Foodborne Pathogens and Disease

Foodborne Pathogens and Disease: http://mc.manuscriptcentral.com/foodborne

Cross sectional study of Toxoplasma gondii infection in pig farms in England

Journal:	Foodborne Pathogens and Disease
Manuscript ID	FPD-2016-2197.R3
Manuscript Type:	Original Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Limon, Georgina; The Royal Veterinary College, Production and Population Health Beauvais, Wendy; The Royal Veterinary College Dadios, Nikolaos; The Royal Veterinary College Villena, Isabelle; French Agency for Food, Environmental and Occupational Health and Safety Cockle, Charlotte; The Royal Veterinary College Blaga, Radu; National Veterinary School of Alfort Guitan, Javier; The Royal Veterinary College
Keyword:	Foodborne Pathogens, Prevalence, Public Health, Zoonoses
Manuscript Keywords (Search Terms):	Toxoplasma gondii, pigs, infection, empirical Bayes approach, risk factors, England

SCHOLARONE[™] Manuscripts

Foodborne Pathogens and Disease

Cross sectional study of Toxoplasma gondii infection in pig farms in England

Georgina Limon^{1*}, Wendy Beauvais¹, Nikolaos Dadios¹, Isabelle Villena², Charlotte Cockle¹, Radu Blaga³, Javier Guitian¹

- ¹The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, United Kingdom
- ² French Agency for Food, Environmental and Occupational Health and Safety (ANSES –USC
- EpiToxo), EA 3800, University of Reims Champagne-Ardenne, France
- ³ National Veterinary School of Alfort (ENVA –JRU BIPAR), France

- <text> *Corresponding author. Georgina Limon. The Royal Veterinary College, Hawkshead Lane, Hatfield,
- Hertfordshire, UK. Tel.: +44 1707667149. Email: glimon@rvc.ac.uk

Abstract

Ingestion of undercooked meat has been proposed as an important source of human T. gondii infection. To ascertain the contribution of meat consumption to the risk of human infection, estimates of the prevalence of infection in meat-producing animals are required. A cross sectional study was conducted to assess T. gondii infection in pigs raised in England, to identify risk factors for infection and to compare performance of two serological tests: modified agglutination test (MAT) and enzyme-linked immunosorbent assay (ELISA). Blood samples from 2071 slaughter pigs originating from 131 farms were collected and 75 (3.6%) were found positive by MAT. Positive pigs originated from 24 farms. A subset of samples (n=492) were tested using ELISA, and a significant disagreement (p < 0.001) was found between the two tests. An empirical Bayes approach was used to estimate the farm-level prevalence and the probability of each individual farm having at least one positive animal considering the uncertainty arising from the sampling strategy and the imperfect test performance. The adjusted farm-level prevalence was 11.5% (95% credible interval of positive farms 8.4%-16.0%). Two different criteria were used for classifying farms as infected: (i) \geq 50% probability of having at least one infected pig (n=5, 6.8%); (ii) \geq 10% probability (n=15, 20.5%). Data on putative risk factors was obtained for 73 farms. Using a 10% cut-off, the relative risk (RR) of infection was higher on farms where cats have direct access to pigs' feed . t. .rms studied, i. .gs. These results pi. .sumers. (RR=2.6; p=0.04), pigs have outdoor access (RR=3.0; p=0.04) and farms keeping ≤ 200 pigs (RR=3.9; p=0.04)p=0.02), with strong collinearity between the three variables. The findings suggest a low level of T. gondii infection in the farms studied, most of which are likely to send to slaughter batches composed of 100% uninfected pigs. These results provide key inputs to quantitatively assess the T. gondii risk posed by pork to consumers.

Foodborne Pathogens and Disease

38 Introduction

Toxoplasmosis is a worldwide distributed zoonosis caused by the protozoan parasite *Toxoplasma gondii* (*T. gondii*). Most warm-blooded animals can be infected and act as intermediate hosts in the life-cycle of the parasite. Felines are the definitive host and the only species able to excrete sporulated oocysts in faeces potentially contaminating the environment, soil and crops (Montoya and Liesenfeld, 2004).

Humans can become infected via three main routes: (i) congenital, (ii) ingestion of sporulated oocysts present in cats' litter trays or contaminated soil, water and vegetables and (iii) consumption of raw or undercooked meat containing T. gondii bradyzoites clustered in tissue cysts ('infective cysts') (Andreoletti et al., 2007; Tenter et al., 2000). The latter has been considered the most important route of infection in developed countries by the World Health Organization (WHO, 2015). It is estimated that up to a third of the world's population is currently infected with T. gondii with important differences between and within countries (Pappas et al., 2009; Tenter et al., 2000). In recent years, Toxoplasmosis has been ranked as posing the highest disease burden among foodborne pathogens in Europe (Havelaar et al., 2012; WHO, 2015), and consumption of pork has been ranked second among the top 10 pathogen-food combinations in the US (Batz et al., 2011). Estimates of the overall incidence of human toxoplasmosis in England are lacking, as records of the number of confirmed cases (on average 330 cases per year) represent a small proportion of the total number of cases in the population given the asymptomatic nature of the infection in healthy individuals (PHE, 2015, 2016). On the contrary, immunocompromised people can become seriously ill, whilst infection during pregnancy could result in lifelong complications for the offspring (Andreoletti et al., 2007).

Pigs rarely show clinical signs when infected with T. gondii and detection of T. gondii cysts during meat inspection is not feasible given their microscopic size. Numerous techniques are available for antibody detection and a fairly good correlation has been reported in pigs between seropositivity and presence of cysts (Dubey et al., 2002; Gamble et al., 2005; Hill et al., 2006). Therefore presence of antibodies can be used as an indicator for the potential presence of infective cysts in pork. Among the serological tests available, the modified agglutination test (MAT) has the highest sensitivity and specificity (based on isolation of viable *T. gondii* from tissues of experimentally-infected pigs as gold standard) having the advantage of not being affected by cross-reactivity with other parasites (Dubey, 1997; Dubey et al., 1996; Dubey et al., 1997). In field conditions however, the limited number of studies have reported inconsistent results. A study conducted in naturally infected sows found higher sensitivity and specificity in MAT compared with enzyme-linked immunosorbent assays (ELISA) (Dubey et al., 1995); whilst the contrary was found in a study conducted in finishing pigs (Gamble et al., 2005).

The prevalence of toxoplasmosis in pigs varies between countries and is mainly associated with the presence of cats and contamination of pigs' feed with cat faeces with differences in risk found depending on the type of housing and production system (Assadi-Rad et al., 1995; Garcia-Bocanegra et al., 2010a; Garcia-Bocanegra et al., 2010b; Guo et al., 2016; Kijlstra et al., 2004; Klun et al., 2006; Ortega-Pacheco et al., 2013; Tao et al., 2011; van der Giessen et al., 2007; Weigel et al., 1995). It has been hypothesized that recent trends in consumer habits in developed countries, with a shift towards the consumption of free range and organic pork, where animals have a higher risk of exposure to T. gondii from the environment, may result in a higher risk of consumer exposure to T. gondii (Kijlastra et al., 2009; van der Giessen et al., 2007).

Policies to mitigate the risk of foodborne exposure to T. gondii should be based on scientific risk assessment and best available data. Lack of information regarding prevalence and risk factors for T. gondii infection of pigs reared in the UK have been highlighted as important data gaps for the assessment of the risk of pork to human infection (AMCSF, 2012). A recent UK survey in slaughtered pigs (Powell et al., 2016) found that 7.7% of pigs were sero-positive by Sabin-Feldman Dye test (a test that detect T. gondii IgG antibodies); potential risk factors for T. gondii infection were not assessed. Ideally, prevalence estimation should take into account the imperfect performance of the test and the sampling strategy used.

The objectives of this study were (i) to assess, by means of an empirical Bayes estimation, the probability of *T. gondii* infection in selected commercial farms in England, (ii) to identify factors associated with a higher risk of *T. gondii* infection at farm level and (iii) to compare the performance of the reference serological test for *T. gondii* in pigs (MAT), with a commercially available ELISA.

100 Material and Methods

102 Study design

A cross sectional study was conducted in England between January and July 2015 with the pig batch as the unit of interest. A batch was defined as a group of pigs received in the abattoir from the same herd and on a given day. A note explaining the aim of the study was published in the British Pig Executive (BPEX) newsletter in December 2014 and five commercial slaughterhouses volunteered to take part in the study; they varied in size and throughput from 40 to >10,000 pigs processed per week. Farmers regularly sending pigs to these slaughterhouses were contacted and invited to participate. The target sample size was calculated as 129 batches in order to be able to estimate prevalence at the level of the batch (expected to be 25%) with 7.5% precision and 95% confidence. In the absence of

Page 5 of 26

Foodborne Pathogens and Disease

2	
3	
4	
5	
6	
7	
8 9	
9	
10	
44	
11	
12	
13	
14	
13 14 15	
10	
16	
17	
18	
19	
16 17 18 19 20	
20	
21 22 23 24	
22	
23	
24	
24 25	
-	
26 27 28	
27	
28	
29	
30	
24	
31	
32	
33	
33 34	
35	
26	
35 36 37 38	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

farm-level prevalence estimates in England, values reported in other European countries were used as
reference (Steinparzer et al., 2015; van der Giessen et al., 2007). Within each batch, the number of
pigs needed to be sampled to classify, with 90% confidence, the study batches in 3 groups based on
within-batch prevalence (<7.5%; 7.5-25%; >25%) was estimated as 25 pigs.

