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Abstract 1 

Hyaluronan (HA) is a non-sulfated gylcosaminglycan naturally occurring polymer found in tissues and 2 

fluids of mammals including the reproductive system. Its biosynthesis by HA synthasese (HAS1-3) and 3 

catabolism by hyaluronidases (HYALs) is regulated by ovarian steroid hormones. Depending on its 4 

molecular size, HA functions both as a structural component of tissues in the form of high molecular 5 

weight HA, or a signalling molecule in the form of small HA molecules or HA fragments which is 6 

mediated through interaction with its specific cell membrane receptors. HA is produced in the oocytes 7 

and embryos and in various segments of the reproductive system. This review provides information 8 

about expression and function of members of the HA system, including HAS, HYALs and HA receptors 9 

in various processes from folliculogenesis to oocyte maturation fertilisation and early stage embryo 10 

development to pregnancy, and its application in assisted reproduction technologies. Particular 11 

emphasis has been made on the role of the HA system in preimplantation embryo development and 12 

embryo implantation, and a hypothetical sequential model is proposed.  13 

 

Introduction 14 

Hyaluronan (HA), also known as hyaluronic acid or hyaluronate, is a high molecular weight anionic 15 

member of a group of macromolecules called glycosaminoglycans (GAGs) that constitute components 16 

of the extracellular matrix (ECM) in all animal tissues. Other GAGs include heparin sulphate, dermatan 17 

sulphate, keratin sulphate and chondroitin sulphate. HA is the simplest of all the GAGs and has a 18 

number of unique properties that distinguish it from other GAGs. (i) It is non-sulphated, (ii) it is a linear 19 

polysaccharide of thousands of repeated units of alternating D- glucuronic acid and N-20 

acetylglucosamine (Weissmann, et al. 1954), (iii) it is synthesised at the plasma membrane rather than 21 

in the Golgi apparatus (Prehm 1984) and (iv) it is extruded into ECM via the cell surface as it is 22 
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synthesised (Tammi, et al. 2002), and finally (v) HA is not restricted to the ECM, rather, its intracellular 23 

localisation has also been reported (Contreras-Ruiz, et al. 2011).  24 

The concentrations of HA within the reproductive tract vary from one mammalian species to another. 25 

Some examples are provided in Table 1. HA is present in the oviduct, uterus and cervix (Afify et al. 26 

2006, human; Perry et al. 2012, sheep; Raheem et al. 2013, sheep) and also produced by the cumulus 27 

and granulosa cells of ovarian follicles (Kimura et al. 2002, pig; Schoenfelder & Einspanier 2003, cow; 28 

Chavoshinejad et al. 2014, sheep). The role of HA in reproductive biology and clinical applications is 29 

gaining increasing recognition. HA’s expansion of cumulus cells at ovulation (Salustri et al. 1989; 30 

mouse) and induction of cervical ripening during parturition (El Maradny et al. 1997, rabbit; Straach 31 

et al. 2005, mouse) are well documented. Treatment of ovariectomised mice with progesterone 32 

increased uterine HA concentration (Maioral et al. 2016). We and others have shown that the 33 

expression of HA synthases is influenced by ovarian steroid hormones having a differential effect on 34 

the expression of specific HAS and production of different size HAs during reproductive cycle and at 35 

parturition (Afify et al. 2006, Teixeira Gomes et al. 2009; mouse, Raheem et al. 2013). In addition, a 36 

range of growth factors, such as epidermal growth factor (Pienimaki et al. 2001) and transforming 37 

growth factor-β (Pasonen-Seppanen et al. 2003), and cytokines, such as interleukin 1-β (Oguchi & 38 

Ishiguro 2004) and interferon gamma (Campo et al. 2006), as well as local mediators such as 39 

prostaglandins (Sussmann et al. 2004) affect HAS expression. The actions of HA are mediated through 40 

its cell surface receptors CD-44 and RHAMM involving MAP kinases and Akt signalling (Straach et al. 41 

2005, Kultti et al. 2010). Moreover, HA is expressed at different stages of pre-implantation embryo 42 

development (Marei et al. 2013, cow). Recently, HA has attracted more interest because its addition 43 

to embryo culture media seems to benefit in vitro fertilisation (IVF) and embryo transfer (Palasz et al. 44 

1993; cow, mouse, Palasz et al. 2006; cow, Choudhary et al. 2007; mouse, Dattena et al. 2007; sheep, 45 

Hazlett et al. 2008; human, Hambiliki et al. 2010; human, Nakagawa et al. 2012; human). 46 

The HA system includes hyaluronan synthases (HAS), HA-degrading enzymes (hyaluronidases; HYALs) 47 

and HA receptors. In this review, we shall explain the roles and regulation of the HA system in 48 

mammalian reproduction with particular emphasis on pre-implantation embryo development and 49 

embryo implantation. 50 

Hyaluronan biosynthesis 51 

HA is synthesised by three different but related trans-membrane enzymes named hyaluronan 52 

synthases (HAS1–3) (Prehm 1984), which produce different size HAs with diverse biological functions 53 

(Itano et al. 1999, Stern et al. 2006). The HAS genes have promoters reacting to common 54 

transcriptional signals in addition to their own specific responses (reviewed in Tammi et al. 2011). 55 
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HAS2 synthesises HA of higher molecular weight than HAS1, in the range of >2 × 106 Da (Itano et al. 56 

1999), whereas HAS3 synthesises HA of low molecular weight (1 × 105–1 × 106 Da) and represents the 57 

most active isoform of HAS. Normally, HA turnover in the body is quite constant and consistently rapid. 58 

One-third of the 15 g of HA in the human is replaced on a daily basis (Stern 2004). As formulated by 59 

Stern (2003, 2004), a sequence of enzymatic reactions by HYALs cleave high-molecular-weight HA at 60 

the β-N-acteyl linkage, progressively degrading HA by generating smaller fragments. There are six 61 

