaccine have been 75 

https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf


 5 

significant barriers to the widespread use of live vaccines in the majority broiler 76 

production sector [2]. Nonetheless, non-attenuated vaccines are now included in 77 

anticoccidial rotation programs by 35-40% of commercial broiler companies in the 78 

USA [16].  79 

Recombinant subunit vaccines have been considered as potential alternatives 80 

for coccidiosis control for many years, and the concept has returned to the fore in the 81 

past decade with the discovery and testing of many partially immunoprotective 82 

antigens and expansion of the number of vaccine delivery systems available for use in 83 

chickens. Low genetic variability in the target antigen(s) is a key requirement for 84 

success precisely because recombinant vaccines rely on the expression of a single, or 85 

a small number of antigens [18, 19].  Vaccination using such a small subset of antigens 86 

from a complex parasite such as Eimeria may provide a significant driving force for 87 

immune selection, which could lead to the rapid appearance and dissemination of 88 

alleles which confer vaccine-escape (resistance) [10]. The phylum Apicomplexa 89 

encompasses a number of parasites important for human and/or animal health 90 

including Plasmodium falciparum and Toxoplasma gondii. The well-characterized 91 

population structures and genetic diversity of these parasites have shown that there 92 

are numerous barriers to the success of subunit vaccines, but have inspired relevant 93 

vaccine development (e.g. [20-22]).  In contrast, rather little is known of the genetic 94 

diversity and structure of field populations of Eimeria parasites, the potential for 95 

mixing between genotypes or the selective pressures imposed on loci which encode 96 

immunoprotective antigens, highlighting the numerous challenges posed to the 97 

development of novel subunit vaccines (reviewed in [11]).  98 

 99 
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Defining genetic diversity within Eimeria species 100 

 Eimeria parasites have been recognized for more than a century [7]. Early 101 

approaches to understanding parasite diversity focused on parasite (mainly oocyst) 102 

morphology, lifecycle (location and timing of development in the gut) and 103 

pathogenicity [23]. Differences in the mobility of specific metabolic enzymes during 104 

starch gel electrophoresis by isoelectric focusing permitted discrimination between 105 

Eimeria species and some strains [24], but it was only with the application of 106 

techniques that visualize DNA such as pulsed field gel electrophoresis to examine 107 

chromosomes, and amplified fragment length polymorphism to examine 108 

polymorphisms, that genetic variation began to be explored (reviewed in [25]). Now, 109 

advances in molecular biology permit the detailed definition of genetic diversity at 110 

specified loci of interest and across whole genomes (Box 1). 111 

 112 

Assessing genetic diversity of Eimeria using defined locus sequencing 113 

Sequencing short genomic regions, such as internal transcribed spacer (ITS) or 114 

mitochondrial cytochrome oxidase subunit 1 (COX1) loci, has been used widely to infer 115 

the relatedness of Eimeria isolates, particularly those collected from the field. The 116 

technique is relatively inexpensive, can be carried out with limited laboratory 117 

resources, and is supported by a published sequence archive with ~1 000 and ~100 118 

sequences currently available for ITS and COX1 respectively (GenBank; accessed 7th 119 

June, 2016 http://www.ncbi.nlm.nih.gov/pubmed using the ‘nucleotide’ menu).  120 

ITS sequencing has been the molecular technology used most widely for 121 

assessing Eimeria occurrence in field populations. Initially, studies focused largely on 122 

separate countries or continents with examples including Australia, India, Africa and 123 

http://www.ncbi.nlm.nih.gov/pubmed
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the USA [5, 26-28]. The most comprehensive survey of Eimeria field isolates was 124 

published recently in which 512 pooled faecal samples were surveyed from poultry 125 

farms situated in 20 countries across five continents [29]. Here, ITS1-5.8S-ITS2 126 

sequence analysis revealed some interesting aspects of population structure. The 127 

genetic signatures of Eimeria acervulina and Eimeria mitis indicated that regular 128 

interbreeding occurs between genotypes, while Eimeria tenella exhibited a more 129 

restricted population structure [10, 29]. The inclusion of sequences derived from 130 

laboratory reference strains that are progenitors to many vaccine parasites in the 131 

comparison suggested that the samples collected were representative of wild-type 132 