The study received ethical approval from the Royal Veterinary College Ethics and WelfareCommittee under the reference URN 2015-1328

120 Samples and data collection

Each slaughterhouse was visited up to five times. On the day of the visit, batches of pigs from farmers who agreed to participate were included (in later visits farms already sampled were excluded). From each batch, blood samples were collected from individual pigs during routine slaughter at the point of bleeding (sticking). Nine ml of blood was collected from each pig using pre-labelled vacutainer tubes. For large batches, every third animal was sampled until the required sample of 25 pigs was achieved, whilst for small batches (less than 25 pigs) all pigs in the batch were sampled. Date of sampling and sex were recorded.

128

116

119

Information on farm characteristics, management practices and biosecurity were gathered using a standardised questionnaire designed based on a putative risk factors identified in a literature review (Opsteegh et al., 2016). The questionnaire was either sent by post (with a pre-paid envelope to be posted back) or handed directly to farmers at the slaughterhouse. Copies of the questionnaire are available from the corresponding author upon request.

134

135 Serology

Blood samples were centrifuged to separate sera from blood cells and sera samples were stored at
-20°C until testing using MAT for the detection of *T. gondii* specific immunoglobulin (IgG). Testing
was performed at the French Agency for Food, Environmental and Occupational Health and Safety in
Reims, France, as previously described (Dubey and Desmonts, 1987). A sample was considered
positive if the titre was ≥1:25 (Dubey, 1997). Titres between 1:1 and 1:10 were classified as
suspicious.

1

All MAT-positive and suspicious samples from which sera were available (n=152), plus a subset of 340 samples randomly selected among all the negative (n=1916) with maximum three negative samples per farm, were tested in duplicate by a commercially available ELISA (ID Screen® toxoplasmosis indirect multi-species) according to manufacturer's instructions. The optical density (OD) readings for the sample were used to calculate percentage seropositivity (SP) as described by the manufacturer. A sample with an SP value of \geq 50% was considered positive, \leq 40% was a negative

result and between 40% and 50% was considered doubtful. Testing was repeated (also in duplicate)
for those samples which had contradictory results during the first ELISA test (i.e. one well classified
as positive and one negative or doubtful). If the repeated test results were also contradictory the
sample was considered inconclusive.

McNemar's Chi-squared test for paired data was used to assess whether there was a significant
difference in the proportion positive between MAT and ELISA excluding inconclusive results.
Repeatability between ELISA results was measured using the coefficient of variation (CV). Low
values indicate high precision while the opposite is true for high values. A CV up to 0.20 can be
expected due to random variation (Reed et al 2002) and considered acceptable. The CV of each

sample was calculated for all the replicate values and then averaged across all 492 samples.

161 Data analysis

Descriptive statistics were obtained at animal level for all pigs sampled (n=2071) and at farm level for
 farms which completed the questionnaire (n=73).

The extent to which sex was associated with infection was determined using a logistic regression
model including farm as a random effect. Animals with sera titres ≥1:25 were considered positive and
suspicious results were considered negative.

169 Intra-farm correlation (ICC) for positive status of individual pigs was estimated using the farm 170 variance (σ) from the mixed effect model considering the farm as a random effect (Wu et al., 2012).

 $ICC = \frac{\sigma^2}{\sigma^2 + \pi^2/3}$

An empirical Bayes model was used to estimate the farm-level prevalence (Beauvais et al., 2016). Briefly, the probability of each farm having at least one true positive pig was estimated after taking into account the number of pigs tested, how many of them were found to be positive, the imperfect sensitivity and specificity of the test, the uncertainty arising from sampling only a proportion of animals on each farm and "prior" information about the within-farm prevalence probability distribution. The within-farm prevalence probability distribution was generated empirically from this study and does not therefore rely on prior knowledge about the distribution of the disease. For each iteration of the model, based on the probabilities of each farm being positive, we simulated the overall farm-level prevalence. The results for each iteration were combined to create an uncertainty distribution for the true farm-level prevalence. The median value of this uncertainty distribution was taken as the adjusted farm-level prevalence. Sera titres $\geq 1:25$ were considered positive. MAT sensitivity and specificity of 86% and 95% respectively, were used as inputs (Gamble et al., 2005).

Page 7 of 26

Foodborne Pathogens and Disease

Model results were used to classify farms as positive or negative using two cut-offs: positive farms for which the probability of having at least one true positive pig was ≥ 0.50 (cut-off 1) or those for which the probability was ≥ 0.10 (cut-off 2).

187 In addition, to explore whether there was a difference on the number of farms deemed positive

depending on the serological test used, the probability of a farm having at least one true positive pig

189 was estimated using results from the subset of samples tested in duplicate by MAT and ELISA.

190 ELISA sensitivity and specificity of 89% and 98% respectively were used (Gamble et al., 2005).

Putative predictors of exposure to *T. gondii* within a farm were categorised on the basis of answers
given in the questionnaire and risk factors previously identified in the literature. The re-categorisation
of variables is described in Table 1.

Crude associations between predictor variables (table 1) and farm status were tested by Fisher's exact or Pearson's Chi squared test as appropriate; relative risk (RR) was calculated as a measure of strength of association. Collinearity was assessed between all predictor variables for which $p \le 0.05$ in the univariate analysis and when present (p < 0.1) only one of the variables was kept in the model for further multivariable analysis. Logistic regression was used to assess the relationship between the individual predictor variables and the outcome, accounting for the potential confounding effect of other variables. Odds ratios (OR) obtained from the logistic regression were converted to Relative Risk: RR=OR/ $(1-p_0 + (p_0 * OR))$, where p_0 was the baseline risk (i.e. the risk of being positive in the control group) (Grant, 2014). Note that risk factors were collected retrospectively and therefore, exposure to a given risk factor might have happened after infection. In that cases the relative risk would have been overestimated.

Statistical analyses was performed in R 3.0 (R Development Core Team, 2015) using packages
epicalc (Chongsuvivatwong, 2010) and Ime4 (Bates et al., 2013).

212 Results

A total of 2071 pigs from 131 farms were sampled; including 1101 females (53.6%) and 953 (46.3%) males (sex was not recorded for 17 pigs). Antibodies against *T. gondii* by MAT were found in 155 pigs (7.5%) but only 75 pigs (3.6%) had titres \geq 1:25 (Figure 1). Sex was not significantly associated with *T. gondii* sero-status (p=0.14).

A higher number of samples were classified as positive using MAT (73 samples were positive by
MAT and 37 by ELISA) and the difference was statistically significant (p=<0.001) (Table 2; Figure

S1.1 supplementary material), suggesting serious disagreement between the two tests. For repeated
samples, the mean CV values for ELISA were 0.62, therefore there was substantial variation and low
precision of the test.

The proportion of farms deemed positive (i.e. farm-level prevalence) was 1.5% higher using results
given by ELISA when considering a ≥50% cut-off. However, the opposite happened when
considering a 10% cut-off, with more farms deemed positive using results given by MAT (Table S2.1
and S2.2 supplementary material).

Twenty four farms out of 131 sampled had at least 1 animal positive (apparent prevalence 18.3%)
(Table 3). The adjusted farm-level prevalence was 11.5% (95% credible interval 8.4%-16.0%) after
adjusting for the number of pigs tested per farm and the imperfect sensitivity and specificity of the
test; the credible interval refers to the sample estimate rather than a population estimate. The betweenfarm variance was 21.38, giving an intra-farm correlation of 0.99.

Seventy three farms (55.7%) returned a completed questionnaire. The median number of pigs in the farm at the time of sampling was 220 (1^{st} and 3^{rd} quartiles 31 and 2217 pigs). In almost half of the farms (48%) pigs had outdoor access for some stage of the production cycle. Twenty seven farms (37%) had cats on the site and 62% considered it was possible for cats not belonging to the site to have access to the farm (Table 4)

Out of those farms that returned a completed questionnaire (n=73), only two were deemed positive using a cut-off of \geq 90% probability of having at least one infected animal; four farms were deemed positive using $\ge 80\%$ cut-off and five farms using a cut-off of $\ge 50\%$ (Figure 2). There were no statistically significant associations ($p \le 0.05$) between farm status and any of the putative risk or protective factors explored (Table 4). This could be due to the lack of statistical power given the small number of positive farms (16% and 28% power of identifying a risk factor with $OR \ge 2.5$ and ≥ 3.5 respectively with 5 positive farms). Fifteen farms were deemed positive considering a lower cut-off: \geq 10% probability of having at least one true positive, increasing the power to 30% (for OR \geq 2.5) and 50% (for OR>3.5). Three farm characteristics were statistically significant from the univariate analysis; having outdoor access (RR=3.0; p=0.04), holding up to 200 pigs (RR=3.9; p=0.02) and cats having direct access to feed (RR=2.6; p=0.04). These 3 variables exhibited strong collinearity (p<0.1) and therefore, the three univariate models were kept. Overall 17 (23.3%) of the farms had the three characteristics (small herds, outdoor access and allowed cats have access to pigs' fed), of which 7 farms (41.2%) were positive ($\geq 10\%$ probability).