HYAL isoforms in the human genome, HYAL1, HYAL2, HYAL3, HYAL4, HYALP1, and sperm adhesion 62 

molecule 1 (SPAM1) (also known as PH20) (Csoka et al. 1999). HYAL1 and 2 are the most important 63 

isoforms involved in HA degradation and catabolism in somatic cells (Bastow et al. 2008). HYAL2 is a 64 

glycosylphosphatidylinositol-anchored enzyme attached to the external surface of the plasma 65 

membrane and expressed in many tissues (Lepperdinger et al. 2001). It has a specific binding capacity 66 

for the high-molecular-weight HA, cleaving it to fragments of ~20 kDa (about 50 disaccharides) (Stern 67 

et al. 2006). HYAL1 utilises HA of any size as a substrate to generate tetrasaccharides (4–8 saccharides 68 

in size) (Frost et al. 1997). HYAL3 and HYAL4 lack hyaluronidase activity and seem to play a non-69 

significant role in constitutive HA degradation (Harada & Takahashi 2007, Kaneiwa et al. 2012). 70 

Similarly, HYALP1 that is present in mouse testis does not degrade HA (Reitinger et al. 2007). The role 71 

of SPAM1 is discribed later in fertilisation paragraph. 72 

HA interacts with cells through its receptors, which include cluster domain 44 (Aruffo et al. 1990, 73 

CD44) and receptor for HA-mediated motility (Turley et al.2002, RHAMM). CD44 has been detected in 74 

various segments of the reproductive tract in mouse (Kennel et al. 1993), cow (Bergqvist et al. 2005a), 75 

sheep (Perry et al. 2010a), mare (Rodriguez et al. 2011) and human (López et al. 2013) under normal 76 

physiological conditions. It has also been detected in cow (Furnus et al. 2003), mouse (Matsumoto et 77 

al. 2004) and human (Campbell et al. 1995) embryos. Interaction between HYAL2 and CD44 facilitates 78 

the endocytosis of HA, which undergoes further degradation by lysosomal HYAL1 into smaller HA 79 

fragments (Lepperdinger et al. 2001). 80 

In addition to its function as an adhesion molecule, there is evidence showing that CD44 is a potent 81 

signalling molecule. Many studies have shown that HA–CD44 interaction can initiate several signalling 82 

events under physiological or pathological conditions such as oocyte maturation and cancer 83 

pathogenesis (Schoenfelder & Einspanier 2003, Kimura et al. 2007, Toole 2009, Yokoo et al. 2010, 84 

Marei et al. 2012, Bourguignon & Bikle 2015, Misra et al. 2015). HA-mediated cell surface signalling 85 

through CD44 is usually initiated by low-molecular-weight HA or HA-oligosaccharides resulting in cell 86 

migration or cell proliferation (Lee & Spicer 2000). HA–CD44 interaction may also stimulate 87 

intracellular signalling through extracellular regulated kinase (ERK), phosphoinositide 3-kinase (P13K), 88 
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Rac and Ras in various cell types (Kothapalli et al. 2008, Pure & Assoian 2009). Although many studies 89 

on HA–CD44 signalling focus on cancer, HA–CD44 signalling is also observed under physiological 90 

conditions. A study from our laboratory showed that small HA fragments of 20 kDa produced by 91 

treatment of bovine embryos with HYAL2 caused increased phosphorylation of mitogen-activated 92 

protein kinase MAPK1/3 signalling, resulting in increased blastocyst formation and quality, 93 

characterised by higher cell numbers. This effect was abrogated with the inhibition of CD44 (Marei et 94 

al. 2013). Another study also showed signalling by HA in human placenta through MAPK1/3 and PI3K 95 

pathways, which enhanced trophoblast growth and invasion and possibly placenta angiogenesis (Zhu 96 

et al. 2013a). Even though this study did not show that the signalling was through HA binding to CD44, 97 

it is likely to be through HA–CD44 because CD44 is the major receptor for HA, and earlier studies have 98 

shown the expression of CD44 in the human trophectoderm (Campbell et al. 1995) and trophoblast 99 

(Goshen et al. 1996), where it was proposed to play a significant role in placenta angiogenesis. 100 

RHAMM (otherwise known as CD168) is alternatively spliced; hence, different isoforms of the protein 101 

were found both on the cell surface and intracellularly (cytoplasm, cytoskeleton, mitochondria, 102 

nucleus and nucleolus) (Turley et al. 2002). Intracellular RHAMM interacts with several signalling and 103 

cytoskeletal proteins, including Src through its interaction with microtubules and actin filaments 104 

(Assmann et al. 1999). Although RHAMM is not essential for embryo viability (Tolg et al. 2003), it has 105 

been found to play a profound role in several relevant cellular events, such as mitosis, cell proliferation 106 

and migration (Turley et al. 2002). RHAMM is highly expressed in the G2/M phase of the cell cycle, 107 

thus controlling mitosis (Mohapatra et al. 1996, Assmann et al. 1999). Deletion of the RHAMM C-108 

terminus results in impaired spindle orientation in the dividing granulosa cells, folliculogenesis defects 109 

and subsequent female hypofertility in mice (Li et al. 2015). RHAMM knockdown results in the 110 

downregulation of several pluripotency markers in hESC, induction of early extraembryonic lineages, 111 

loss of cell viability and changes in hESC cycle suggesting its major roles in the maintenance of human 112 

embryonic stem cell pluripotency and cell viability (Choudhary et al. 2007). RHAMM protein and mRNA 113 

are expressed at all stages of human pre-implantation embryo development from 2-cell to blastocyst 114 

(Choudhary et al. 2007). The relative expression of RHAMM increased transiently from 4-cell to 8- to 115 

12-cell stage embryos and then remained static in morula and early blastocyst, but significantly 116 

increased in expanded blastocysts (Choudhary et al. 2007). The same was confirmed in bovine 117 

embryos where mRNA for RHAMM/IHABP (intracellular HA binding protein) where the highest 118 

expression was seen in the expanded blastocyst (Stojkovic et al. 2003). Moreover, Ozbilgin and 119 

coworkers reported spatiotemporal expression of RHAMM protein in mouse endometrium during the 120 

oestrous cycle and peri-implantation period, suggesting its possible role in endometrial receptivity 121 

(Ozbilgin et al. 2012). Inhibition of RHAMM signalling by culture of sheep embryos in the presence of 122 
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anti-RHAMM antibody resulted in the arrest of the embryo development at the 6- to 8-cell stage 123 

(unpublished data). Considering the co-presence of HA, CD44 and RHAMM in the reproductive system, 124 

it is highly likely that they work together to support mitotic activity in the developing embryos ensuring 125 

the development of blastocysts with high cell numbers. 126 

Hyaluronan in the ovarian follicle  127 

A significant portion of the ECM of the ovarian follicles consists of HA (Irving-Rodgers & Rodgers 2005). 128 