field strains, not re-sampling of vaccinal lines [29]. It was suggested that the faster 133 

generation time and greater fecundity of E. acervulina and E. mitis compared to E. 134 

tenella (~33% shorter prepatent period and 2.5-4 times more oocysts produced per 135 

oocyst ingested [30, 31]) could account for the observed differences in population 136 

structure. As a consequence, E. acervulina and E. mitis parasites have greater 137 

opportunity for co-infection and hybridization and their genomes may evolve more 138 

rapidly.  139 

Analysis of ITS sequence datasets has also led to the discovery of three new 140 

Eimeria ‘operational taxonomic units’ (OTUs) [5, 26, 29, 32]. Initially, ITS2 sequencing 141 

of isolates from Australia provided the first definition of the three Eimeria OTU 142 

genotypes termed OTUx, OTUy and OTUz [26], which have been supported by 143 

subsequent ITS1 and ITS2 sequencing of isolates covering a greater geographical range 144 

[29, 32, 33]. These divergent parasites appear to be restricted at present to southern 145 

regions of the world below 30oN latitude [29, 34], although future human and trade 146 

movements risk the expansion of their range. The spread of parasites with these novel 147 
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genotypes may have significant consequences for vaccine development and 148 

application. At present it is unclear whether these variants can evade the immune 149 

protection offered by live vaccines, although Morris and colleagues have provided one 150 

example of escape from the field [35]. Sequence comparison currently suggests that 151 

OTUx is most closely related to Eimeria maxima, with Eimeria brunetti the closest link 152 

to OTUy [32]. Comparison of ITS1-5.8S rDNA-ITS2 sequences has revealed the greatest 153 

divergence for OTUz with distinct long and short forms, as described previously for E. 154 

maxima and E. mitis [27, 29]. 155 

The development of next generation sequencing technologies has moved 156 

analysis of genomic diversity from the single gene to genome wide levels, vastly 157 

increasing available genetic and genomic resources for Eimeria. For example, fully 158 

resolving the phylogenetic relationships between Eimeria species which infect 159 

chickens and turkeys has proven difficult based on COX1 and 18S rDNA sequences 160 

alone [36-38].  The robustness of separation of the seven Eimeria species recognized 161 

to infect chickens was greatly improved using whole-genome phylogenies [9] and may 162 

prove beneficial in future analyses of field isolates. Mitochondrial genome sequencing 163 

has also been used effectively to separate Eimeria species which infect domestic 164 

turkeys [39] (Table 1). The addition of genome sequences resources for cloned OTU x, 165 

y and z lines are a high priority and should resolve the cryptic status of these 166 

genotypes. 167 

 168 

A Dynamic and Adaptable Genome? 169 

Beyond the resolution of phylogenetic debate, whole genome sequencing has 170 

revealed interesting aspects of genome structure for Eimeria (refer to Table 1 for a 171 
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summary of resources). Initial analysis of E. tenella chromosome 1, sequenced 172 

following purification from pulse field gel electrophoresis-resolved karyotypes, 173 

revealed alternating regions of repeat-poor (P) and repeat-rich (R) sequences [40]. 174 

More recently, Illumina-based genome sequencing and assembly demonstrated that 175 

the P and R structure was not limited to chromosome 1, but was conserved in all 176 

chromosomes of E. tenella, and across the genomes of E. acervulina, E. brunetti, E. 177 

maxima, E. mitis, E. necatrix, and E. praecox, as well as Eimeria falciformis (a parasite 178 

specific to the mouse) [9, 41]. Interestingly, differences were observed in repeat 179 

content between species. Eimeria tenella, for example, has fewer R regions than the 180 

other six species which infect chickens, while E. necatrix was more repeat rich across 181 

its genome, most notably in regions syntenic with E. tenella [9]. This P/R structure 182 

does not appear in the genomes of other coccidia such as Neospora caninum or T. 183 

gondii [9, 42], although it has been detected in the more closely related Cyclospora 184 

cayetanensis genome [43]. Ling and colleagues have suggested that the unusual 185 

genome organization might pose an evolutionary advantage to the parasite by 186 

facilitating rapid evolution and diversification. Variation in restriction fragment length 187 