Discussion

1	
2	
2	
3 4	
4	
5	
6	
7 8	
9	
10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
$\begin{array}{c} 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 20\\ 31\\ 32\\ 20\\ 31\\ 32\\ 32\\ 32\\ 32\\ 30\\ 31\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32\\ 32$	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
31	
32	
বর	
34 35 36 37	
35	
36	
37	
38	
39	
40	
40	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

258 259 A low proportion of pigs tested positive in the current study (3.6%) with the majority of these having 260 a low MAT titre. Some of the animals tested could have been sows or boars which may have 261 increased the number of animals that tested positive. This suggests a low level of T. gondii infection 262 in the farms studied, most of which are likely to send to slaughter batches composed of 100% 263 uninfected pigs. Crucially, positive pigs came from a small number of farms (24 farms out of 131) and 264 a very high intra-farm correlation was found, suggesting that the risk of T. gondii infection in pigs is 265 largely driven by farm-level factors. In a previous study in the UK, 7.4% of pigs tested positive for T. 266 gondii antibodies (Powell et al., 2016). Although important geographical overlap exists between 267 studies, our study only included farms in England where 82% of the UK pig production is located 268 (PHWC, 2015). The results are not directly comparable given the differences of study design and the 269 test used. 270 271 Although the five collaborating slaughterhouses reflect the diversity of abattoirs in the country in 272 terms of throughput, specialisation and type of farms (PHWC, 2015), voluntary participation of 273 slaughterhouses and farms is a limitation of this study. However, one of the collaborating abattoirs is 274 among the few in the country that slaughters finishing pigs only and has one of the highest 275 throughputs. The remaining four slaughterhouses handle other species and two of them also slaughter 276 boars and sows. Similarly, the farms in the study reflect the variability of pig production in England

278

277

(PHWC, 2015).

279 Studies comparing the sensitivity and specificity of MAT and ELISA in naturally infected pigs, are 280 scarce and results are contradictory (Dubey et al., 1995; Gamble et al., 2005). Variation of test results 281 could be due to the *T. gondii* strain and time elapsed between infection and sampling (Dubey et al., 282 1997). Antibodies are detected by MAT 3 weeks post infection, peaking at week 6 and then 283 decreasing but maintained permanently. Titres \geq 1:320 are indicative of recent infection (Dubey et al., 284 1996). In this study a higher number of samples were classified as positive using MAT (p<0.001), 285 which is aligned with results elsewhere (Steinparzer et al., 2015). MAT has been shown to have better 286 precision and accuracy under experimental conditions, but it is time consuming, expensive and not 287 commercially available. Conversely, ELISA is cheap, easy to conduct and commercially available, yet 288 its accuracy is low. For surveillance proposes, ELISA could be used as a routine screening test, while 289 MAT should be the test of preference if regional or national farm-level prevalence estimates are 290 required. 291

Once adjusted for the number of animals tested per batch and the sensitivity and specificity of MAT,
the farm-level prevalence was 11.5% (95% credible interval 8.4%-16.0%). Although extrapolations

and comparisons should be made with caution given the non-probabilistic selection of farms and
different survey methodologies applied in different countries, the level of *T. gondii* infection appears
to be lower than that reported by studies in Germany (69.1%) (Damriyasa et al., 2004), Italy (42.3%)
(Villari et al., 2009), Spain (85.0%) Greece (26.2%) (Papatsiros et al., 2016) and Austria (23.3%)
(Steinparzer et al., 2015). It is important to note that prevalence estimates reported in these studies
were not adjusted for test sensitivity and specificity and the criteria for classification of positive farms
varied.

Regional differences within some European countries have been reported. Farms located in regions with high temperatures and moderate rainfall in Spain had higher risk of infection than those located in regions below or above the average rain fall, and a similar pattern was reported outside Europe (Alvarado-Esquivel et al., 2014; Alvarado-Esquivel et al., 2015). Comparisons between areas on the basis of climatic conditions should be made with caution as there are likely to be other potential confounding effects, such as farm characteristics or management practices. However, it has been hypothesised that survival of oocysts might increase with humidity, while sporulation time might be shortened with higher temperatures (Dubey, 2010; Opsteegh et al., 2016). Although further studies are needed to explore the role of climatic conditions on the survival of T. gondii oocysts, English climatic conditions could potentially limit oocyst survival and therefore reduce the level of exposure and infection in pigs, compared to other climates.

Smaller herds (≤ 200 pigs) had a higher risk of infection (RR=3.0; *p*=0.02) which is in accordance with studies elsewhere (Villari et al., 2009; Zimmerman et al., 1990). Herd size is often related to other management practices and should not be considered as an isolated factor. In this study, farms with smaller herds were more likely to keep other livestock species, have a continuous cycle, allow outdoor access to pigs and have an open food storage.

Having outdoor access, presence of cats in the farm and feed stored with the possibility for contamination with cats' faeces, have been previously reported as risk factors for T. gondii infection (Assadi-Rad et al., 1995; Garcia-Bocanegra et al., 2010a; Garcia-Bocanegra et al., 2010b; Gebreyes et al., 2008; Guo et al., 2016; Kijlstra et al., 2004; Klun et al., 2006; Ortega-Pacheco et al., 2013; Tao et al., 2011; Weigel et al., 1995). In our study the relative risk of infection was higher on those farms where pigs had outdoor access at any production stage (RR=3.0; p=0.04). Keeping cats in the farm or cats from outside being able to access the farm were not significantly associated with T. gondii infection. However, cats having direct access to pigs' feed increased the risk of infection 2.6 fold and was significant (p=0.04) when a 10% cut-off was considered. Recommendations to farmers should emphasise the importance of ensuring cats do not have access to pigs' feed. Such recommendations should reduce the level of exposure to sporulated oocysts and therefore, the level of infection

Foodborne Pathogens and Disease

regardless of the herd size and level of confinement. At EU level, requirements for controlled housing (Anonymous, 2015) could be amended to include mandatory feed storage in closed silos or containers impenetrable to cats, in order to distinguish between low and high biosecurity herds for T. gondii.

The true incidence of human toxoplasmosis in England is unknown as a result of underreporting; an enhanced surveillance programme in England and Wales introduced in 2008 (Halsby et al., 2014) identified 1824 confirmed cases during its first five years, with over a third of them coming from the London area. A previous study had reported a sero-prevalence of 17% among pregnant women in London, with African, Afro-Caribbean, Middle Eastern and mixed race ethnic origins and consumption of undercooked meat as the main risk factors (Flatt and Shetty, 2013). Lower seroprevalence (9.9%) was reported in studies conducted in Northern England (Zadik et al., 1995) and Southern England (7.7%) (Allain et al., 1998) fifteen years previously. Both studies tested women during the antenatal screening, but risk factors were not reported.

The foodborne route has been considered as the most important route for human T. gondii infection in a recent WHO expert elicitation (WHO, 2015). Furthermore, consumption of undercooked meat (pork, beef and lamb) has repeatedly been found as a risk factor for *T. gondii* infection (Baril et al., 1999; Bobic et al., 2007; Cook et al., 2000; Flatt and Shetty, 2012; Jones et al., 2009; Kapperud et al., 1996), however the type of meat reported varies across countries. Ascertainment of the relative contribution of pork and other animal products to the risk of human T. gondii infection and of the effect of farm-level measures warrants a formal risk assessment in which risk mitigation measures along different stages of meat production chain are assessed by probabilistic risk modelling.

Conclusions

This study provides an approximation to the level of *T. gondii* infection in pigs raised in commercial farms in England using a novel method for prevalence estimation. It also investigates farm characteristics and management practices which may increase the risk of pigs becoming infected. Most of the batches included in this study were likely to contain 100% of uninfected pigs, with a small number of batches accounting for a large proportion of the positive pigs, which indicates that the risk of *T. gondii* infection is largely driven by farm-level factors. At pre-harvest level, mitigation of the risk of exposure to toxoplasmosis via consumption of pork should target farms with outdoor access and/or open feed storage. The study fills some of the data gaps previously identified by the UK Food Standard Agency (AMCSF, 2012) and provides inputs that could be used to populate probabilistic assessments of human foodborne exposure.