HA serves both as a structural component of ovarian follicles and in signalling cascades leading to 129 

oocyte maturation and ovulation (Rodgers et al. 2003, Kimura et al. 2007). In mice, both oocytes and 130 

cumulus cells produce HA during folliculogenesis (Salustri et al. 1992, Ueno et al. 2009). Indeed, 131 

denuded oocytes produce increasing amount of HA during culture, which was suggested to be 132 

involved in the enlargement of the perivitelline space in mouse oocytes (Ueno et al. 2009). The 133 

granulosa cell layer of the mouse antral follicle is capable of HA synthesis (Salustri et al. 1992). HA was 134 

also detected in the extracellular matrix of rat granulosa and theca cell layers of primary and more 135 

advanced follicles (Takahashi et al. 2014). HAS1 is the dominant HAS protein in theca cells of swine 136 

ovaries and may be responsible for an increase in the HA concentration of follicular fluids in atretic 137 

follicles (Miyake et al. 2009) containing macrophages expressing CD44 as a phagocytic receptor 138 

involved in phagocytosis of the apoptotic granulosa cells (Miyake et al. 2006). In sheep ovaries, we 139 

recently reported the expression of HAS and CD44, which were mainly localised in the granulosa cells 140 

(GCs) (Chavoshinejad et al. 2014). Large-size HA produced by the follicular cells contributes to the 141 

osmotic gradient of the antral follicle resulting in the accumulation of the follicular fluid and antrum 142 

formation (Clarke et al. 2006; cow, Rodgers & Irving-Rodgers 2010). This osmotic gradient across the 143 

basal lamina restricts the movement of molecules above 100 kDa from the theca capillaries into the 144 

follicular fluid in healthy follicles (Irving-Rodgers et al. 2002; cow, Rodgers & Irving-Rodgers 2010). It 145 

was reported that the LH surge permeabilises the blood barrier of the follicle, and serum glycoproteins 146 

in the inter-α-inhibitor family (IαI) can then enter the antral cavity (Hess et al. 1999; mouse, Rodgers 147 

et al. 2003; cow). However, it is now evident that the family of IαI molecules can freely cross the 148 

blood–follicle barrier; follicular fluid collected at any stage of folliculogenesis can be successfully used 149 

instead of serum to form expanded cumulus ECM in pig (Nagyova 2015); and covalent binding 150 

between hyaluronan and heavy chains of IαI is essential for the expansion of the cumulus cell mass 151 

before ovulation (Chen et al. 1996; mouse, Nagyova et al. 2004; pig). Using cultures of sheep granulosa 152 

cells, we have shown that reproductive hormones differentially regulate HAS2, HAS3 and CD44 in 153 

ovaries (Chavoshinejad et al. 2014). Oestradiol, when combined with IGF-1, insulin and FSH, 154 

stimulated HAS2 mRNA expression, which is essential for cumulus cell expansion prior to ovulation. 155 
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Oestradiol and LH had complementary effects in increasing HAS3 and CD44 mRNA expression in the 156 

granulosa cells, an event that occurs during ovulation. Interestingly, high HAS3 and CD44 were 157 

detected in the corpus luteum, indicating a pattern of expression in the ovaries during the oestrous 158 

cycle. This may suggest a shift from production of large-size HA during follicular maturation and 159 

cumulus cell expansion (stimulated by E2, IGF-1 and FSH) to a smaller-size HA produced by HAS3 after 160 

the LH surge. Low-molecular-weight HA molecules have been linked with inflammatory processes and 161 

angiogenesis (Collins et al. 2011, Rayahin et al. 2015), which are characteristic of the follicles during 162 

ovulation (Richards et al. 2002, Blundell et al. 2003) and corpus luteum formation (Skarzynski et al. 163 

2013, Berisha et al. 2015). 164 

Cumulus cell expansion and oocyte maturation 165 

Mammalian oocytes are surrounded by multiple layers of cumulus cells, together known as the 166 

cumulus-oocyte complex (COC). The cumulus oophorus supports oocyte maturation, ovulation and 167 

fertilisation (Magier et al. 1990, Tanghe et al. 2002). Before ovulation, the cumulus oophorus 168 

contributes to the control of cytoplasmic maturation and meiotic arrest (El-Hayek & Clarke 2016, 169 

Macaulay et al. 2016). During ovulation, it facilitates oocyte movement into the oviduct (Akison et al. 170 

2012, mouse) and shortly after ovulation, it participates in the complex mechanisms controlling the 171 

access of spermatozoa to the oocyte (Russell et al. 2016). 172 

It has been demonstrated that cumulus cell expansion is a prerequisite for ovulation and may also 173 

reflect the competence of such oocytes after fertilisation (Chen et al. 1993). Many related studies 174 

showed HA to be the main component of cumulus expansion in the COCs (reviewed by Nagyova 2015). 175 

Cumulus expansion leads to the detachment of the oocyte from the follicular wall and interruption of 176 

the gap junctions between the cumulus cells and the oocyte (Sela-Abramovich et al. 2005). Reduced 177 

cGMP transfer from the cumulus cells to the oocyte leads to a decline in cAMP concentrations in the 178 

oocyte and resumption of oocyte nuclear maturation (Sanchez & Smitz 2012). cGMP inhibits 179 

phosphodiesterase 3A, which maintains a high cAMP concentration in the immature oocyte during 180 

follicular growth (Norris et al. 2009), which is essential for maintaining arrest at the prophase of the 181 

first meiotic division until the preovulatory LH surge (Downs et al. 1989). 182 

The preovulatory surge of LH activates HAS2 expression leading to the production of high-molecular-183 

weight HA by the cumulus cells; water absorbed by the HA results in the expansion of the COC (Saito 184 

et al. 2000, Stock et al. 2002). HA secreted by the mouse cumulus oophorus is detectable between 2 h 185 

and 18 h, peaking at 4–10 h after the LH surge (Tirone et al. 1997, Zhuo & Kimata 2001). In mice, this 186 

HA-rich matrix is organised into a cross-linked network through the cooperative action of IαI, 187 
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pentraxin-3 and TSG-6 (Sato et al. 2001, Fulop et al. 2003, Salustri et al. 2004) to gain a stabilised 188 

viscoelastic state that is required to facilitate the transfer of the oocyte to the oviduct for fertilisation 189 

