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Abstract An understanding of the factors that affect the

spread of endemic bovine tuberculosis (bTB) is critical for

the development of measures to stop and reverse this

spread. Analyses of spatial data need to account for the

inherent spatial heterogeneity within the data, or else spa-

tial autocorrelation can lead to an overestimate of the

significance of variables. This study used three methods of

analysis—least-squares linear regression with a spatial

autocorrelation term, geographically weighted regression

(GWR) and boosted regression tree (BRT) analysis—to

identify the factors that influence the spread of endemic

bTB at a local level in England and Wales. The linear

regression and GWR methods demonstrated the importance

of accounting for spatial differences in risk factors for bTB,

and showed some consistency in the identification of cer-

tain factors related to flooding, disease history and the

presence of multiple genotypes of bTB. This is the first

attempt to explore the factors associated with the spread of

endemic bTB in England and Wales using GWR. This

technique improves on least-squares linear regression

approaches by identifying regional differences in the fac-

tors associated with bTB spread. However, interpretation of

these complex regional differences is difficult and the

approach does not lend itself to predictive models which

are likely to be of more value to policy makers. Methods

such as BRT may be more suited to such a task. Here we

have demonstrated that GWR and BRT can produce

comparable outputs.
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1 Introduction

Bovine Tuberculosis (bTB) is a major challenge for the

agricultural industry in Great Britain. When the disease is

detected in a cattle herd the infected animals are culled and

the herd is placed under movement restrictions which has

considerable economic implications for the farmer.

Surveillance and control of the disease is funded by the

government and represents a considerable burden on public

finances, being estimated to have cost the taxpayer £500

million in the past decade (Defra 2014). The distribution of

the disease is not homogeneous across Great Britain, with

incidence being highest in the south and west of England,

along the Welsh/English border and in western counties of

Wales (Lawes et al. 2016). Despite the spatial hetero-

geneity of the disease, control policies for bTB in England

and Wales have traditionally been implemented at country

level, with a move to more regional policies in the last few

years such as the creation of risk areas in England (Defra

2011) and the Intensive Action Area in Wales (Welsh

Government 2016). Both have applied different policies
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which have been designed to suit the level of risk in those

areas such as increased testing and testing of contiguous

herds following an incident where environmental or wild-

life transmission is likely, or using a more sensitive test in

low incidence areas to ensure the disease is eliminated

before it becomes endemic. Recently, regional differences

in a number of measures of bTB have been examined and

have provided information on the effectiveness of bTB

control polices in different areas (Moustakas and Evans

2016), but the reasons behind the spatial heterogeneity of

bTB are not well understood.

BTB can be considered endemic in the high incidence

areas of England and Wales, and these areas have been

expanding over time. It is important to identify influential

factors that affect the expansion of the endemic area, at

regional and local levels, so that measures to stop and

reverse the spread of bTB can be developed. The rate of

this expansion has been shown to be non-uniform (Brunton

et al. 2015) and it may be affected by many factors such as

landscape characteristics, wildlife, climate, cattle move-

ments, bTB testing and detection, and various other

anthropogenic factors. Here we investigate what the drivers

of spread are at a national level and at a local level.

Analyses of spatial data need to account for the inherent

heterogeneity within the data, as discussed by Lennon

(2000). Many factors related to disease spread, such as

landscape factors and wildlife reservoirs of disease for

example, vary geographically, showing spatial non-sta-

tionarity (Brunsdon et al. 1998). Statistical analyses which

do not account for spatial autocorrelation can overestimate

the significance of variables (Lennon 2000).

Various approaches for handling spatial heterogeneity in

a regression model have been developed, including the use

of a term that represents either spatial autocorrelation in the

dependent variable or in the residuals from the independent

variables (Crase et al. 2012) and the use of simultaneous

autoregressive models (Pioz et al. 2012). If relationships

are thought to alter spatially within the study area, geo-

graphically weighted regression (GWR) can be used to

produce localised models for different spatial regions

which take neighbouring observations into account

(Brunsdon et al. 1998; Fotheringham et al. 1998). This is

achieved through the use of a ‘moving window’ to identify

a subset of the data to which a localised model is applied.

GWR has been used across a wide variety of disciplines

including agriculture, where it has been used, for example,

to measure the spatial distribution of water requirement of

crops in North China while adjusting for topographical and

meteorological factors (Wang et al. 2013), and public

health where it has been used to assess spatial patterns of

leishmaniasis in the Middle East (Jaber et al. 2013).

Analyses of risk factors for bTB in Great Britain have

historically been performed at the herd level using ordinary

least squares (OLS) regression techniques (Reilly and

Courtenay 2007; Carrique-Mas et al. 2008; Ramı́rez-Vil-

laescusa et al. 2010; Johnston et al. 2011; Vial et al. 2011).