polymorphism (RFLP) fragment size between different strains of E. tenella associated 188 

with R-, but not P-regions, lending some support for genome plasticity [9, 40, 44]. A 189 

disproportionately high repeat content in protein coding sequences could confer 190 

some evolutionary advantage, although their effects on protein structure appear to 191 

be neutral and genes known to be integral to host–parasite interaction were relatively 192 

free of repeats [9]. The seven Eimeria species which infect poultry do not appear to 193 

possess the sub-telomeric regions which in P. falciparum contain a set of plastic genes 194 

involved in host immune system evasion [9, 40, 45]. Telomere-like repeats are, 195 
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however, dispersed throughout the R-segments, suggesting there are complexities in 196 

the structure of the genome that we do not fully yet understand. Telomere-like 197 

repeats have previously been described in the Plasmodium knowlesi genome where 198 

they associate with variant antigen families, although a similar linkage has not been 199 

described for Eimeria [46]. The impact of the segmented Eimeria genome structure on 200 

the appearance and extent of genetic diversity is yet to be determined, although it 201 

may well associate with hotspots of genetic recombination. The implications of such 202 

hotspots on vaccine development are similarly unclear. 203 

 204 

The importance of population structure 205 

Genetic mapping has been useful in establishing the population structure of 206 

some apicomplexans (reviewed in [47]), as have other molecular tools (reviewed in 207 

[25]). Population structure varies across the Apicomplexa. Plasmodium falciparum has 208 

been shown to exhibit signatures of panmictic or clonal population structures, 209 

influenced in part by regional transmission rates [48, 49]. Toxoplasma gondii is 210 

commonly clonal in much of the world, with a small number of dominant genotypes 211 

described, although a higher level of genetic diversity has been detected in regions 212 

such as South America where population mixing appears to occur at a greater 213 

frequency [21, 50]. For E. tenella, comparison of haplotype occurrence and diversity 214 

defined following multiplex single nucleotide polymorphism (SNP) genotyping 215 

revealed that north Indian and north African field populations were characterized by 216 

a limited number of distinct haplotypes and significant linkage disequilibrium (Figure 217 

1), resembling the region specific population structure of T. gondii [10]. This 218 

population structure suggests that limited opportunities exist for cross-fertilization 219 
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and genetic recombination, and that the expansion of a small number of haplotypes 220 

might be common although not necessarily clonal. In contrast, a greater haplotype 221 

diversity was reported in southern India and Nigeria with multiple haplotypes 222 

appearing, all at a very low frequency, indicating that co-infection with heterologous 223 

isolates and cross-fertilization is common during sexual reproduction, and that genetic 224 

diversity is likely to be greater than estimated by current sampling [10]. These findings 225 

suggest there are numerous opportunities for recombination in the field in these 226 

regions.  227 

The regional differences in population structure observed for E. tenella may 228 

have several underlying causes. In southern India there is a greater poultry density 229 

than found in the north (Grace et al., 2012; 230 

https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.p231 

df), and therefore more opportunity for parasite co-infection and cross-fertilization. 232 

Further, the climate in south India is commonly more humid than in north India [51], 233 

likely favoring higher levels of oocyst sporulation and increased parasite survival in the 234 

poultry house environment as reported in comparisons of rainy versus dry seasons 235 

[52]. Higher rates of transmission commonly associate with elevated levels of 236 

outcrossing and increased genotype abundance for other apicomplexans such as P. 237 

falciparum [49]. Importantly, co-infection of a single host with two or more genetically 238 

distinct Eimeria isolates does not guarantee cross-fertilization. The Eimeria life cycle 239 

includes a single, transiently diploid phase during sexual reproduction and oocyst 240 

maturation [53], so timing of the co-infection has to be essentially simultaneous for 241 

genetic recombination to occur.  Additionally, the in vivo phase of the Eimeria life cycle 242 

is predominantly self-limiting, with features such as prepatent period and the number 243 

https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf
https://cgspace.cgiar.org/bitstream/handle/10568/21161/ZooMap_July2012_final.pdf
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of rounds of schizogony stable, unless subjected to deliberate selection for 244 

developmental rate [10, 54, 55]. Studies using major histocompatibility complex 245 