Acknowledgments

369	The study was part of project FS517004 funded by the Food Standard Agency UK.
370	This research was conducted by a consortium within the framework of project n°
371	GA/EFSA/BIOHAZ/2013/01 entitled "Relationship between seroprevalence in the main livestock
372	species and presence of <i>Toxoplasma gondii</i> in meat", grant agreement funded by the European Food
373	Safety Authority (budget). This paper/publication is based on the results obtained in the framework of
374	this mentioned project and it is published under the sole responsibility of the authors, and shall not be
375	considered as an EFSA output"
376	
377	The authors are grateful to Mandy Nevel for helpful discussions, to Damer Blake, Veronica Brewster,
378	Adriana Diaz, Adebowale Oluwawemimo and Elaine Pegg for their assistance in the laboratory, to
379	Bhagyalakshmi Chengat Prakashbabu for her help during sampling and to Hannah R. Holt for helpful
380	comments on an early draft of the manuscript. We particularly thank farmers and staff from the
381	slaughterhouses for their invaluable support.
382	This manuscript has been assigned the reference PPH_01340 by the Royal Veterinary College.
383	
384	References
385	Allain JP, Palmer CR, Pearson G: Epidemiological study of latent and recent infection by Toxoplasma
386	gondii in pregnant women from a regional population in the UK. The journal of infection
387	1998; 36: 189-196.
388	Alvarado-Esquivel C, Romero-Salas D, Garcia-Vázquez Z, Crivelli-Diaz M, Barrientos-Morales M,
389	Lopez-de-Buen L, Dubey JP: Seroprevalence and correlates of Toxoplasma gondii infection
390	in domestic pigs in Veracruz state, Mexico. Tropical Animal Health Production 2014; 46:705-
391	709.
392	Alvarado-Esquivel C, Vazquez-Morales RF, Colado-Romero EE, Guzman-Sanchez R, Liesenfeld O,
393	Dubey JP: Prevalence of infection with Toxoplasma gondii in ladrace and mixed breed pigs
394	slaughtered in Baja California Sur state, Mexico. European Journal of Microbiology and
395	Immunology 2015; 5.
396	AMCSF: Ad hoc group on vulnerable groups: Risk profile in relation to Toxoplasma in the food
397	chain; in: Advisory committe on the microbiological safety of food. 2012.
398	Andreoletti O, Budka H, Buncic S, Colin P, Collins JD, De Koeijer A, Griffin J, Havelaar A, Hope J,
399	Klein G, Kruse H, Magnino S, Martinez Lopez A, McLauchlin J, Nguyen-The C, Noeckler K,
400	Noerrung B, Prieto Maradona M, Roberts T, Vagsholm I, Vanopdenbosch E: Surveillance
401	and monitoring of <i>Toxoplasma</i> in humans, food and animals. Scientific opinion of the panel
402	on biological hazards. The EFSA journal 2007; 583: 1-64.
403	Anonymous: Laying down specific rules on official controls for <i>Trichinella</i> in meat; in (EU) Cir (ed):
404	Anonymous: Laying down specific rules on official controls for <i>Trichinella</i> in meat; in (EU) Cir (ed): 2015/1375. Official Journal of the European Union, 2015.

2 3

Foodborne Pathogens and Disease

~	
3	
1	
4	
5	
č	
5 6	
7	
'	
8	
0	
9	
10	
11	
12	
12	
13	
4.4	
11 12 13 14 15 16 17	
15	
10	
16	
17	
17	
18	
40	
19	
20	
21	
22	
22	
23	
24	
25	
20	
26	
07	
27	
~~	
20	
28 29 30	
20	
30	
31	
00	
32 33 34	
22	
33	
34	
25	
35 36	
36	
-	
37	
38	
30	
39	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
53	
54	
55	
56	
57	
58	
59	
09	

60

405 Assadi-Rad AM, New JC, Patton S: Risk factors associated with transmission of Toxoplasma gondii 406 to sows kept in different management systems in Tennessee. Veterinary parasitology 1995; 407 57: 289-297. 408 Baril L, Acelle T, Goulet V, Thulliez P, Tirard-Fleury V, Came B: Risk factors for toxoplasma 409 infection in prgnancy: A case-control study in france. Scandinavian journal of infectious 410 diseases 1999; 31: 305-309. 411 Bates D, Maechler M, Bolker B: Lme4: Linear mixed-effects models using s4 classes.; in. R package 412 version 0.999999-2. http://CRAN.R-project.org/package=lme4, 2013. 413 Batz MB, Hoffmann S, Morris JG: Ranking the risks: The 10 pathogen-food combination with the 414 greatest burden on public health; in Emerging Pathogens Institute (ed). USA, University of 415 Florida, 2011.

416 Beauvais W, Orynbaev M, Guitian J: Empirical bayes estimation of farm seroprevalence adjusting for
417 multistage sampling and uncertainty in test performance - *Brucella* in southern Kazakhstan.
418 Epidemiology and Infection 2016; 1-9.

Bobic B, Nikolic A, Vujanic M, Djurkovic-Djakovic O: Undercooked meat consumption remains the
major risk factor for Toxoplasma infection in Serbia. Parassitologia 2007; 49: 227-230.

421 Chongsuvivatwong V: Epicalc: Epidemiolocal calculator; in. R package version 2.9.1.3 2010.

422 Cook AJC, Gilbert RE, Buffolano W, Zufferey J, Petersen E, Jenum PA, Foulon W, Semprini AE,
423 Dunn DT: Sources of Toxoplasma infection in pregnant women: European multicentre case
424 control study. BMJ 2000.

425 Damriyasa IM, Bauer C, Edelhofer R, Failing K, Lind P, Petersen E, Schares G, Tenter AM, Volmer
426 R, Zahner H: Cross-sectional survey in pig breeding farms in hesse, Germany:
427 Seroprevalence and risk factors of infections with *Toxoplasma gondii*, *sarcocystis spp*. And
428 *Neospora caninum* in sows. Veterinary parasitology 2004; 126: 271-286.

429 Dubey JP: Validation of the specificity of the modified agglutination test for Toxoplasmosis in pigs.
430 Veterinary parasitology 1997; 71: 307-310.

431 Dubey JP: Toxoplasmosis of animals and humans, ed 2nd Florida, CRC Press, Boca Raton, 2010.

432 Dubey JP, Andrews CD, Lind P, Kwok OC, Thulliez P, Lunney JK: Antibody responses measured by
433 various serologic tests in pigs orally inoculated with low numbers of *Toxoplasma gondii*434 oocysts. Americal Journal of Veterinary Research 1996; 57: 1733-1737.

435 Dubey JP, Andrews CD, Thulliez P, Lind P, Kwok OC: Long-term humoral antibody response by
436 various serological tests in pigs orally inoculated with oocysts of four strains of *Toxoplasma*437 *gondii*. Veterinary parasitology 1997; 68: 41-50.

438 Dubey JP, Desmonts G: Serological responses of equids fed *Toxoplasma gondii* oocysts. Equine
439 Veterinary Journal 1987; 1987: 337-339.

440	Dubey JP, Gamble HR, Hill D, Sreekumar C, Romand S, Thulliez P: High prevalence of viable	
441	Toxoplasma gondii infection in market weight pigs from a farm in Massachusetts. Journal of	
442	Parasitology 2002; 88: 1234-1238.	
443	Dubey JP, Thulliez P, Weigel RM, Andrews CD, Lind P, Powell EC: Sensitivity and specificity of	
444	various serologic tests for detection of <i>Toxoplasma gondii</i> infection in naturally infected sows	
445	American Journal of Veterinary Research 1995; 56: 1030-1036.	
446	Flatt A, Shetty N: Seroprevalence and risk factors for toxoplasmosis among antenatal women in	
447	London: A re-examination of risk in an ethnically diverse population. European Journal of	
448	Public Health 2013; 23: 648-652.	
449	Gamble HR, Dubey JP, Lambillotte DN: Comparison of a commercial elisa with the modified	
450	agglutination test for detection of Toxoplasma infection in the domestic pig. Veterinary	
451	parasitology 2005; 128: 177-181.	
452	Garcia-Bocanegra I, Dubey JP, Simon-Grife M, Cabezon O, Casal J, Allepuz A, Napp S, Almeria S:	
453	Seroprevalence and risk factors associated with toxoplasma gondii infection in pig farms from	
454	Catalonia, north-eastern Spain. Research in Veterinary Science 2010a; 89: 85-87.	
455	Garcia-Bocanegra I, Simon-Grife M, Dubey JP, Casal J, Martin GE, Cabezon O, Perea A, Almeria S:	
456	Seroprevalence and risk factors associated with Toxoplasma gondii in domestic pigs from	
457	Spain. Parasitology International 2010b; 59: 421-426.	
458	Gebreyes WA, Bahnson PB, Funk JA, McKean J, Patchanee P: Seroprevalence of Trichinella,	
459	Toxoplasma, and Salmonella in antimicrobial-free and conventional swine production	
460	systems. Foodborne Pathogens and Disease 2008; 5: 199-203.	
461	Grant RL: Converting an odds ratio to a range of pausible relative risks for better communicationof	
462	research findings. BMJ 2014; 24: 348.	
463	Guo M, Mishra A, Buchanan RL, Dubey JP, Hill DE, Gamble HR, Jones JL, Pradhan AK: A	
464	systematic meta-analysis of Toxoplasma gondii prevalence in food animals in the united	
465	states. Foodborne Pathogens and Disease 2016; 13: 109-118.	
466	Halsby K, Guy E, Said B, Francis J, O'Connor C, Kirkbride H, Morgan D: Enhanced surveillance for	
467	Toxoplasmosis in England and Wales, 2008-2012. Epidemiology and Infection 2014; 142:	
468	1653-1660.	
469 470	Havelaar AH, Haagsma JA, Mangen M, Kemmeren JM, Verhoef LPB, Vijgen SMC, Wilson M, Friesema IHM, Kortbeek LM, van Duynhoven YTHP, van Pelt W: Disease burden of	
470 471		
471	foodborne pathogens in The Netherlands. International Journal for Food Microbiology 2012; 156: 231-238.	
472	Hill DE, Chirukandoth S, Dubey JP, Lunney JK, Gamble HR: Comparison of detection methods for	
474		
475	2006; 141:9-17.	
775		
	2006; 141:9-17.	
	Many Ann Liphort Ing. 140 Hugupat Street New Deckelle, NV 40004	
	Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801	