While such analyses provide useful information about

important risk factors for the spread of bTB, they may

overlook, or be biased by, important spatial differences in

risk factors. GWR may provide a useful alternative

approach to gain insights into the spatial variation in the

factors associated with the spread of bTB. Improved per-

formance of GWR in comparison to OLS regression has

been demonstrated for identifying the factors associated

with urban flooding (Wang et al. 2016) and urban popu-

lation growth (Liao and Wei 2014) in China.

In order to assess the usefulness of GWR in the context

of understanding the spread of bTB we have used three

methods of analysis—OLS linear regression with a spatial

autocorrelation term, GWR and Boosted Regression Tree

(BRT) analysis—to explore the factors that influence the

spread of endemic bTB at a local level in England and

Wales.

2 Methods

2.1 Estimates of rate of spread

The dependent variable for the analysis, rate of spread of

endemic bTB per km, was calculated from the estimated

location of the endemic front in successive years (the

methodology used to generate these data has been descri-

bed in Brunton et al. 2015). A grid of 6.25 km2 hexagonal

cells was applied to England and Wales, and a rate of

spread was obtained for all hexagons through which the

endemic front was calculated to have spread between

September 2001 and August 2012 (n = 2148).

2.2 Variable selection

An extensive dataset of 193 variables was compiled.

Variables were selected if there was evidence they were

associated with bTB in published literature, and if data

were available to describe the variables at the geographical

level required for the analysis. The large number of

potential co-variates was rationalised by reviewing sum-

mary statistics and performing bi-variable least-squares

linear regression against the dependent variable, fitting

predicted values and visually assessing the residuals.

Analyses were performed in Stata 12 (Stata Corporation,

College Station, TX, USA), and a significance level of

p\ 0.05 was used throughout.

For many of the variables, the residuals were not nor-

mally distributed so transformation of the data was

explored using Box Cox regression. Many of the variables
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used may have been acting as potential proxies for other

factors, and thus be correlated with each other. In an

attempt to avoid multicollinearity, pairwise Pearson pro-

duct-moment correlations of all variables were produced

and strong correlations identified ([r][ 0.8). Where two or

more variables were highly correlated, the one with the

highest correlation with the dependent variable and/or the

greater biological plausibility was retained. This resulted in

a reduced list of 75 independent variables. A list of these

variables including the sources of the data can be found in

Table S1 in the Supplementary Information. These vari-

ables were grouped under six themes: animal-level factors,

farm-level factors, bTB history and testing, landscape

characteristics, wildlife and climate. Two variables that

were considered as a priori confounders and not grouped

under the six themes were the time period in which spread

occurred (TpS), and the number of different genotypes of

M. bovis present within the hexagon or its neighbouring six

hexagons during the time period of spread. TpS, a cate-

gorical variable, was coded as an indicator variable. Where

appropriate, continuous variables were scaled by centring

around the mean, subtracting the lowest observable value

from each observation if an intercept of zero was not

meaningful, or divided by a suitable constant (e.g. 100) to

improve the unit change represented by coefficients.

Missing data were examined to determine if they occurred

at random or if the fact that they were missing was linked

to the actual missing data.

2.3 Linear regression with spatial autocorrelation

term

To account for spatial autocorrelation (SAC) between

variables an autocorrelation term, calculated from neigh-

bouring rates of spread using a kernel with a bandwidth of

10 km, was included as an independent variable. This SAC

approach which was calculated from the dependent vari-

able was preferred to the residual autocorrelation (RAC)

method which is derived from the combination of predictor

variables, as these changed with each of the multiple

models that were developed. Both methods are well

described and compared by Crase et al. (2012).

Because of the large number of variables available for

inclusion in the model, a hierarchical stepwise approach

was taken using six thematic models (co-variates grouped

by theme are described in the supplementary information

(S2)). The a priori confounders were not included in the

thematic models but were forced into the final model.

Principal components analysis was used to identify the

components that contributed the most variance to the data

within each thematic variable set. This was used to guide

the selection of variables for inclusion in the modelling,

rather than to create new variables from the components.

This ensured that the model parameters could be easily

interpreted. The variables with the strongest loading in

each key component (preferentially those in component 1)

were systematically added to a multivariable linear

regression model with robust standard errors to allow for

the presence of heteroscedasticity. The variance inflation

factor for each variable in the thematic model was cal-

culated using the ‘‘estat vif’’ command in Stata to assess

whether collinearity was present in the model, and highly

collinear variables (with a VIF[ 10) were considered for

exclusion. Beginning with this initial thematic model, a

backward stepwise approach based on Akaike’s Informa-

tion Criterion (AIC) was used to select the best fitting

thematic model, with the least important variables (based

on p values) being removed first (as recommended by

Burnham and Anderson 2002). Following the approach

taken by Pioz et al. (2012), models differing by less than

two AIC points were considered to receive identical

support from the data. In these instances the more parsi-

monious model was selected, unless there was good rea-

son a priori for retaining a specific variable. Transformed

variables were used where they improved the fit of the

model.