(Salustri et al. 1999). However, a recent report showed that binding of TSG-6 to HA does not play a 190 

major role in the stabilisation of the cumulus cell matrix in mice (Briggs et al. 2015). 191 

In pigs, COCs cultured in the presence of an HA synthesis inhibitor (6-diazo-5-oxo-1-norleucine) or 192 

HYAL failed to expand at all (Yokoo et al. 2010). Our studies in sheep also revealed that the formation 193 

of large-molecular-weight HA is essential for cumulus cell expansion (Marei et al. 2012). HAS2 and 194 

CD44 expression in bovine cumulus cells were found to be potential markers of oocyte competence 195 

(Assidi et al. 2008), and increased CD44 in follicular fluid was associated with good-quality oocytes 196 

(Ohta et al. 2001). The localisation of CD44, the major cell surface receptor for HA in cumulus cells 197 

(Kimura et al. 2002), suggests that HA–CD44 interaction may also be a likely player in oocyte 198 

maturation. HA–CD44 interaction regulates the tyrosine phosphorylation of Connexin 43 (the major 199 

gap junction protein found in the COCs), which leads to the closure of the gap junction and subsequent 200 

activation of maturation promotion factor (MPF) activity (Sato & Yokoo 2005). The latter brings about 201 

resumption of meiosis in oocytes that have been arrested in meiotic prophase I until shortly before 202 

ovulation. Apparently, this activation occurs regardless of the structural expansion of cumulus cells as 203 

inhibition of cumulus cell expansion by HYAL2 did not affect further fertilisation and embryo 204 

development (Marei et al. 2012). On the other hand, inhibition of HA synthesis by 4-205 

methylumbelliferone during in vitro maturation completely inhibited the development to the 206 

blastocyst stage, an effect which was partially alleviated by the addition of exogenous HA (Marei et al. 207 

2012). This further emphasises the importance of HA signalling during oocyte maturation. 208 

Sperm-related functions 209 

HA is expressed in various segments of the male reproductive tract, including the epididymis, seminal 210 

vesicles, prostate and Cowper’s gland and with traces in the testes (Tammi et al. 1994). The accessory 211 

sex glands provide the fluid medium necessary for nourishment and transportation of spermatozoa 212 

through the reproductive tract. HA is a component of the seminal plasma in ram and alpaca (Kershaw-213 

Young et al. 2012) and may be responsible for the viscosity of the seminal plasma as observed in llama 214 

and alpaca (Bravo et al. 2000). Sakairi and coworkers (2007) reported the presence of HA in the 215 

seminal vesicles of immature pigs, without investigating further its particular roles. However, they 216 

speculated that it may contribute to the regulation of homeostasis rather than sperm functioning. 217 

Studies in mice suggest HA involvement in spermatogenesis (Thakur et al. 2006), even though the 218 

mechanism still remains to be clarified. HA induces sperm capacitation (Tienthai et al. 2004, Tienthai 219 

2015) by the activation of membrane-associated adenylate cyclase (Fernandez & Cordoba 2014), and 220 
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it also enhances the acrosome reaction in bovine (Gutnisky et al. 2007), and porcine (Suzuki et al. 221 

2002) without necessarily modifying the sperm nuclear condensation and morphology, possibly by 222 

decreasing the formation of vacuoles in the sperm head (Montjean et al. 2012). In dog spermatozoa, 223 

HA accelerates the calcium influx into the sperm cytoplasm and increases lactate dehydrogenase 224 

activity and cAMP production, provoking capacitation (Kawakami et al. 2006). HA may also help to 225 

prevent polyspermy during in vitro fertilisation as well as supporting blastocyst development (Kano et 226 

al. 1998) and quality by reducing apoptosis (Opiela et al. 2014). Supplementation of HA to human 227 

sperm in the swim-up procedure increased the sperm motility and reduced the number of sperm with 228 

DNA damage (Saylan & Duman 2016). 229 

One of the criteria by which spermatozoa are assessed is their progressive motility. In artificial 230 

insemination where semen is frozen and stored for future use, the viability of spermatozoa is greatly 231 

affected by the reduction in motility and membrane stability during cryopreservation (Critser et al. 232 

1988). However, this impairment could be overcome by the addition of HA to the semen diluent. HA 233 

supplementation of the diluent helps to preserve post-thaw viability of boar spermatozoa in vitro and 234 

maintains the membrane stability after cryopreservation (Pena et al. 2004, Qian et al. 2016). Similar 235 

results were found in dogs (Prinosilova et al. 2009). Likewise in human, HA has been proposed to 236 

enhance sperm motility (Ghosh et al. 2002) through phosphorylation of proteins that include HA-237 

binding protein (Ranganathan et al. 1995). 238 

Hyaluronan-binding protein 1 (HABP1), a 68 kDa glycoprotein, was detected on spermatozoa of cattle, 239 

buffalo, rat and human (Ranganathan et al. 1994, Bharadwaj et al. 2002, Ghosh et al. 2002, Ghosh & 240 

Datta 2003). It participates in sperm–oocyte interaction (Ghosh et al. 2007) through its mannose 241 

residues (Ghosh & Datta 2003). A reduction in the level of HABP1 is associated with loss of sperm 242 

motility (Ghosh et al. 2002), the mechanism that may be attributed to the ability of HABP1 to modulate 243 

sperm–oocyte interaction even in sub-fertile spermatozoa (Ghosh et al. 2007). The number of 244 

spermatozoa bound to an oocyte was reduced significantly in the presence of D-mannosylated 245 

albumin, the universal blocker of sperm–oocyte interaction, and this effect could be reversed by the 246 

addition of purified recombinant HABP1 (Ghosh et al. 2007). 247 

The correlation of HABP1 with sperm motility initiated the development and use of sperm HA-binding 248 

assay (sHABA) in assessing the sperm viability in fertility clinics (Huszar et al. 2003). sHABA has proved 249 

useful in selecting spermatozoa with a high DNA integrity and morphology and may sometimes be 250 

used as a screening test for sperm quality before IVF (Worrilow et al. 2013). However, its use remains 251 

controversial as sHABA does not predict freeze-thawing sperm survival (Boynukalin et al. 2012), and 252 
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it does not predict the pregnancy rates either in intrauterine insemination (Yogev et al. 2010) or IVF 253 