Page 15 of 26

Foodborne Pathogens and Disease

1		
23	476	Jones JL, Dargelas V, Roberts J, Press C, Remington JS, Montoya JG: Risk factors for Toxoplasma
4	477	<i>gondii</i> infection in the united states Clinical Infectious Diseases 2009; 15: 878-884.
5	478	Kapperud G, Jenum PA, Stray-Pedersen B, Melby KK, Eskild A, Eng J: Risk factors for <i>Toxoplasma</i>
7	479	<i>gondii</i> infection in pregnancy. Results of a prospective case-control study in norway.
8 9	480	Americal Journal of Epidemiology 1996; 144: 405-412.
10 11	481	Kijlastra A, Meerburg BG, Bos AP: Food safety in free-range and organic livestock systems: Risk
12	482	management and responsability. Journal of Food Protection 2009; 12: 2448-2681.
13 14	483	Kijlstra A, Eissen OA, Cornelissen J, Munniksma K, Eijck I, Kortbeek T: Toxoplasma gondii
15	484	infection in animal-friendly pig production systems. Investigative pphtalmology & visual
16 17	485	science 2004; 45: 165-169.
18	486	Klun I, Djurkovic-Djakovic O, Katic-Radivojevic S, Nikolic A: Cross-sectional survey on
19 20	487	Toxoplasma gondii infection in cattle, sheep and pigs in Serbia: Seroprevalence and risk
21	488	factors. Veterinary parasitology 2006; 135: 121-131.
22 23	489	Montoya JG, Liesenfeld O: Toxoplasmosis. Lancet 2004; 363: 1965-1976.
24 25	490	Opsteegh M, Maas M, Schares G, Van der Giessen J, on behalf of the consortium: Relationship
26	491	between seroprevalence in the main livestock species and presence of Toxoplasma gondii in
27 28	492	meat (gp/efsa/biohaz/2013/01). An extensive literature review. Final report; in. EFSA
29	493	supporting publication, EFSA, 2016.
30 31	494	Ortega-Pacheco A, Acosta Viana KY, Guzman-Marin E, Segura-Correa JC, Alvarez-Fleites M,
32	495	Jimenez-Coello M: Prevalence and risk factors of Toxoplasma gondii in fattening pigs farm
33 34	496	from Yucatan, Mexico. BioMed Research International 2013; 1-6.
35	497	Papatsiros VG, Athanasiou LV, Stougiou D, Papadopoulos E, Maragkakis GG, Katsoulos PD,
36 37	498	Lefkaditis M, Kantas D, Tzika ED, Tassis D, Boutsini S: Cross-sectional serosurvey and
38 39	499	riskfactors associated with the presence of Toxoplasma gondii antibodies in pigs in Greece.
40	500	Vector-Borne and Zoonotic Diseases 2016; 16: 48-53.
41 42	501	Pappas G, Roussos N, Falagas ME: Toxoplasmosis snapshots: Global status of Toxoplasma gondii
43	502	seroprevalence and implications for pregnancy and congenital toxoplasmosis. International
44 45	503	Journal of Parasitology 2009; 39: 1385-1394.
46	504	PHE: Common animal associated infections quartely report (England and Wales) - fourth quarter
47 48	505	2014; in: Infection report
49	506	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/404107/hpr051
50 51	507	5_zoos.pdf Accessed April 2016, 2015, vol 9.
52	508	PHE: Common animal associated infections quartely report (England and Wales) - fourth quarter
53 54	509	2015; in.
55 56	510	https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/404107/hpr051
57	511	5_zoos.pdf Accessed April 2016, 2016.
58 59 60	512	PHWC: Pig health and welfare council biennial report 2013-2014; 2015.

513	Powell LF, Cheney TEA, Williamson S, Guy E, Smith RP, Davies RH: A prevalence study of
514	Salmonella spp., Yersinia, spp., Toxoplasma gondii and porcine reproductive and respiratory
515	syndrome virus in uk pigs at slaughter. Epidemiology and Infection 2016; 144: 1538-1549.
516	Reed GF, Lynn, F, Meade BD: Use of coefficient of variation in assessing variability of quantitative
517	assays. Clinical and diagnostic laboratory immunology 2002;9: 1235-1239.
518	Steinparzer R, Reisp K, Grunberger B, Kofer J, Schmoll F, Sattler T: Comparison of different
519	commercial serological tests for the detection of Toxoplasma gondii antibodies in serum of
520	naturally exposed pigs. Zoonoses and Public Health 2015; 62: 119-124.
521	Tao Q, Wang Z, Feng H, Fang R, Nie H, Hu M, Zhou Y, Zhao J: Seroprevalence and risk factors for
522	Toxoplasma gondii infection on pig farms in central China. Journal of Parasitology 2011; 97:
523	262-264.
524	Tenter AM, Heckeroth AR, Weiss LM: Toxoplasma gondii: From animlas to humans. International
525	Journal of Parasitology 2000; 30: 1217-1258.
526	van der Giessen J, Fonville M, Bouwknegt M, Langelaar M, Vollema A: Seroprevalence of
527	Trichinella spiralis and Toxoplasma gondii in pigs from different housing systems in The
528	Netherlands. Veterinary Parasitology 2007; 148: 371-374.
529	Villari S, Vesco G, Petersen E, Crispo A, Buffolano W: Risk factors for toxoplasmosis in pigs bred in
530	Sicily, southern Italy. Veterinary parasitology 2009; 161 :1-8.
531	Weigel RM, Dubey JP, Siegel AM, Kitron UD, Manelli A, Mitchell MA, Mateus-Pinilla NE, Thulliez
532	P, Shen SK, Kwok OC, Todd KS: Risk factors for transmission of Toxoplasma gondii on
533	swine farms in illinois. Journal of Parasitology 1995; 81: 723-729.
534	WHO: Who estimates of the global burden of foodborne disease: Foodborne disease burden
535	epidemiology reference group 2007-20015; in., World Health Organization, 2015.
536	Wu S, Crespi CM, Kee Wong W: Comparison of methods for estimating the intraclass correlation
537	coeficient for binary responses in cancer prevention cluster randomized trials. Contemporary
538	Clinical Trials 2012; 33: 869-880.
539	Zadik PM, Kudesia G, Siddons AD: Low incidence of primary infection with toxoplasma in pregnant
540	women in Sheffield. International Journal of Obstetrics and Gynaecology 1995; 102: 608-610
541	Zimmerman JJ, Dreesen DW, Owen WJ, Beran GW: Prevalence of toxoplasmosis in swine from
542	Iowa. Journal of American Veterinary Medical Association 1990; 15: 266-370.
543	
	Iowa. Journal of American Veterinary Medical Association 1990; 15: 266-370. Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Table 1. Variables considered in the standardised questionnaire to assess potential risk factors for T. gondii status in commercial pigs in England. Information collected between January and July 2015 (n=73) Variable description and question asked Categories / options provided in the Variable re-grouped for analysis in the questionnaire questionnaire **PRODUCTION CYCLE** Which of the following describe the Farrow to finish Complete cycle production cycle in the farm? Breeding to weaning Weaning to finishing Part of the cycle Grower to finishing SOURCE OF PIGS If weaning to finishing or grower to From a unit placed in another site but Same owner finishing, where did you get the pigs from part of the same farm (same owner) Another farm(s) different owner the last batch sent to the slaughterhouse? From another farm (different owner) From different farms Other (please specify) FARM HOLDINGS Do you keep pigs in more than one Yes Yes site/holding? No No **PRODUCTION SYSTEM** What is the production system in the farm? All in all out All in all out By farm By site By building By pen Continuous Continuous Other (Please specify) **OUTDOOR ACCESS** Asked per production stage and 3 Using the definitions provided below, Have outdoor access at any production stage please complete the table by ticking the possible options (keep outdoor all the Yes box that best describes the way animals time, keep indoor all the time and keep No are kept in the farm part of the time outdoor and part Indoors is defined as keeping pigs in indoor) enclosed buildings (i.e. delimited by solid walls) and pigs are not able to go outside dry sows lactating sows the building. outdoor / indoor / Outdoors is defined as kept in the field boar within defined boundaries where they are piglets part outdoor part free to roam and are provided with food, weaners part indoor growers water and shelter. finishers NUMBER OF ANIMALS Please fill in the table below indicating the Number of pigs held in each production Total number of pigs (continuous) total number of pigs for each production stage in the farm 1-220 pigs; >220pigs stage at this moment **OTHER LIVESTOCK SPECIES** Are there other livestock species (apart Yes Yes from pigs) in this site? No No FOOD STORAGE Where is the animal feed stored? Tick all Open silo Open storage (Yes/No) that apply Open storage Closed silo Closed storage Bags for food Other (Please specify) TYPE OF FEEDERS On the floor (Yes/No) •Off the floor only Which types of feeders are used in this None (floor) site? Tick all that apply Dump feeders •Either all on the Individual feeders Off the floor (Yes/No) floor or some on the floor and some Bowl off floor Pipeline Other (Please specify)