(MHC) class I or II knockout mice suggest little or no role for the host immune response 246 

in the conclusion of parasite replication [56]. Thus, gametes of each genotype must 247 

mature in parallel for cross-fertilization to take place. In vivo experiments using 248 

laboratory strains of E. tenella have shown that, given the opportunity, cross-249 

fertilization is common, highlighting the potential that E. tenella has to hybridize in 250 

field populations and indicating the ease with which vaccine or drug-resistant alleles 251 

could propagate in field parasite populations [10]. Combined, these factors emphasize 252 

the importance of considering region specific environmental and social variables in 253 

implementation of novel control strategies for Eimeria species. Fornace and 254 

colleagues demonstrated that the diversity of species present in small-scale 255 

production systems in Africa was directly linked to profitability [5]. However, there 256 

have been few similar studies and the potential is there to link population structure 257 

and the burden of coccidiosis to profitability in particular regions of the globe.  258 

 259 

The relevance of antigenic diversity 260 

 Selection of candidate antigens for vaccine development has proved to be a 261 

significant barrier to progress in other Apicomplexa such as T. gondii and the 262 

Plasmodium species [57-59]. Differentiating immunogenicity from ‘true’ immune 263 

protection can be difficult, making selection of protective antigens problematic [19]. 264 

In one example, homologs of apical membrane antigen 1 (AMA-1) have been shown 265 

to be protective in a range of apicomplexan parasites including E. maxima [19], E. 266 

tenella [60] and P. falciparum [61-63], and it has been widely proposed as a candidate 267 
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for subunit vaccine development. However, extensive allelic diversity has limited 268 

development of P. falciparum AMA-1, with more than 60 polymorphic amino acid 269 

residues detected and more than 200 haplotypes within even a single population [61, 270 

62, 64, 65]. Despite such discouraging reports from P. falciparum, AMA-1 has shown 271 

promise as a vaccine candidate for E. tenella, with a potent inhibitory effect on 272 

parasite invasion [60]. More recently, genotyping E. tenella field isolates collected 273 

from Africa and India suggested that polymorphisms in the EtAMA-1 locus are lower 274 

than expected in field populations with largely neutral signatures of selection. The 275 

functionality of AMA-1 may outweigh the potential benefit to the parasite of immune 276 

evasion, which may be of limited value in the self-limiting eimerian life cycle [10]. 277 

Similarly, just four nucleotide polymorphisms exist between EmAMA-1 coding 278 

sequences from the E. maxima Houghton and Weybridge laboratory strains, two 279 

causing non-synonymous changes, one situated in the putative pro-domain and one 280 

located in domain 1 [9, 66]. Nonetheless, despite such limited diversity within the 281 

coding region of at least one vaccine candidate, strain specific immune escape has 282 

been reported in vivo for E. acervulina [67, 68], E. mitis [69], E. maxima [70] and E. 283 

tenella [71-73]. Comparison of E. tenella isolates collected from chickens reared in 284 

British and Indian poultry houses revealed incomplete immune protection between 285 

isolates, most notably following low-level primary exposure [10]. Despite these 286 

reports, there is no evidence that vaccine resistance has evolved in response to whole 287 

live parasite vaccination [2, 11]. One possible explanation for this is that throughout 288 

its lifecycle each Eimeria species expresses between 6 000 and 9 000 proteins [9], 289 

exposing the host to a complex portfolio of antigens. Selection targeting multiple 290 

immunoprotective antigens in parallel during replication in the chicken is likely to limit 291 
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the capacity for any individual parasite to evade the host immune response as a 292 

consequence of diversifying selection. Thus, the complexity of the antigenic repertoire 293 

might explain why resistance to live parasite vaccination has not yet developed [10] 294 

[11]. Incorporating multiple antigens, in addition to AMA-1, in novel subunit vaccines 295 

would therefore be likely to extend their potential for long term success by buffering 296 

the effects of diversifying selection on a single target antigen. 297 

 298 

Life cycle stage-specific antigen expression and immune selection 299 

Each Eimeria life cycle features a series of extra- and intracellular stages within 300 

the definitive host as the parasite undergoes successive rounds of asexual, and then 301 

sexual replication [9, 53]. Throughout this process Eimeria expresses many of its genes 302 

in a stage-specific manner which can impact on the development of novel vaccines. In 303 