(Ye et al. 2006, Boynukalin et al. 2012). 254 

Intracytoplasmic sperm injection (ICSI) is used in clinical IVF to bypass the physiological barriers of the 255 

cumulus oophorus and the zona pellucida in the treatment of severe male infertility due to low sperm 256 

numbers or function. The selection of the sperm for injection may perhaps be promoted by HA binding 257 

as a screening technique, given that HA-bound sperm in general are fully matured and have better 258 

morphology with a reduced risk of aneuploidy or fragmented DNA (Pregl Breznik et al. 2013), which 259 

has been reported as associated with increased pregnancy and implantation rates (Worrilow et al. 260 

2013). However, it is not a reliable test for the prediction of sperm intracellular reactive oxygen 261 

species, DNA fragmentation and DNA maturity and mitochondrial membrane potential risks and 262 

healthy spermatozoa selection (Rashki Ghaleno et al. 2016), and the result of a recent meta-analysis 263 

study has not supported its use in human ICSI cycles (Beck-Fruchter et al. 2016). 264 

Sperm hyaluronidases and the role of HA system in fertilisation 265 

Isoforms of HYAL found in sperm are SPAM1 and HYAL5. These unique hyaluronidases are located in 266 

the testis or epididymis and have been detected in mouse (Zhang & Martin-DeLeon 2001, Chen et al. 267 

2006), pig (Day et al. 2002) and human (Evans et al. 2003). It is secreted and located on the sperm 268 

surface during epididymal maturation (Deng et al. 2000, Day et al. 2002, Evans et al. 2003, Chen et al. 269 

2006, Martin-DeLeon 2006). SPAM1 is a GPI-anchored hyaluronidase (also known as PH20), which 270 

depolymerises HA into tetrasaccharide and hexasaccharide products (Kim et al. 2005, Hofinger et al. 271 

2008, Thompson et al. 2010). It is unique among hyaluronidases, in that it shows enzyme activity at 272 

both acidic and neutral pH, activities that appear to involve two different domains in the protein 273 

(Gmachl & Kreil 1993, Cherr et al. 2001). Several studies have confirmed that SPAM1 is the only 274 

hyaluronidase identified to date in mammalian sperm, including the sperm of guinea pigs, rats, 275 

macaques and humans (Cherr et al. 2001, Zheng et al. 2001). It is also present in the lysosome-derived 276 

acrosome, where it is bound to the inner acrosomal membrane (Morin et al. 2010). SPAM1 is initially 277 

synthesised as a polypeptide with an apparent molecular weight of 64 kDa. During the course of sperm 278 

maturation, part of SPAM1 is processed into two fragments that are linked through disulphide bridges, 279 

such as at the N-terminal domain of 41–48 kDa and at the C-terminal domain of 27 kDa. 280 

Hyal5 is exclusively expressed in the testis and the plasma and acrosomal membranes of rodent sperm 281 

(Kim et al. 2005). It is enzymatically active in the pH range 5–7 and inactive at pH 3 and 4. Both Hyal5-282 

enriched SPAM1-free soluble protein extracts and SPAM1-deficient mouse sperm were capable of 283 

dispersing cumulus cells, which was inhibited by the presence of a hyaluronidase inhibitor, apigenin. 284 
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These results suggest that in the mouse, Hyal5 may function principally as a ‘cumulus matrix 285 

depolymerase’ in the sperm penetration through the cumulus mass (Kim et al. 2005). 286 

The concentration of HA in follicular fluid has been used to estimate the viability of oocytes for 287 

fertilisation with concentrations as high as 50 ng/mL (Saito et al. 2000) to 239.3 ng/mL (Babayan et al. 288 

2008) being associated with fertilisation of the oocyte and embryo implantation in human. 289 

Despite the presence of HYAL in mouse, its role in fertilisation remains uncertain. Kimura and 290 

coworkers (2009) showed SPAM1 to be required for sperm penetration through the cumulus matrix 291 

for fertilisation in mice. It was also reported to be involved in sperm-ZP binding (Myles & Primakoff 292 

1997, Cherr et al. 2001) and induction of the acrosome reaction (Overstreet et al. 1995, Sabeur et al. 293 

1998). Reddy and coworkers (1980) used a hyaluronidase inhibitor in mice to clarify HYAL function in 294 

fertilisation. In their study, myochrysine, a natural inhibitor of HYAL with no effect on the acrosome 295 

reaction, inhibited fertilisation due to reduced breakdown of the COC. However, a similar effect was 296 

not observed when using oocytes devoid of follicular cells. Another study using a double knockout 297 

model confirmed that sperm serine proteases, ACR (acrosin) and/or PRSS21 (testisin), function 298 

cooperatively with SPAM1 in cumulus penetration in mice (Zhou et al. 2012). In addition, HA fragments 299 

generated by SPAM1 stimulate cytokine/chemokine production via the TLR2 and TLR4 pathways in 300 

cumulus cells of ovulated COCs, which may enhance fertilisation (Shimada et al. 2008). However, mice 301 

lacking SPAM1 and HYAL5 are fertile, indicating that the HA-degrading ability of HYAL in mouse sperm 302 

is not essential for fertilisation (Kang et al. 2010). It is also possible that SPAM-1 secreted by the 303 

oestrous uterus and oviduct, with the potential to bind to sperm during capacitation (Zhang & Martin-304 

DeLeon 2003, Griffiths et al. 2008) might have compensated for its absence in the sperm itself in the 305 

knockout model. In addition, the detection of functionally active HYAL5 on the surface of SPAM1-306 

deficient spermatozoa confirmed that compensation was possibly occurring by this HYAL (Zhang et al. 307 

2005). Moreover, HYAL2 that was reported to be present in mouse sperm (Modelski et al. 2014) may 308 

have contributed to this functional redundancy. 309 

Pre-implantation embryo development 310 

In cattle, HAS2 and HAS3 are expressed at all stages of early embryo development from 2-cell to 311 

blastocyst (Marei et al. 2013). We found that HAS2 mRNA expression tended to decrease with the 312 

progression to the blastocyst stage, whereas HAS3 expression was maintained. Moreover, HA 313 

receptors CD44 and RHAMM were also expressed at all stages (Furnus et al. 2003, Palasz et al. 2006, 314 