The six thematic models were then sequentially added

into one overall model starting with the one with the

smallest root mean squared error (RMSE). The F test was

used to determine whether each thematic set of variables

contributed significantly to the overall model. If a p value

greater than 0.05 was obtained from the F test, all variables

in that group were removed. Finally, using the same

backward stepwise approach based on AIC as applied to

the thematic models, the overall model was developed

using the remaining variables from the thematic models

and the a priori confounders. Significant variables at the

level of p B 0.05 were retained in the model. Variables

which had been removed were added back into the model

one at a time and reconsidered for inclusion if they gen-

erated a p value less than 0.05. The likelihood ratio test was

then used to determine whether the model including the

previously dropped variables gave a better fit to the data

than one excluding the variables.

The residuals of the model were assessed using the

Breusch-Pagan/Cook-Weisberg test for heteroscedasticity

(Breusch and Pagan 1979). This generated a p value of less

than 0.001 indicating that there was sufficient evidence to

reject the null hypothesis that the residuals were homoge-

neous, and thus it was appropriate to use robust standard

errors.

2.4 GWR

GWR analyses were performed in R version 3.0.1 (2013-05-

16) utilising the GWModel package for all geographically
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weighted analyses. R packages ‘RColorBrewer’ and ‘for-

eign’ were also used to display and export the analysis

outputs. A statistical significance level of p B 0.05 was

used in all analyses. The methodology loosely followed a

workflow for the GWModel package outlined by Gollini

et al. (2013) and can be split into three steps: Geographi-

cally Weighted (GW) summary statistics, GW-Principal

Component Analysis and GW Regression analysis.

For this work we utilised the geographic weighting in its

simplest form applying a simple moving subset of records

to the analysis. For each of the 2148 hexagons we selected

its closest 215 hexagons (i.e. 10 % of the total data set) to

run a localised model. The size of this subset is termed the

bandwidth of the GWR analysis. A bandwidth of 215 was

shown to fit natural regions within our irregular shaped

study area, as well as showing no significant change in

outputs during the GW PCA analysis when compared with

the automatically calculated bandwidth of 348 generated

by the bw.gwpca function of GWModel.

GW summary statistics such as plotting regionalised

standard deviations (and GW inter-quartile ranges) were

used to highlight areas of high variability for variables, and

identify where application of GW analysis may warrant

close scrutiny. The GW Principal Components Analysis

(PCA) identified those variables which accounted for the

greatest variation within the 10 % subset at each location,

applying PCA in a similar way as it was utilised in the

linear regression analysis.

The variable selection performed prior to the linear

regression determined the variables offered to the GW

analysis (as described in Table 2). Further variable selec-

tion was conducted to eliminate variables where significant

regional co-linearity occurred before selecting the final

model using a stepwise selection approach based on the

AIC.

The rationale for using the same variables offered to the

linear regression analysis as a starting point for variable

selection for the GW analysis was that the original com-

plete covariate dataset collated for the project contained

too many variables to model. It included a number of

alternative measures of similar environmental or farm

characteristics meaning that strong relationships were

found between similar groups of predictors. Additionally,

while the GW analysis was intended to be used to assess

regional variation in the drivers of the rate of spread of

endemic bTB, the ultimate goal of the project was to

provide information that could be practically used to

inform national bTB control policies. It made sense to start

with the variables that were also used to model the rate of

spread at a national scale, since these were likely to be of

most importance to policy makers, and to see how their

significance and relationship varied in different areas using

the GW approach.

A number of criteria were used to deal with multi-

collinearity; primarily estimates of correlation, compli-

mented by GW PCA analysis to identify which of the

variables accounted for the majority of the variance within

the predictor database. Where further variable selection

was required, decisions were based upon biological plau-

sibility and the suitability of variables as targets for policy

development for practical interventions.

The variables that were most influential on the rate of

spread according to this model were mapped to illustrate

the geographical variation in key variables. The number of

hexagons where a variable had the most influence on the

rate of spread (as determined by the size of the p value)

was calculated for each variable.