Visit Si DRIAKING WATER Main supply (community tap water) Jocal canal/stream Well Other (Please specify) Main supply Deal canal/stream Well Other (Please specify) "ELEANING BETWEEN BATCHES is in common practice to clean between batches Yes, it is always cleaned between batches Yes "-Rarely 	iable description and question asked he questionnaire	Categories / options provided in the questionnaire	Variable re-grouped for analysis
-Other (Please specify)	ere does the pigs' drinking water come	-Local canal / stream	
 -Yes, it is always cleaned between yes haches -Yes, it is always cleaned between baches -Yes, most of the times it is cleaned between baches -Rurely - NA (Continuous system) -Vis, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -Yes, most of the times is cleaned between baches -No sure -No sure			
inches? batches -Ves, most of the times it is cleaned -Rarely No -NA (Continuous system) No -NA (Continuous system) -Ves -Ves, it is always cleaned between batches Yes -Yes, most of the times is cleaned between batches Yes -Yes, most of the times is cleaned between batches Yes -Yes, most of the times is cleaned Yes -No No -No No Attribute -Yes -No No ATS - CONTACT WITH PIGS It possible that cats come into contact with pigs/ pigs' food / pigs' drinking water Possible -No sure -No sure -No sure -N		Vas it is always always distance	Ver
-Rarely -NA (Continuous system) No DISINFECT BETWEEN BATCHES s it common practice to disinfect between batches? -Yes, it is always cleaned between batches Yes -Yes, not of the times is cleaned batches? -Yes No -Yes, most of the times is cleaned batches? -Yes No -Rarely -rank meas of this site? -Yes No -No No No CATS NO BELONGING TO THE FARM on the tasts on belonging to this it possible that cats come into direct contact with the pigs? -Yes Possible CATS - CONTACT WITH PIGS' SI possible that cats come into contact with pigs' drinking water? -Yes, cats definitely come into direct contact with pigs' pigs' food / pigs' rit possible that cats come into contact with pigs' drinking water? Possible CATS - CONTACT WITH PIGS' SI possible that cats come into contact with pigs' drinking water? -Yes, it is very likely that cats come into contact with pigs' pigs' food / pigs' root cance with pigs' pig's food / pigs' root pigs' drinking water? No possible		batches -Yes, most of the times it is cleaned	Yes
s it common practice to disinfect between batches? Yes, most of the times is cleaned between batches -Rarely -NA (Continuous system) No -NA (Continuous system) No -No (Continuous system) -No -No (Continuous system) -No -No (Continuous system) -No -No (Continuous system) -No -No (Continuous system) -No -No (Continuous system) -No (Contact with pigs/ pigs' food / pigs' drinking water -No (Contact with pigs/ pig's food / pigs' drinking wat		-Rarely	No
between batches No -Rarly No -NA (Continuous system) No STAFF Yes Verstaff designated to work exclusively in ertain areas of this site? -Yes So you keep cats in this site? -Yes Do you keep cats in this site? -Yes No No CATS No BELONGING TO THE FARM si ti possible that cats not belonging to this ite get into the site? -Yes, cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water -No No CATS - CONTACT WITH PIGS Si ti possible that cats come into contact with pigs / pigs' food / pigs' drinking water -Not sure -No cats cannot come into contact with pigs / pigs' food / pigs' drinking water -No sure -No cats cannot come into contact with pigs / pigs' food / pigs' drinking water -No sure -No cats cannot come into contact with pigs / pigs' food / pigs' drinking water -No sure -No cats cannot come into contact with pigs / pigs' drinking water -No cats cannot come into contact with pigs / pigs' drinking water -No cats cannot come into contact with pigs / pigs' drinking water No sosible PE-WORMING Places complete the table below concerning the routine de-worming used in the farm Asked per production stage dry sows lactating sows boar piglets weakers growers product used and piglets weakers Prover set the farm	common practice to disinfect between	batches	Yes
-NA (Čontinuous system) STAFF Wer staff designated to work exclusively in ertain areas of this site? No	ches?	between batches	No
Are staff designated to work exclusively in erration areas of this site? -Yes -No Yes No Set EP CATS -Yes -No No Do you keep cats in this site? -Yes -No Yes No CATS NO BELONGING TO THE FARM it is possible that cats not belonging to this it eget into the site? -Yes -No Possible CATS - CONTACT WITH PIGS it is to store into direct rontact with the pigs? -Yes, cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water Possible CATS - CONTACT WITH PIGS's FOOD is it possible that cats come into contact with pigs / pigs' food / pigs' drinking water Possible Possible CATS - CONTACT WITH PIGS's food pigs' drinking water -Yes, cats cannot come into contact with pigs / pigs' food / pigs' drinking water Possible CATS - CONTACT WITH PIGS's food pigs' drinking water -No, cats cannot come into contact with pigs / pigs' food / pigs' drinking water No possible CATS - CONTACT WITH PIGS's food pigs' drinking water? -No, cats cannot come into contact with pigs / pig's food / pigs' drinking water No possible Passe complete that cats come into contact with pigs / pig's food / pigs' drinking water? No possible No possible Please complete the table below concerning the routine de-worming used m the farm Asked per production stage dry sows lactating sows boar piglets weaners growers Yes / No Yes / No			10
vertain areas of this site? -No No KEEP CATS O you keep cats in this site? -Yes Yes Oo you keep cats in this site? -Yes Yes No CATS NO BELONGING TO THE FARM is it possible that cats not belonging to this ite get into the site? -Yes Possible S it possible that cats not belonging to this ite get into the site? -Yes Possible -XATS - CONTACT WITH PIGS is it possible that cats come into direct contact with the pigs? -Yes, cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water -Yes, it is very likely that cats come into contact with pigs / pigs' food / pigs' drinking water Possible -XATS - CONTACT WITH PIGS' SUINKING WATER si ti possible that cats come into contact with pigs' drinking water? -Yes, it is very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water No CATS - CONTACT WITH PIGS' BUINKING WATER si ti possible that cats come into contact with pigs' drinking water? -No, cats cannot come into contact with pigs' food / pigs' drinking water No possible POE-WORMING Please complete the table below oncerning the routine de-worming used m the farm Asked per production stage dry sows boar piglets weeners product used and frequency Yes / No		-Yes	Yes
Do you keep cats in this site? -Yes Yes -No No CATS NO BELONGING TO THE FARM is it possible that cats not belonging to this it eget into the site? -Yes Possible -Not sure -No No -No No No CATS - CONTACT WITH PIGS is it possible that cats come into direct rontact with the pigs? -Yes, cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water Possible CATS - CONTACT WITH PIGS' is th possible that cats come into contact with pigs' food? -Yes, cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water Possible CATS - CONTACT WITH PIGS' DRINKING WATER is it possible that cats come into contact with pigs' drinking water? No possible PE-WORMING Please complete the table below concerning the routine de-worming used in the farm Asked per production stage dry sows boar piglets weaners growers Yes / No			No
-No No -Yes Possible -Yes Possible -No No -Yes Possible -No No -Yes Possible -No -Yes Possible -No -Yes Possible -No -Yes cats definitely come into direct contact with pigs / pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -Yes, tis very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water -No cats cannot come into contact with pigs/ pig's food / pigs' drinking water -No cats cannot come into contact with pigs/ pig's food / pigs' drinking water -No cats cannot come into contact with pigs/ pig's food / pigs' drinking water Possible -Yes, / No Yes / No -N		-Yes	Yes
'Yes Possible intervalue of the site?' -No sure -No No No Possible intervalue of the site?' -No No No Possible that cats come into direct contact with the pigs? -Yes, tas definitely come into direct contact with pigs / pigs' food / pigs' drinking water -Yes, it is very likely that cats come into contact with pigs / pigs' food / pigs' drinking water -Yes, it is very likely that cats come into contact with pigs / pigs' food / pigs' drinking water -No sure -No			No
-No No CATS - CONTACT WITH PIGS s it possible that cats come into direct contact with the pigs? CATS - CONTACT WITH PIGS' FOOD s it possible that cats come into contact vith pigs' food? CATS - CONTACT WITH PIGS' CATS - CONTACT WITH PIGS' DRINKING WATER s it possible that cats come into contact vith pigs' drinking water? DE-WORMING Please complete the table below concerning the routine de-worming used on the farm -No Asked per production stage dry sows lactating sows boar piglets weaners growers -No -No -No -No -No -No -No -No	possible that cats not belonging to this	-Yes	Possible
 <i>is it possible that cats come into direct</i> <i>CATS - CONTACT WITH PIGS' FOOD</i> <i>is to possible that cats come into contact</i> <i>Yes</i>, <i>cats</i> definitely come into direct contact with pigs / pigs' food / pigs' drinking water <i>Yes</i>, <i>it is very</i> likely that cats come into contact with pigs / pigs' food / pigs' drinking water <i>Yes</i>, <i>it is very</i> likely that cats come into contact with pigs / pigs' food / pigs' drinking water <i>Not sure</i> <i>No</i>, <i>cats cannot come into contact with pigs' pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact with pigs / pigs' food / pigs' drinking water</i> <i>No</i>, <i>cats cannot come into contact</i> <i>No</i>, <i>cats cannot come into contact</i> <i>No</i>, <i>cats cannot come into contact</i> <i>No sure</i> <i>No</i>, <i>cats cannot come into contact</i> <i>drinking water</i> <i>No</i>, <i>cats cannot come into contact</i> <i>food f pigs' food</i> <i>food food</i> <i>food</i> <i>foo</i>	0	-No	No
CATS - CONTACT WITH PIGS' FOOD is it possible that cats come into contact with pigs' food? -Yes, it is very likely that cats come into contact with pigs' pigs' food / pigs' drinking water CATS - CONTACT WITH PIGS' DRINKING WATER is it possible that cats come into contact with pigs' drinking water? -No, cats cannot come into contact with pigs' pig's food / pigs' drinking water No, cats cannot come into contact with pigs' drinking water? -No, cats cannot come into contact with pigs' pig's food / pigs' drinking water DE-WORMING Please complete the table below to the farm Asked per production stage dry sows boar piglets weaners growers Yes / No	possible that cats come into direct	contact with pigs / pigs' food / pigs'	Possible
CATS - CONTACT WITH PIGS' DRINKING WATER -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs/ pig's food / pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact with pigs' drinking water No possible -No, cats cannot come into contact -No, cats cannot come into contact No possible -No, cats cannot come into contact -No, cats cannot come into contact No possible -No, cats cannot come into contact -No, cats cannot come into contact No possible -No, cats cannot come into contact -No, cats cannot come into contact No possible -No, cats cannot come into contact -No, cats cannot come into contact No possible </td <td>possible that cats come into contact</td> <td>-Yes, it is very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water</td> <td></td>	possible that cats come into contact	-Yes, it is very likely that cats come into contact with pigs/ pigs' food / pigs' drinking water	
Please complete the table below Asked per production stage concerning the routine de-worming used dry sows in the farm Asked per production stage lactating sows boar piglets weaners growers growers	INKING WATER possible that cats come into contact	-No, cats cannot come into contact with	No possible
weaners growers	ase complete the table below cerning the routine de-worming used	dry sows lactating sows boar product used and	Yes / No
		weaners growers	
			lew Rochelle, NY 10801