T. gondii, for example, vaccination with life cycle stage-specific antigens leads to stage-304 

limited protection [57, 58]. In Eimeria, the early life cycle stages are important to the 305 

induction of protective immunity during natural infection [9, 11, 60]. Importantly, 306 

vaccine candidates such as AMA-1 are primarily expressed by a single life cycle stage 307 

and are unlikely to be subjected to a protein-specific adaptive immune response 308 

during primary infection given the absence of protracted colonization [10, 54, 60]. 309 

Thus, the large oocyst output resulting from even low dose primary infections results 310 

in considerable environmental contamination with parasites which have never been 311 

exposed to immune selection.  312 

 313 

Future directions 314 
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A clear direction for future work is to expand our understanding of population 315 

structure to other Eimeria species in the field as has been reported recently for E. 316 

tenella [10]. Elucidating the population structure and potential for mixing is key in the 317 

development of novel control strategies for Eimeria. Understanding the possible 318 

biological, environmental, industrial and social drivers which underpin the observed 319 

diversity may be even more important, demanding detailed epidemiological 320 

interrogation. Opportunities to develop medium/high throughput tools such as 321 

Sequenom-based genotyping, and new high-throughput sequencing technologies 322 

such as restriction site associated DNA (RAD) sequencing, will facilitate the move away 323 

from ITS sequencing to genome wide analysis of genetic diversity with particular 324 

relevance to field samples. Eimeria genomic resources have increased greatly in recent 325 

years (reviewed in [74]). Additionally, since the cost of sequencing a genome the size 326 

of E. tenella is now relatively modest (51.8 Mb DNA in the current genome assembly 327 

[9]), the opportunity exists to build on the available genomic resources with whole 328 

genome sequencing of other Eimeria strains and species. Parasites of the three OTU 329 

genotypes are obvious candidates, with species which infect other livestock species 330 

further priorities. The genomes of non-target species can yield clues as to the 331 

structure and function of other closely related species. Comparative analysis of the E. 332 

falciformis genome with T. gondii revealed a shared emergence and diversification 333 

across the Coccidia of gene families associated with motility and invasion [41]. Building 334 

on information from whole genome sequencing, another relatively new technology, 335 

RNA sequencing (RNASeq) can be used for transcriptomic profiling of other key 336 

antigens of interest and is likely to offer clues as to their function and suitability as 337 

vaccine targets. RNASeq has already been used successfully to define transcriptomes 338 
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from several Eimeria life cycle stages [9, 53]. Indeed in the near future Isoform 339 

sequencing (IsoSeq), which at present generates transcripts >3Kb [75], could be 340 

utilized to sequence the entire transcriptome of a single parasite in full length 341 

fragments. Genome editing techniques such as the CRISPR/Cas system have huge 342 

potential and could be used, for example, to switch allelic type for a small number of 343 

target antigen coding genes. The CRISPR/Cas system has been used successfully in P. 344 

falciparum [76, 77] and T. gondii [78, 79], but is not yet available for Eimeria. These 345 

tools should improve the molecular definition of diversity, expand our understanding 346 

of parasite evolution and host evasion, and highlight regions of the genome that show 347 

promise in the development of novel sub-unit vaccines.  348 

 349 

Concluding Remarks 350 

There are several key challenges posed by population, genetic and antigenic 351 

diversity of Eimeria parasites to the development of novel vaccines (see Outstanding 352 

Questions). How genetic, particularly antigenic, diversity influences pathogenicity, 353 

vaccine specificity and epidemiology, and the implications of this for effective 354 

intervention and control, are important questions that need to be answered for all 355 

apicomplexan parasites. Recent studies have revealed a polarized global occurrence 356 

for genetically divergent Eimeria strains, and possibly even new species, that may be 357 

capable of replicating within chickens vaccinated using current generation vaccines. 358 

These parasites pose a significant risk to vaccine efficacy, and thus food security and 359 

animal welfare, in production systems which rely on anticoccidial vaccination. 360 

Considering social and environmental variables in novel control strategies is of great 361 

importance, with factors including choice of production system, geographic 362 
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separation of farms and climatic conditions likely to influence parasite population 363 

dynamics. The recent expansion in genetic and genomic resources available for 364 