2.5 BRT

Boosted regression trees (BRT) modelling was used to

perform a preliminary validation of the GWR outputs and

predictor variable selection. This method is now widely

used in spatial modelling. It is an iterative machine learn-

ing technique based on regression trees, that attempts to

minimise a loss function (deviance) and does not assume a

defined starting distribution (Elith and Graham 2008). As

such it is suited to the use of a large number of covariates

and a large number of observations, and is particularly

effective at accounting for non-linear relationships with the

response variable. The models were offered the same

covariates as the final GWR model and implemented using

the VECMAP� software suite. Three area wide models

were run, each for a specific region where GWR showed a

different and consistent relationship with the most impor-

tant predictor covariates, defined as those with the largest

number of hexagons in which they were the most important

variable according to the size of the p value.

3 Results

3.1 Linear regression with SAC term

The key components of each thematic set of variables that

were identified by the principal components analysis are

presented in Table 1. The variables that were included in

the thematic models are presented in Table 2. Animal

management factors such as movements, and testing

appeared to be important, as did the presence of badgers.

Variables such as clay or sandy soil and elevation were

important in component 1 of the landscape characteristics

set, and could be related to the suitability of the environ-

ment for badgers or cattle.

Four of the six thematic sets of variables were affected by

missing values. The worst affected was the farm-level model

where missing values in three variables (the percentage of
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permanent pasture within the convex hull that belonged to

the farm (651 missing), movements to slaughter (158

missing) and the size of the primary market (581 missing))

reduced the number of observations by more than half from

2148 to 1042. Inspection of the missing values showed them

to be randomly distributed within each variable so we pro-

ceeded with a smaller sample size.

The results of the F tests to assess the significance of the

contribution of each set of variables to the final model are

presented in Table 3. The tests indicated that the climate

variables and the wildlife variables were not contributing

significantly to the model so they were removed. The

animal-level and bTB history and testing variables were

bordering significance so were retained.

The final model is presented in Table 4. Nine variables

were included in the final model, including the time period

of spread which was split into eight categories and the

spatial autocorrelation term. In addition to the autocorre-

lation term which had the strongest relationship, five

variables were positively associated with the rate of spread.

The large amount of variation explained by the inclusion of

the autocorrelation term highlighted the need for a more

geographically robust analysis to take account of the spatial

dependence. The observed values of the rate of spread of

endemic bTB versus the predicted values of the rate of

spread from the final model are presented in Fig. 1.

3.2 GWR

GW summary statistics were generated for all variables

selected as part of the linear regression to help understand

the dataset. Important spatial characteristics of the data

were identified through these statistics as demonstrated in

Fig. 2 which shows substantial regional variation of the

dependent variable.

Figure 3 illustrates the dominant variable contributing to

the GW-PCA component 1, and shows clear regional vari-

ations in the most prominent variable. Further investigations

proved this was indicative of the fact that the predictor

dataset altered in structure in different regions.

The final GWR model utilising 16 out of the 26 variables

taken from those identified by the global linear regression is

described in Table 5. The automated selection procedure

tested 276 possible models. The adjusted R-squared value of

the selected model was 0.284. Strong evidence of spatial

non-stationarity was obtained for all explanatory variables in

explaining the rate of spread, except the number of cattle

aged between 30 and 60 months, and the occurrence of

OTF-W incidents in the year prior to spread which had weak

evidence of non-stationarity. Figure 4 maps the most influ-

ential variable per hexagon (defined as that with the smallest

p value), which demonstrates that a relatively small number

of variables (*4) dominated the map, with distance to

market being the most frequently identified predictor, fol-

lowed by testing interval in the time period of spread, and

the number of genotypes in a hexagon and its surrounding

six hexagons. Figure 5 shows the total number of hexagons

per variable where each variable is the most influential

factor for rate of spread.

Distance to nearest market was the most frequently

identified ‘‘winning variable’’ (i.e. the variable with the

smallest p value) across the northern regions and southern

regions but not in the central and eastern regions (Fig. 4).

We also examined individual variables to see how their

relationship with the rate of spread varied with location.

This is presented in Fig. 6 for the distance to market

variable, which showed marked variation in the slope of

the relationship, being positive in the north and negative in

the south. Examination of the data found no clear evidence

of clustering of markets which might drive this pattern.

3.3 BRT

BRT models were produced for three distinct areas of spread

in order to assess whether similar results to the GWR would

be obtained. The areas assessed were the northern and

southern areas where distance to nearest market was the

most influential variable (though positively and negatively

correlated, respectively), and the eastern area where distance

to nearest market was not the most influential variable.