Choudhary et al. 2007). 315 
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Studies in murine, porcine and bovine have shown that HA supplementation of culture media 316 

improves embryo development, viability and blastocyst cell number in vitro (Furnus et al. 1998, 317 

Gardner et al. 1999, Jang et al. 2003, Lane et al. 2003, Toyokawa et al. 2005). HA has also been shown 318 

to improve the cryotolerance of blastocysts, which then leads to increased birth rates in cows (Lane 319 

et al. 2003), mice (Palasz et al. 1993) and ewes (Dattena et al. 2007). On the contrary, in a randomised 320 

clinical trial of human IVF, hyaluronan enrichment of the embryo transfer media did not have any 321 

beneficial effects on IVF outcome in terms of clinical pregnancy implantation and delivery rates, 322 

although higher birthweights occurred in the HA group (Fancsovits et al. 2015). However, the 323 

inhibition of HA synthesis by 4-methyumbelliferone (4-MU) suppressed blastocyst formation in sheep, 324 

(Marei et al. 2013) indicating the critical role of HA in embryo development in this species. 4-MU is a 325 

coumarin derivative that has been shown to supress HA synthesis in mammalian cell cultures 326 

(Nakamura et al. 1997). The effect seems to be reversible upon removal of 4-MU from the cell culture. 327 

The disruption of HA synthesis by 4-MU is both at the level of the substrates (UDP-GlcUA and UDP-328 

GlcNAc) and HAS expression. 4-MU has affinity to conjugate with UDP-GlcUA, with reduction in the 329 

cellular pool of this substrate as well as causing downregulation of HAS2 and HAS3 (Kultti et al. 2009). 330 

The effect of HA on embryo development seems to be HA-size dependent. HA fragments generated 331 

by HA depolymerisation by HYALs are biologically active molecules that have important functions 332 

(Stern et al. 2006). Most of these functions are receptor mediated and increase cell proliferation 333 

through binding to CD44 and RHAMM (Xu et al. 2002) incurring phosphorylation and activation of the 334 

MAPK pathway (Zhu et al. 2013a,b) and stimulation of mitosis. In cleavage-stage bovine embryos 335 

treated with HYAL2, we detected higher levels of MAPK1 and MAPK3, an increased incidence of 336 

blastocyst development and increased blastocyst quality as shown by higher total numbers of cells 337 

and trophectoderm cells (Marei et al. 2013). These effects were abrogated if CD44 was blocked (Marei 338 

et al. 2013). These data show the potential beneficial effects and importance of small-size HA in the 339 

development of pre-implantation embryos. 340 

In vivo, early stages of embryo development in most mammals happen in the isthmus compartment 341 

of the oviduct. HA was detected in oviductal fluids collected by catheterisation during the oestrous 342 

cycle in heifers and cows (Stojkovic et al. 2002) and was shown to be highest at ovulation (Bergqvist 343 

et al. 2005b). Transcripts for HAS2 and HAS3 have been found in the oviducts of several animal species 344 

(Tienthai et al. 2003, Ulbrich et al. 2004, Mohey-Elsaeed et al. 2015). It has been noted that HAS3 345 

expression was higher in the isthmus compared to the ampulla (Ulbrich et al. 2004, Marei et al. 2013, 346 

Mohey-Elsaeed et al. 2015) suggesting that a gradient of decreasing molecular size of HA is 347 

experienced during embryo development and progression down the oviduct. In support of this idea, 348 
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we recently reported that infusion of Hyalovet (500–750 kDa HA) into sheep oviduct on day 2 after 349 

mating significantly reduced the incidence of blastocyst formation by day 7 and decreased insulin-like 350 

growth factors IGF2 and IGFBP2 expression in the oviduct epithelial cells. In contrast, HYAL-2 infusion 351 

increased blastocyst formation, quality and the number of hatched blastocysts and increased HSP70 352 

expression in oviductal epithelial cells (Marei et al. 2016a). Similar opposing effects of Hyalovet and 353 

HYAL-2 were observed in in vitro-produced sheep embryos (Marei et al. 2016a). Small-sized HA has 354 

been shown to regulate the expression of IGFs (Homandberg et al. 2004) and heat shock proteins (Xu 355 

et al. 2002), which are important for early embryo development in the oviduct (Aviles et al. 2010). We 356 

concluded that the presence of large-size HA in the vicinity of developing embryos disturbs the 357 

oviductal environment and embryo development. Interestingly, HYAL-2 mRNA is expressed in sheep 358 

embryos starting from the morula stage (Marei et al. 2013). HYAL2 is also expressed in the oviduct 359 

with significantly higher levels in the isthmus as compared to the ampulla (Marei et al. 2013). We 360 

hypothesise that the small-sized HA produced by oviductal HYAL-2 supports embryo development 361 

until the morula stage as cleavage-stage embryos do not express HYAL-2 (Marei et al. 2013). 362 

Embryo implantation-contrasting data 363 

Synthesis of HA is increased significantly in the uterus of mice on the day of implantation (Carson et 364 

al. 1987), and HA differential expression in the human endometrium during the menstrual cycle 365 

implies its involvement in implantation. In the human uterus, peak expression of HAS and CD44 is in 366 

the mid-secretory stage (Afify et al. 2006). There is a plethora of data suggesting the beneficial roles 367 

for HA in human embryo implantation (Urman et al. 2008, Hambiliki et al. 2010, Nakagawa et al. 2012). 368 

It is thought that implantation failure could be reduced by providing a ‘sticky’ matrix for the embryos 369 

to attach and for this reason HA (which is also called ‘magic glue’ (Girish & Kemparaju 2007), or 370 

EmbryoGlue (Hazlett et al. 2008)) is often used as a supplement in human embryo transfer medium. 371 

The presence of HA in mouse embryo transfer medium resulted in higher implantation and live birth 372 

rates (Gardner et al. 1999). Similarly, a Cochrane meta-analysis of clinical trials concluded that HA 373 

inclusion in embryo transfer media significantly increases clinical pregnancy rates and live birth rates 374 