Eimeria has dramatically improved our ability to genotype parasites recovered from 365 

field populations and begin to assess how many of these variables will affect genetic 366 

diversity, and whether that diversity will impact on vaccine efficacy and longevity.  367 
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Figure legends 594 

 595 

Figure 1. Median-joining phylogenetic NETWORKs illustrating genome-wide and 596 

antigen specific diversity reported for Eimeria tenella. A. The influence of geographic 597 

origin on E. tenella single nucleotide polymorphism (SNP) haplotype occurrence and 598 

complexity. Parasite populations from Nigeria and south India presented high 599 

haplotype diversity and apparent panmixia, compared to more restricted variation in 600 

north African and north Indian populations. Node size indicates the frequency of 601 

haplotype occurrence. Figure reproduced from [10]. B. Coding sequence 602 

polymorphism within the apical membrane antigen 1 (AMA-1) locus. Eight allelic types 603 

were detected with less geographic specificity than described for genome haplotypes. 604 

Figure derived from data presented in [10].605 
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Table 1. Genome size and available genetic resources for Eimeria species in comparison with the apicomplexan species 606 

Toxoplasma gondii and Plasmodium falciparuma.  607 

 608 

Species Host Genome Size 
(Mb) 

Reference 
Genome  

Mitochondrial 
Genome 

RNASeq Defined Locus 
Sequencing 

SNP Arrays Proteomic
s 

Eimeria falciformis  Mouse 43.67       
Eimeria acervulina  Chicken 45.83       
Eimeria brunetti  Chicken 66.89       
Eimeria maxima  Chicken 45.98       
Eimeria mitis  Chicken 72.24       
Eimeria necatrix  Chicken 55.01       
Eimeria praecox  Chicken 60.08       
Eimeria tenella  Chicken 51.86       
Eimeria adenoeides Turkey -       
Eimeria dispersa Turkey -       
Eimeria gallopavonis Turkey -       
Eimeria innocua Turkey -       
Eimeria meleagridis Turkey -       
Eimeria meleagrimitis Turkey -       
Toxoplasma gondii 
GT1 

Cat, others 63.95       

Plasmodium 
falciparum 

Mosquito, human 23.3       

http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=efalBayerHaberkorn1970&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=eaceHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=ebruHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=emaxWeybridge&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=emitHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=enecHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=epraHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=etenHoughton&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=tgonGT1&project_id=ToxoDB
http://www.toxodb.org/toxo/showRecord.do?name=OrganismRecordClasses.OrganismRecordClass&source_id=tgonGT1&project_id=ToxoDB
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aTable adapted from the Toxoplasma Genetics Resource ToxoDB (http://www.toxodb.org/toxo/showApplication.do, accessed 15th June, 609 

2016), supplemented by [80-87].  610 

b = sequence resource available. 611 

 612 

 613 

http://www.toxodb.org/toxo/showApplication.do
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Box 1. The utility of SNP genotyping assays in determining parasite population 614 

dynamics in the field. 615 

 Defined locus sequencing has been widely used to genotype Eimeria field 616 

isolates since it is cost effective and relatively quick to accomplish. However, with the 617 

advent of new high throughput sequencing technologies analysis of genetic diversity 618 

across whole genomes is now possible. When whole genome sequencing first became 619 

available the associated costs were prohibitive, but this is changing rapidly as the 620 

technology becomes cheaper. Reference genome sequence assemblies are now 621 

available for the seven Eimeria species that infect chickens [9]. Large-scale genome re-622 

sequencing of field isolates will soon be possible but is not yet affordable. In the 623 

interim period sequencing a small number of additional strains for comparison with 624 

the relevant reference genome provides a resource to design genotyping tools based 625 

on specific single nucleotide polymorphisms (SNPs). Custom SNP-based assays are a 626 

cost effective method of genotyping parasites which can be applied effectively to 627 

large-scale collections of field isolates [10]. SNP genotyping technologies provide 628 

useful tools to assess the level of cross-fertilization and genetic recombination in field 629 

populations. Such knowledge can be employed to improve the prospects of future 630 

subunit vaccines being effective in the field. 631 

 632 

 633 

 634 

 635 