Table 1 Descriptions of the information represented in the first three key components of each of the six thematic sets of variables as determined

using principal components analysis

Component Animal

level

Farm level bTB history and testing Landscape

characteristics

Wildlife Climate

1 Age Movements Time between tests Suitability for

badgers

Presence of badgers Cold

temperatures

2 Breed Herd density Confirmed recent

incidents

Proximity to coast Presence of fallow, muntjac and

roe deer

Warm

temperatures

3 Fragmentation Confirmed historical

incidents

Arable and

grassland

Presence of red, sika and Chinese

water deer

Moisture

Interpretation of the information represented in each component was based on the variables with the strongest loading
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All three models produced R2 values between the fitted

function and observed rate of spread values in excess of

0.8 (p\ 0.01) indicating good fits. The best predictors

identified closely matched the GWR results: distance to

nearest market was found to be the most influential

variable in both the northern (Fig. 7a) and southern areas

(Fig. 7b), being positively correlated with spread in the

north and negatively correlated in the south, while it was

not found to be the most influential variable in the eastern

area (Fig. 7c).

Table 2 Description of the variables included in the six thematic models and the direction of their association with the rate of spread of endemic

bTB (? is positive correlation and - is negative correlation)

Model Independent variables N AIC RMSE

Animal-level - No. of cattle aged between 30 and 60 months 1900 7664 1.82

Farm-level - No. of movements to slaughter 1042 4032 1.66

? No. of movements on to farm

? No. of movements from farms with an incident

? Number of markets where cattle are sourced

? Number of herds within the hexagon

? % of convex hull of permanent pasture made up of permanent pasture belonging to the

farm

- % of convex hull of land parcels made up of land parcels belonging to the farm

? Number of fragments of permanent pasture

? No. of goat holdings in the hexagon or its six neighbours

? Throughput (cattle/year) at main market

? Distance to coastline

- Distance to nearest market

- Length of boundary of fragments of land shared with land from a different farm

? Mean herd size in the hexagon

bTB history and testing - Average number of days between tests 1965 7930 1.82

? Average number of days between tests during period prior to period of spread

? Maximum testing interval in hexagon

? No. of new OTF-W incidents in the hexagon

? No. of animals with visible lesions in the hexagon

- No. of new OTF-W incidents in the hexagon during period prior to period of spread

? No. of inconclusive reactors in the hexagon during the period prior to period of spread

- Presence of gamma interferon testing in hexagon

Landscape

characteristics

? % of hexagon classed as flood zone 3 2148 8661 1.81

? Mean elevation

- % of hexagon made up of clay soil

? % of hexagon made up of littoral rock

- % of hexagon made up of saltmarsh

- % of hexagon made up of improved grassland

Wildlife - Presence of fallow deer within 7.5 km of the hexagon and its six neighbours 2148 8634 1.8

- Presence of sika deer within 7.5 km of the hexagon and its six neighbours

Climate - Average daily lowest air temperature 1868 7616 1.85

? Average daily highest air temperature

? Number of days of snow or sleet falling

- Number of days of ground frost

- Duration of bright sunshine (hours per day)

- Total precipitation (mm)

N number of observations (hexagons with a rate of spread). AIC Akaike’s Information Criterion: indicates how well the model fits the data.

Lower value = better fit. RMSE root mean squared error: measures how accurately the model predicts the outcome. Lower value = better fit
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4 Discussion

Bovine tuberculosis is a complicated multifactorial disease,

and the factors associated with the disease in Great Britain

have been explored in a number of studies (Reilly and

Courtenay 2007; Carrique-Mas et al. 2008; Ramı́rez-Vil-

laescusa et al. 2010; Johnston et al. 2011; Vial et al. 2011).

These studies have focused on the association between risk

factors and disease occurrence at the herd level, but many

of the factors associated with bTB vary geographically and

the contribution of regional differences in risk factors to the

epidemiology of bTB is not well understood. The move to

more regional bTB control policies in England and Wales

in the last few years has created a need for more tailored

interventions to fit the local disease situation. This

approach is likely to improve the effectiveness of bTB

controls, but requires policy makers to have an

Table 3 Results of the F test to

assess the significance of the

thematic sets of variables within

the overall national model

Variable set p value Outcome

Climate variables 0.336 Variable set discarded

Animal-level 0.065 Variables considered for inclusion in final model

bTB history and testing 0.085 Variables considered for inclusion in final model

Landscape characteristics 0.010 Variables considered for inclusion in final model

Wildlife 0.279 Variable set discarded

Farm-level 0.016 Variables considered for inclusion in final model

Variable sets with a p value greater than 0.1 in the F test were discarded, and the remaining variables

considered for inclusion in the final model

Table 4 Parameter estimates, 95 % confidence intervals (CI) and p values of the final linear regression model describing the factors associated

with the rate of spread of endemic bTB. Unless stated, variables are calculated during period of spread

Variable km/year 95 % CI p value

Spatial autocorrelation 3.987 3.744, 4.229 \0.001

Distance to coastline 0.001 0.000, 0.001 \0.001

% of hexagon classed as flood zone 3 1.085 0.462, 1.708 0.001

Length of boundary of fragments of land shared with land from a different farm -0.002 -0.004, -0.001 0.003

Number of genotypes in the hexagon and its six neighbours 0.168 0.053, 0.282 0.004

Number of markets where cattle are sourced 0.069 0.016, 0.123 0.011

Mean elevation 0.001 0.000, 0.002 0.023

Number of new OTF-W incidents in the hexagon during period prior to period of spread -0.512 -0.959, -0.065 0.025

Spread occurred in 2003–05 Ref.