Table 2. MAT titres and ELISA results for serum samples tested for T. gondii (n=492). Samples collected between January and July 2015 from commercial pigs in England. Results in this table are not adjusted for the Sensitivity and Specificity of the test

LAT Status Titre Positive Inconclusive Negative TOTAL 1:23 2 2 1 10 10 11 10 11 124 11 124 11 124 11 124 11 1200 7 1 6 14 11 1200 1 12 10 4 1230 0 0 0 0 4 12300 0 0 0 0 4 1320 0 0 0 31 32 13 16 1 1 0 31 32 13 16 1 1 32 13 16 1 1 32 13 16 1 1 32 13 16 1 1 32 13 16 1 1 33 16 1 1 33 16 1 1 33 16 1 1 33 16 1 1 33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1:50 8 5 11 24 *1:100 5 1 6 14 0sitive 1:400 5 0 1 6 1:800 3 1 0 4 4 1:300 2 2 0 4 *1:300 3 12 (2.4%) 29 (5.9%) 73 *1:1 1 0 31 32 uspicious 1:6 1 2 13 16 1:10 0 3 3 16 110 10 10 egative 0 3 (0.61%) 9 (1.8%) 68 (13.8%) 79 11 egative 0 3 (0.61%) 3 (0.61%) 334 (67.9%) 11 10 1
ositive $1:200$ 7 1 6 14 $1:800$ 3 1 0 4 $1:100$ 2 2 0 4 $1:100$ 2 2 0 4 $1:100$ 2 2 0 4 $1:100$ 2 2 0 4 $1:100$ 32 (4.9%) 12 (2.4%) 29 (5.9%) 73 $1:10$ 1 2 1.3 12 24 uspicious 1:6 1 2 1.3 16 $1:10$ 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 egative 0 3 0.61% 3 0.61% 34 (67.9%) 79 egative 0 3 0.61% 3 0.61% 34 (67.9%) 10 regative 0 3 0.61% 3 0.61% 34 (67.9%) 10 egative 100 and one sample with titre 1:3200. 10 10 10 10 egative 100 and one sample with titre 1:3200. 10 10 10 10
ositive $1:400$ 5 0 1 0 1 6 1:600 2 2 0 0 4 *1:3200 0 0 0 0 0 0 Totat 32 (4.9%) 12 (2.4%) 29 (5.9%) 73 *1:1 1 0 3 2 1 24 uspicious 1:6 1 2 13 16 1:10 0 4 3 7 7 Totat 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 egative 0 3 (0.61%) 3 (0.61%) 334 (67.9%) There was no serum left for three serum sample to be tested by ELISA – one sample with tite ne sample with titre 1:100 and one sample with titre 1:3200.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
1:1600 2 2 0 4 *1:300 0 0 0 0 0 Total 32 (4.9%) 12 (2.4%) 29 (5.9%) 73 *1:1 1 0 3.1 32 uspicious 1:6 1 2 13 16 1:10 0 4 3 7 74 gative 0 3 (0.61%) 34 (67.9%) 79 78 gative 0 3 (0.61%) 34 (67.9%) 79 78 gative 0 3 (0.61%) 34 (67.9%) 79 78 70 There was no serum left for three serum sample to be tested by ELISA – one sample with tithe sample with titre 1:100 and one sample with titre 1:3200. 70 70 70
*1:3200 0 0 0 0 70 *1:1 1 0 32 13 32 1:3 0 3 21 24 uspicious 1:6 1 2 13 16 1:10 0 4 3 7 rotat 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 egative 0 3 (0.61%) 30 (0.61%) 334 (67.9%) There was no serum left for three serum sample to be tested by ELISA – one sample with tithe sample with titre 1:100 and one sample with titre 1:3200.
Total 32 (4.9%) 12 (2.4%) 29 (5.9%) 73 1:3 0 3 21 24 uspicious 1:6 1 2 13 16 1:10 0 4 3 7 Total 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 ggativ 0 3 (0.61%) 334 (67.9%) 10
1:1 1 0 31 32 uspicious 1:6 1 2 1:3 16 1:10 0 4 68 1:3/9 79 egative 0 3 0.61% 30.61% 334 (67.9%) 79 egative 0 3 0.61% 30.61% 334 (67.9%) 79
uspicious 1.76 1 2 13 16 1:10 0 4 3 7 Total 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 egative 0 3 (0.61%) 3 (0.61%) 334 (67.9%) 9 There was no serum left for three serum sample to be tested by ELISA – one sample with titne sample with titre 1:100 and one sample with titre 1:3200. 9 9
1:10 0 4 3 7 <i>iegative</i> 0 3 (0.61%) 3 (0.61%) 33 (0.619%) 33 (0.619%) There was no serum left for three serum sample to be tested by ELISA – one sample with titre as sample with titre 1:100 and one sample with titre 1:3200.
Total 2 (0.41%) 9 (1.8%) 68 (13.8%) 79 egative 0 3 (0.61%) 3 (0.61%) 334 (67.9%) There was no serum left for three serum sample to be tested by ELISA – one sample with titte to a sample with titte 1:100 and one sample with titte 1:3200.
equive 0 3 (0.61%) 3 (0.61%) 334 (67.9%) There was no serum left for three serum sample to be tested by ELISA – one sample with tite ne sample with titre 1:100 and one sample with titre 1:3200.
There was no serum left for three serum sample to be tested by ELISA – one sample with tite ne sample with titre 1:100 and one sample with titre 1:3200.
ne sample with titre 1:100 and one sample with titre 1:3200.
Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801
Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801
Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Table 3. Apparent batch-level prevalence for *T. gondii* in commercial pigs in England. Serum samples tested by MAT. Samples collected between January and July 2015 (n=131).

Apparent batch-	Number of	Herd size
level prevalence *	farms	Median (1 st – 3 rd quartile)
0%	107	260 (22 2624)+
0.1 – 10%	11	260 (32 - 2624)†
10.1 - 20%	4	
20.1 - 30%	1	
30.1 - 40%	2	
40.1 - 50%	1	
50.1 - 60%	1	66 (11 - 960)‡
60.1 - 70%	1	
70.1 - 80%	1	
80.1 - 90%	0	
90.1 - 100%	2	

*Results in this table are not adjusted for the number of pigs tested per batch/farm and MAT sensitivity and specificity. The number of animals included in a batch ranged from 1 to 235 pigs

\$\text{Nine out of the 13 farms with >10% apparent within-herd prevalence returned a completed questionnaire. In 5 out of 13 farms (55.6%) pigs had outdoor access and in 5 farms (55.6%) cats had access to pigs' food.

 xīpe,

 walence returne,

 ts (55.6%) cats had,

 .n.-herd prevalence returned,

 door access and in 22 farms (34.)