(Bontekoe et al. 2014). In an attempt to develop human embryo culture media free from blood-375 

derived additives, HA was successfully used to replace albumin as a sole macromolecule in a human 376 

embryo transfer medium and resulted in high pregnancy and implantation rates (Simon 2003). In 377 

addition, the use of HA in transfer media for human frozen embryos significantly increased the 378 

implantation rate without increasing the delivery rate (Hambiliki et al. 2010). The mechanism through 379 

which HA promotes implantation still remains uncertain. It is generally attributed to facilitating 380 

apposition and attachment of the trophectoderm to the maternal endometrium during the early 381 
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stages of implantation. The role of CD44 at the blastocyst–endometrial interface during implantation 382 

was stressed in the study of Illera and coworkers (2004) in rabbits, where intrauterine infusion of anti-383 

CD44 hindered implantation, whereas intra-peritoneal infusion of the same antibodies in the control 384 

rabbits had no effect on implantation. 385 

On the other hand, some reports contradict the published beneficial effects of HA supplementation in 386 

transfer media for embryo transfer (Loutradi et al. 2007, Hazlett et al. 2008, Check et al. 2010). In 387 

women who failed to conceive despite at least 3 previous embryo transfers, a 25% clinical pregnancy 388 

and 14.2% delivered pregnancy were achieved using EmbryoGlue (high-molecular-weight HA 389 

produced by Vitrolife), when compared to women not using EmbryoGlue (39.2% and 39.2% 390 

respectively) (Dietterich et al. 2007). Among 120 cases, no statistical difference was found between 391 

clinical pregnancies in a control group compared to a test group using EmbryoGlue (38% vs 42%) (Chao 392 

et al. 2008). Similar results were obtained by Marek and coworkers (2004) and Chun and coworkers 393 

(2016). Routine use of EmbryoGlue in unselected patients did not significantly improve pregnancy or 394 

implantation rates after embryo transfer on day 3 or day 5 compared with standard culture media 395 

(Hazlett et al. 2008). A better understanding of the mechanism of HA’s involvement in reproduction 396 

and implantation in particular will improve the prospects for developing an effective clinical 397 

intervention based upon this molecule. 398 

Accumulation of HA resulting from the dysregulated expression of HASs or HYALs is associated with 399 

the disease. For example, failure of HA turnover in HYAL2 knockout mice resulted in HA accumulation 400 

and severe cardiopulmonary dysfunction (Chowdhury et al. 2013). Enhanced synthesis of HA by pro-401 

inflammatory cytokines has been associated with renal and rheumatoid diseases (Dahl et al. 1985, 402 

Manicourt et al. 1993, Feusi et al. 1999). Similarly, dysregulation of HA metabolism is a typical feature 403 

of diabetes (Nieuwdorp et al. 2007) or endometrial cancer (Afify et al. 2005, Nykopp et al. 2010). HA 404 

dysregulation may be associated with unexplained infertility (Altmäe et al. 2010), and most relevant 405 

here, HA accumulation in the uterus has been linked with early embryo loss including spontaneous 406 

abortion (Camenisch et al. 2000, Cordo-Russo et al. 2009). Studies in pregnant mice reported the 407 

disappearance of HA at the maternal–embryo interface at days 5–7 of pregnancy (Brown & 408 

Papaioannou 1992, 1993, Martins et al. 2003). HYAL-2 is also expressed in trophoblast giant binucleate 409 

cells and the multinucleated syncytia of sheep placentomes commencing on day 16 of gestation 410 

(Dunlap et al. 2005), coinciding with the attachment and perhaps contributing to the clearance of HA 411 

at the implantation sites. In line with these reports, inhibition of HA by the infusion of 4-MU into the 412 

sheep uterus on day 14 after natural mating enhanced embryo implantation (Marei et al. 2016b). 413 

Therefore, further prospective randomised clinical trials are essential for a robust conclusion to be 414 
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made concerning the potential beneficial effects of HA pathway manipulation for women undergoing 415 

embryo transfer (Loutradi et al. 2008). 416 

Cervix ripening/relaxation 417 

The cervix is the entrance to the uterus. In most species especially sheep, it forms a rigid and tightly 418 

closed non-distensible structure, which is necessary to prevent access of microorganisms into the 419 

uterus. However, a pathway through the cervix is essential under two conditions. One is for the 420 

passage of sperm after coitus and secondly at parturition. The cervical connective tissue is mainly 421 

composed of collagen, HA and proteoglycan (Leppert 1992). The HA content of the cervix varies with 422 

the stage of oestrus cycle, with the highest and lowest values during pre-LH surge and post-LH surge 423 

periods respectively, whereas the value in the luteal stage is intermediate (Perry et al. 2010a). 424 

Cervical remodelling at parturition can be divided into cervical softening (a gradual process that occurs 425 

several days (gestation day 12 in the rat; Harkness & Harkness 1959) or weeks prior to parturition 426 

(during the second trimester of pregnancy in the human; Leppert 1995)) and cervical ripening phases. 427 

Cervical ripening, which occurs in the hours (rodents) and days (women) preceding parturition, is 428 

characterised by hydration and further growth, decreased tensile strength, increased cervical 429 

secretions and lubrication, disorganisation of collagen fibrils, further changes in the composition of 430 

GAGs and infiltration of inflammatory cells. These are influenced by the local endocrine milieu, as well 431 

as interactions and cross-talk between the cellular components (stroma and epithelium), 432 

inflammatory cells and extracellular matrix (Straach et al. 2005). 433 

Regulation of HA synthesis in the cervix is a conserved process in mammalian species. Hyaluronan 434 

content of cervix increases markedly during late pregnancy in human, sheep, guinea pig, rabbit and 435 

rat (Downing & Sherwood 1986, Anderson et al. 1991, Rajabi et al. 1992, El Maradny et al. 1997). The 436 

HA level increases from 19% of total GAG in early pregnancy to 71% at term (Akgul et al. 2012) and 437 

the majority of cervical HA in mice is synthesised by HAS2 (Akgul et al. 2014). Uchiyama and coworkers 438 

(2005) reported peak levels of HAS1 and HAS2 mRNA expression in mouse cervix at delivery. HAS2 has 439 

also been identified to be specifically upregulated in women at labour relative to pregnant women not 440 

in labour (Straach et al. 2005). HAS2 produces high-molecular-weight HA, which may facilitate the 441 

ripening of the cervix by increasing the water content and cytokines (interleukin 8) of the cervix, 442 

possibly due to its hydrodynamic and viscoelastic properties (El Maradny et al. 1997). Despite this, 443 

more recent work by Akgul and coworkers on HAS knockout mice has revealed that HA is not necessary 444 

for the increased cervical distensibility during late gestation (Akgul et al. 2014). 445 