Spread occurred in 2004–06 -0.400 -0.644, -0.156 0.001

Spread occurred in 2005–07 -0.358 -0.611, -0.106 0.005

Spread occurred in 2006–08 -0.245 -0.579, 0.090 0.151

Spread occurred in 2007–09 -0.685 -0.988, -0.382 \0.001

Spread occurred in 2008–10 -0.472 -0.832, -0.112 0.010

Spread occurred in 2009–11 -0.771 -1.093, -0.449 \0.001

Spread occurred in 2010–12 -0.415 -0.664, -0.166 0.001

AIC = 8606.379, R2 = 0.398, RMSE = 1.787

Fig. 1 A plot of the observed values of the rate of spread of endemic

bTB versus the predicted values of the rate of spread from the final

OLS linear regression
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understanding of local drivers of disease. We have

demonstrated that there is geographical variation in the

predictors of endemic bTB and shown the utility of GWR

in characterising this variation.

Many of the traditionally accepted predictors of bTB

risk such as estimates of wildlife density have not been

retained in the local level models developed here. The

European badger (Meles meles) has long been known to be

Fig. 2 GW measures of

regionalised variance (standard

deviation) for rate of spread of

endemic bTB where spread

occurred between 2001 and

2012

Fig. 3 A map illustrating the hexagons where endemic bTB spread between 2001 and 2012, and the variable accounting for the greatest variance

within the predictor dataset for the surrounding area (nearest 215 hexagons) as determined using GW PCA
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a wildlife reservoir of infection for bTB in cattle

(Cheeseman et al. 1989). A number of variables could be

considered proxies for badger suitability (e.g. elevation,

soil type); although they could be equally proxies for cattle

suitability. Predictors of the rate of spread of endemic bTB

may be different to predictors of bTB persistence or inci-

dence which are traditionally used as outcomes in risk

factor investigations. This may imply that while badgers

may be associated with the incidence or persistence of bTB

in an area (Reilly and Courtenay 2007; Johnston et al.

2011), they may not be driving the spread of endemic bTB

into new areas. It is also possible that causal factors at the

edge of the endemic area will be different to those oper-

ating in core endemic areas, which may have previously

been investigated in more detail.

An association that was consistently identified by both

GWR and OLS linear regression was an increase in risk of

flooding and an increase in the rate of spread. This may

simply reflect the fact that many flood plains support

grazing suitable for cattle and so be a focus of animal

numbers. There may also be more mechanistic

explanations. Seasonally wet soils on farms have been

shown to protect against bTB in England and Wales

(Johnston et al. 2011), though if flooding leads to enforced

contact between herds there may be increased transmission

and prevalence as observed in Tanzania (Cleaveland et al.

2005). Flooding might exacerbate environmental contam-

ination of grazing pastures or drinking water with M. bovis

and might also reduce badger food sources, forcing them to

visit farm feed stores, so increasing contact between bad-

gers and cattle (Garnett et al. 2002). Additionally, areas

prone to flooding may harbour the helminth Fasciola

hepatica (liver fluke), and concurrent infection of cattle

with this parasite may reduce the sensitivity of the tuber-

culin skin test (Flynn et al. 2009; Ezenwa et al. 2010;

Claridge et al. 2012).

The number of new OTF-W incidents in a hexagon in

the year prior to the spread of endemic bTB was found to

be negatively associated with the rate of spread in the OLS

linear regression model. This variable was also identified in

the GWR analysis. While an increase in the occurrence of

OTF-W incidents suggests a greater infection pressure in

Table 5 Median, minimum and maximum parameter estimates and p values of the final GWR model describing the factors with strong regional

influence on the rate of spread

Variable Coefficient estimatesa p value

Median Min Max

Distance to nearest market (metres) 282.000 9 10-2 -270.000 9 10-2 781.500 9 10-2 \0.001

Mean elevation (metres) 0.247 9 10-2 -4.610 9 10-2 3.920 9 10-2 \0.001

% of hexagon made up of improved grassland 6.550 9 10-2 70.200 9 10-2 99.160 9 10-2 \0.001