 \pm Sixty four out of the 118 farms with \leq 10% apparent within-herd prevalence returned a completed questionnaire. In 30 out of 64 farms (46.9%) pigs had outdoor access and in 22 farms (34.4%) cats had access to pigs' food.

6 Table 4. Distribution of potential risk factors for T. gondii positive and negative pig farms in England

following univariate analysis.

Risk factor	-		bility of bein			≥10 probability of being a positive farm			
		No. negative	No. positive	р	Relative Risk	No. negative	No. positive	р	Relative Risk
1		(%)	(%)			(%)	(%)		
oduction		45 (66 2)	2 (40.0)			27 (62.9)	10 (66.7)		
	Complete cycle Part of the cycle	45 (66.2) 23 (33.8)	2 (40.0) 3 (60.0)	0.34	2.7	37 (63.8) 21 (36.2)	5 (33.3)	1	0.9
•] urce	Part of the cycle	25 (55.8)	5 (00.0)	0.54	2.7	21 (50.2)	5 (55.5)	1	0.7
	Same owner	51 (25.0)	2 (40.0)			15 (25.9)	5 (33.3)		
	Different owner	17 (75.0)	3 (60.0)	0.12	4.0	43 (74.1)	10 (66.7)	0.56	0.75
rm holdii		17 (70.0)	5 (00.0)	0.12	1.0	15 (7 111)	10 (00.7)	0.00	0.70
	More than one site	18 (26.5)	1 (20.0)			40 (69.0)	14 (93.3)		
	One site	50 (73.5)	4 (80.0)	1	1.4	18 (31.0)	1 (6.7)	0.10	0.2
oduction			. ,			· · · ·			
•	All in all out	26 (38.8)	3 (60.0)			25 (43.9)	4 (26.7)		
	Continuous	41 (61.2)	2 (40.0)	0.39	2.2	32 (56.1)	11 (73.3)	0.26	1.6
	cess (at any production stage)					. ,	, í		
	No	36 (52.9)	2 (40.0)			34 (58.6)	4 (26.6)		
• `	Yes	32 (47.1)	3 (60.0)	0.67	1.6	24 (41.4)	11 (73.3)	0.04	3.0
rm size									
	Large herds (>200 pigs)	34 (50.0)	3 (60.0)			33 (56.9)	3 (20.0)		
	Small herds (1-200 pigs)	34 (50.0)	2 (40.0)	1	1.2	25 (43.1)	12 (80.0)	0.02	3.9
	livestock species in the farm								
	No	31 (45.6)	1 (20.0)			28 (48.3)	4 (26.7)		
	Yes	37 (54.4)	4 (80.0)	0.38	3.1	30 (51.7)	11 (73.3)	0.16	2.2
od and w									
od storag	ge open								
	No	66 (97.0)	4 (20.0)			56 (96.6)	14 (93.3)		
• `	Yes	2 (3.0)	1 (80.0)	0.19	5.8	2 (3.4)	1 (6.7)	0.50	1.7
pe of fee									
• (On floor (some or all)	31 (45.6)	1 (20.0)			33 (56.9)	8 (53.3)		
• (Off floor only	37 (54.4)	4 (80.0)	0.37	3.1	25 (43.1)	7 (46.7)	0.80	1.1
	ng water: stream well or bore								
•]	No	49 (26.5)	3 (60.0)			39 (67.2)	13 (86.7)		
• `	Yes	19 (73.5)	2 (40.0)	0.62	1.6	19 (32.8)	2 (13.3)	0.20	0.4
security	,								
aning be	etween batches								
• `	Yes	28 (41.2)	3 (60.0)			31 (53.4)	11 (73.3)		
•]	No	40 (58.8)	2 (40.0)	0.65	2.0	27 (46.6)	4 (26.7)	0.24	0.5
infect be	etween batches								
•	Yes	29 (42.6)	3 (60.0)			30 (51.7)	11 (73.3)		
•]	No	39 (57.4)	2 (40.0)	0.65	1.9	28 (48.3)	4 (26.7)	0.16	0.5
ff worki	ng exclusively in certain areas								
• `	Yes	10 (14.7)	2 (40.0)			49 (84.5)	12 (80.0)		
	No	58 (85.3)	3 (60.0)	0.18	3.4	9 (15.5)	3 (20.0)	0.70	1.3
	n the farm		. ,						
	No	44 (64.7)	2 (40.0)			38 (65.5)	8 (53.3)		
•	Yes	24 (35.3)	3 (60.0)	0.35	2.6	20 (34.5)	7 (46.7)	0.38	1.5
	longing to the farm get into the								
	No	27 (39.7)	1 (20.0)			25 (43.1)	3 (20.0)		
	Possible	41 (60.3)	4 (80.0)	0.64	2.5	33 (56.9)	12 (80.0)	0.14	2.5
	t in contact with pigs								
	No	29 (42.6)	2 (40.0)			27 (46.6)	4 (26.7)		
	Possible	39 (57.4)	3 (60.0)	1	1.1	31 (53.4)	11 (73.3)	0.24	2.0
	t in contact with pigs' food		. ,			. ,			
U	No	44 (64.7)	2 (40.0)			40 (69.1)	6 (40.0)		
	Possible	24 (35.3)	3 (60.0)	0.35	2.6	18 (31.0)	9 (60.0)	0.04	2.6
	t in contact with pigs' drinking	. ,	. ,			. ,			
ter	1 0 D								
	No	44 (64.7)	3 (60.0)			40 (69.0)	7 (46.7)		
	Possible	24 (35.3)	2 (40.0)	1	1.2	18 (31.0)	8 (53.3)	0.11	2.1
	medicine	· · · · /	· · · /			× ···/	× -7		
ventive	at least one production stage								
	No	30 (44.1)	4 (80.0)			27 (46.6)	7 (46.7)		
worm in				0.19	0.2	31 (53.4)		0.99	1.0
eworm in	Yes	38 (55.9)	1 (20.0)	0.18	0.2	51 (55.4)	8 (53.3)	0.99	1.0

11:10), ibutiven J, situity and spe. igure 1 in (150 x 150 DPI) Figure 1. Number of suspicious (titre between 1:1 and 1:10) and positive (titre \geq 1:25) pigs in England to T. gondii by MAT in each titre band. Samples collected between January and July 2015. Results in this figure are not adjusted for the sensitivity and specificity of the test.

Probability of each farm in the study being positive to T. gondii

Figure 2. Frequency distribution of the probability of each English pig farm in the study being positive to T. gondii after adjusting for test sensitivity and specificity and proportion of animals sampled in each batch. Cut-off used to consider farms positive or negative are illustrated with a dashed line ($\geq 10\%$) and a solid line (≥50%).

Figure 2 160x154mm (150 x 150 DPI)

Figure S1. MAT titres and ELISA results for serum samples tested for T. gondii (n=492). Samples collected between January and July 2015 from commercial pigs in England. Results in this figure are not adjusted for ecificu, \$51 50 x 150 DPI) the Sensitivity and Specificity of the test

142x81mm (150 x 150 DPI)

Table S2.1 Number of farms deemed positive to T. gondii after adjusting for MAT and ELISA sensitivity and specificity and proportion of pigs sampled in each batch. A farm was considered positive if the probability of having at least one pig positive was $\geq 50\%$.

МАТ	ELISA			
NIA I	Positive	Negative	Total	P value†
Positive	6	2	8	
Negative	4	118	122	
Total	10	120	130	0.41
	u · · · ·			

[†] McNemar's Chi-squared test

Table S2.2 Number of farms deemed positive to T. gondii after adjusting for MAT and ELISA sensitivity and specificity and proportion of pigs sampled in each batch. A farm was considered positive if the probability of having at least one pig positive was $\geq 10\%$

MAT	ELISA					
	Positive	Negative	Total	P value†		
Positive	14	11	25			
Negative	3	102	105			
Total	17	113	130	0.03		
* MaNaman's Chi amound test						

[†] McNemar's Chi-squared test

Figures captions

Figure 1. Number of suspicious (titre between 1:1 and 1:10) and positive (titre \geq 1:25) pigs in England to T. gondii by MAT in each titre band. Samples collected between January and July 2015. Results in this figure are not adjusted for the sensitivity and specificity of the test.

Figure 2. Frequency distribution of the probability of each English pig farm in the study being positive to T. gondii after adjusting for test sensitivity and specificity and proportion of animals sampled in each batch. Cut-off used to consider farms positive or negative are illustrated with a dashed line ($\geq 10\%$) and a solid line ($\geq 50\%$).

Supplementary material

for *T. gon.* Figure S1. MAT titres and ELISA results for serum samples tested for T. gondii (n=492). Samples collected between January and July 2015 from commercial pigs in England. Results in this figure are not adjusted for the Sensitivity and Specificity of the test