Number of genotypes in the hexagon and its six neighbours 0.003 9 10-2 0.007 9 10-2 0.020 9 10-2 \0.001

Length of boundary of fragments of land shared with land from a different

farm (average in metres for all herds in hexagon)

250.000 9 10-2 1170.000 9 10-2 1223.000 9 10-2 \0.001

% of hexagon classed as flood zone 3 0.115 9 10-2 0.853 9 10-2 1.540 9 10-2 \0.001

Mean herd size in the hexagon 2.050 9 10-2 13.000 9 10-2 13.910 9 10-2 0.014

Number of animals aged between 30 and 60 months 70.100 9 10-2 312.000 9 10-2 119.600 9 10-2 0.152

No. of new OTFW incidents in the hexagon during period prior to period

of spread

12.300 9 10-2 46.100 9 10-2 113.700 9 10-2 0.050

Testing interval in the time period of spread 0.427 9 10-2 20.600 9 10-2 29.470 9 10-2 \0.001

Number of herds within the hexagon 105.000 9 10-2 1130.000 9 10-2 663.500 9 10-2 \0.001

% of hexagon made up of clay soil 0.524 9 10-2 56.100 9 10-2 39.710 9 10-2 \0.001

Number of goat holdings in the hexagon or its six neighbours 0.185 9 10-2 2.200 9 10-2 9.280 9 10-2 \0.001

Number of movements from farms with a breakdown (average for all

herds in hexagon)

0.024 9 10-2 1.470 9 10-2 0.800 9 10-2 \0.011

Number of movements on to farm (average for all herds in hexagon) 0.046 9 10-2 0.991 9 10-2 0.930 9 10-2 \0.001

Number of movements to slaughter (average for all herds in hexagon) 282.000 9 10-2 270.000 9 10-2 781.500 9 10-2 \0.001

p values are for the F statistic which represents how much variation there is in the variable over distance. As variation over distance increases, the

F statistic increases and the p value decreases. Small p values indicate there is strong evidence of true geographical variation in the variable’s

influence on the rate of spread. Unless stated, variables are calculated during period of spread
a Coefficients have been normalised to the same order of magnitude through multiplying by 100, and are presented to 3 decimal places to aid

interpretation

Stoch Environ Res Risk Assess (2017) 31:339–352 347

123



the area which could be expected to exacerbate the spread

of the disease, it may be that the observed reduction in the

rate of spread in the national model is a result of the control

measures put in place on these herds to limit the movement

of animals, and possibly through farmers engaging in more

protective measures as a result of having an incident.

Another factor identified by both models was the pres-

ence of multiple genotypes in a hexagon and its neigh-

bours. Though this is likely to be indicative of multiple

incidents, potentially from multiple sources, and thus the

level of infection in an area, it could also be a reflection of

the convergence of two or more genotype home ranges

Fig. 4 A map showing the hexagons where endemic bTB spread between 2001 and 2012, and the most significant variable in each model

(lowest p value) as determined using GWR

Fig. 5 A bar chart showing the number of hexagons in which each of the variables identified by the GWR were the most dominant variable.

There were 44 hexagons where none of the included variables were identified as significant enough to identify a winning variable
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Fig. 6 Map of normalised

mean GWR coefficient

estimates for distance to nearest

market, illustrating the variation

in the slope of the relationship

Fig. 7 Plots of the relationship between the BRT model predictions

and actual data for the most influential variable from three separate

BRT models: a model for the northern area where distance to nearest

market was the most influential variable and was positively correlated

with spread in the GWR, b model for the southern area where distance

to nearest market was the most influential variable and was negatively

correlated with spread in the GWR, and c model for the eastern area

where distance to nearest market was not the most influential variable

in the GWR. Percentages represent the relative importance of each

variable in explaining the rate of spread of bTB within the respective

models
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(Smith et al. 2006). However, any interpretation of geno-

type data should consider that the data is restricted to a

single isolate per incident, so the true extent of the geno-

types involved in an incident may not be known.

A significant association was observed between the rate

of spread and lengths of boundaries of fragments of land

shared with land from a different farm in the GWR model

where it was the fourth most frequent ‘‘winning’’ variable.

In the linear regression model a negative association was

observed. This variable gives an indication of farm frag-

mentation and contiguity between farms so it was expected

that this would be positively correlated with the rate of

spread (Johnston et al. 2011).

Fitting a global model to bTB spread data is a com-

plicated process, not least because of the spatial nature of

many of the variables of interest, but also because spread

into new areas can only be detected when testing takes

place. There is also the problem that many of the variables

are related in some way. The variable selection and

modelling approaches used here were deliberately strin-

gent in order to reduce collinearity and identify the most

important variables, but it is likely that there are less

important associations between variables which were not

identified. For example, in the linear regression model

there may have been associations between variables in

different thematic models, e.g. rainfall in the climate data

set and the risk of flooding in the landscape characteristics

data set. Because of the large number of variables under

consideration, the individual associations between all

variables were not examined in great detail except where

strong correlations were observed. Instead, more impor-

tance was placed on the contribution each variable made

to the fit of the model rather than the magnitude of its

effect.

Applying a traditional multivariable linear regression

approach to a complex disease such as bTB is likely to lead

to important spatial differences in relationships between

variables being overlooked. Inclusion of the SAC term

considerably increased the R squared value of the linear

regression model, indicating that accounting for the spatial

autocorrelation was important to explaining the variation in

the rate of spread. The simpler SAC approach of using an

autocorrelation term based on the dependant variable was

selected for this study as multiple models were being

developed, but it would be of interest to see what effect

using a residual based SAC term (RAC) has on the final

model. Crase et al. (2012) found the RAC approach, which

only represents the portion of spatial structure in the

dependant variable that is not explained by the explanatory

variables, improved the accuracy of parameter estimates

and identification of statistically significant variables. An

alternative approach is that taken by Pioz et al. (2012)

when modelling the spread of bluetongue virus in France.

They used a simultaneous autoregressive model to account

for spatial dependence.

The GW-PCA analysis proved useful when choosing

between collinear variables during the model selection

stage. The combination of PCA to reduce collinearity and

subsequent GWR has been described for estimating crop

water requirements in China (Wang et al. 2013). In that

study, the principal components were used to create inte-

grated independent variables for the GWR. In this study the

PCA was used to guide the selection of variables for

inclusion in the modelling rather than creating new vari-

ables. This enabled easier interpretation of the model

parameters which was important as this was an exploratory

analysis of variables rather than a purely predictive mod-

elling exercise.

Even though GWR was used as a more robust method

for accounting for spatial dependence, the final model

explained a relatively small amount of the variation. The

relationships identified were complex with regression

coefficients switching between negative and positive val-

ues in different locations, which indicates that while

focusing interventions on a particular risk factor might be

beneficial in one area, it may actually be detrimental in

another area. As with any regression method, they cannot

prove causality, and other drivers may not have been

retained as a result of the deliberately stringent method of

covariate selection. The fact that the most important vari-

ables occur in blocks greater than half the GWR bandwidth

rather than random scattering suggests the regional

heterogeneity is real, with demonstrably different factors

associated with the spread of bTB in different areas where

spread has occurred, and it is this that is perhaps the most

important finding of this study.

A preliminary BRT analysis was performed to see if it

would produce comparable outputs to the GWR analysis.

BRT produced statistically reliable area wide models, and

identified similar regional relationships as GWR. While

GWR worked well for identifying the most important

variables per hexagon, the BRT produced better overall

models and may be better suited than GWR to predicting

the rate of spread beyond the study area if such analysis

was desired.

This analysis has identified some clustering of potential

risk factors that could be explored in more detail, but these

do not easily translate into implementable interventions.

An obvious area for further investigation would be a more

detailed examination of those areas where flooding has

been shown to be influential in order to understand the

reasons for this association. Only by understanding the

mechanism by which flooding may increase the rate of

spread of endemic bTB can interventions be developed.

Understanding the factors that affect the expansion of the

area affected by endemic bTB is necessary to guide policy
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makers in the implementation of tailored local controls to

halt the spread of the disease. The three methods used in

this study have demonstrated the importance of accounting

for spatial differences in risk factors for bTB, and have

shown some consistency in the identification of certain

factors. We have demonstrated that GWR is a useful

approach for exploring bTB data and improves on least-

squares linear regression by identifying regional differ-

ences in the factors associated with bTB spread. However,

interpretation of these differences is difficult as relation-

ships often varied spatially between negative and positive

associations, and the approach does not lend itself to pre-

dictive models which are likely to be of more value to

policy makers. Methods such as BRT may be more suited

to such a task and we have demonstrated that GWR and

BRT can produce comparable outputs. Finley (2011) con-

cludes that other methods (such as Bayesian spatially-

varying-coefficients (SVC)) may be better at predictive

models but that GWR is less computationally intensive and

is a useful tool for descriptive and exploratory data anal-

ysis, as demonstrated in this study.

In conclusion, this is the first attempt to explore the

regional heterogeneity of factors associated with the spread

of endemic bTB in England and Wales using GWR.

Although a number of variables have been identified as

significant in different locations in this study, the key

message is that a complex regional pattern emerges which,

though largely compatible with that identified from

national analyses, should be able to help understand how

national policies could be tailored to tackle bTB at a

regional level.
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