 446 
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Artificial insemination (AI) is one of the greatest technologies devised for genetic improvement of 447 

animals. The success of AI, however, depends greatly on the ease of introducing the prepared 448 

spermatozoa through the cervix into the uterus with the aid of a catheter (Kaabi et al. 2006). As 449 

intracervical application of HA has the potential to improve cervical dilation, there may also be a very 450 

practical application for HA during artificial insemination in mammals (Perry et al. 2010b). 451 

Cryopreservation of embryos and in vitro embryo production 452 

In cattle, one of the major factors limiting the usefulness of IVF is the problem of cryopreservation of 453 

bovine oocytes. This process is frequently accompanied by intracellular ice formation and generation 454 

of reactive oxygen species that subsequently lead to degeneration during thawing, and hence, a high 455 

chance of fertilisation failure. Addition of HA to the culture medium may perhaps alleviate this 456 

problem, although it remains to be seen whether the observations of improvements in embryo 457 

cryopreservation can be replicated in oocytes. HA-supplemented media enhances blastocyst yield, 458 

improves survival after blastocyst vitrification and promotes post-transfer survival of fresh morula and 459 

blastocyst stage embryos as compared to those in medium supplemented with bovine serum albumin 460 

(Block et al. 2009). HA improves the developmental capacity of bovine embryos under in vitro 461 

conditions and is warranted as a culture supplement for in vitro production of bovine embryos, 462 

particularly if they are to be cryopreserved (Stojkovic et al. 2002). In humans, a high level of HA in the 463 

embryo transfer medium was found to improve the clinical pregnancy rate and chances of attachment 464 

of frozen-thawed embryos (Hambiliki et al. 2010), possibly by reducing apoptosis and induction of 465 

heat shock protein. Small fragments of HA induce heat shock protein and suppress apoptosis in vitro 466 

(Xu et al. 2002). Similar effects promoting cryosurvival have been reported in stem cells where both 467 

post-thaw viability and phenotypic characteristics are improved by HA (Turner et al. 2012). 468 

Integral model to explain the reproductive functions of HA 469 

It is apparent that most of the signalling effects of HA have been attributed to low-molecular-weight 470 

HA; however, it becomes a subject of contention whether low or high molecular weight HA is more 471 

beneficial (Camenisch & McDonald 2000). HA’s biological functions depend upon its molecular weight. 472 

Interestingly, low- and high-molecular-weight HAs have opposing functions. The functions of high-473 

molecular-weight HA are premised on its physical properties of being hygroscopic, space filling, 474 

antiangiogenic and immunosuppressive, impeding differentiation and causing cell cycle arrest (Fraser 475 

et al. 1997, Necas et al. 2008). On the contrary, low-molecular-weight HA is associated with pro-476 

inflammatory, angiogenic and anti-apoptotic effects, facilitating cell-to-cell interaction, cell 477 

proliferation and HA-receptor-mediated signalling (Toole 2004, Matou-Nasri et al. 2009). 478 
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As far as reproduction is concerned, we need to consider the anatomical component and physiological 479 

status of the tissue in context. Clearly, high-molecular-weight HA may be required at a particular point 480 

in time by a reproductive tissue, whereas the next phase of the same tissue’s differentiation may 481 

require low-molecular-weight HA. Low-molecular-weight HA may be produced directly by HAS3 or 482 

through cleavage of high-molecular-weight HA by HYAL i. Therefore, we wish to emphasise that the 483 

prediction of HA function resulting from HAS1, HAS2 or HAS3 is difficult without taking into 484 

consideration the HA-degrading activity of HYALs. The functions of HA therefore depend not only upon 485 

its intrinsic properties but also upon a complex balance of polymerisation by HASs, depolymerisation 486 

by HYALs and interactions with HA receptors and HA-binding proteins as well as other intracellular 487 

and extracellular components such as growth factors and cytokines. 488 

Based upon our work and that of others, as outlined previously, we now propose a model that takes 489 

into account the integrated functions of HA according to size, the location of HA in different places 490 

throughout the reproductive tract and the timing of its presence, relative to female reproductive 491 

cycles and the prevailing hormonal environment at any given moment (Fig. 1). Such model is primarily 492 

applicable to ungulate species such as sheep and cow. Nevertheless, the three genes encoding 493 

hyaluronan synthases are highly conserved in vertebrates, and the simple structure of HA is conserved 494 

throughout all mammals. This implies that a similar pattern of expression and regulation may be 495 

generalised to other mammals. 496 

In conclusion, we have presented evidence from a range of mammalian species for the central role of 497 

HA in key events in reproduction. HA is ubiquitous; however, its actions at different locations within 498 

the reproductive tract depend critically upon its size, which is controlled by the balance of synthesis 499 

by one of three isoforms, degradation, which is undertaken principally by two hyaluronidase isoforms, 500 

together with a sperm-specific isoform around fertilisation, and its signalling pathways, which occur 501 

via CD44 and RHAMM. Superimposed upon these variables is the cyclicity inherent in female 502 

mammalian reproduction, with steroid hormones affecting the synthetic enzymes and thereby tilting 503 

the balance of small- or large-molecular-weight HA being predominant. A better understanding of how 504 

the different components are orchestrated will provide opportunities for correction of pathology and 505 

promotion of normal fertility or contraception in a range of situations and species. In particular, 506 

assisted conception in animal species, rare species preservation and human IVF will benefit from 507 

improved reagents and strategies to control implantation. 508 
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Table 1.  Concentration of hyaluronan in fluids and tissues of the reproductive system.  1156 

Reproductive 
fluid/tissue 

Concentration of HA Species Reference 

Seminal plasma  3.4± 1.14 µg/ml 
2.3 ± 0.72 µg/ml 

Alpaca 
Ram 

Kershaw-Young et al., 
2012 

Follicular fluid 50.0 ± 2.6 ng/ml fertilized oocyte 
66.9 ± 5.9 ng/ml  unfertilised oocyte 

Human Saito et al, 2000 

Uterus 4053.0 ± 651.4 ng/g dry tissue         
during dioestrus. 

Mouse Teixeira Gomes et al., 
2009 

Oviductal fluid 3.9 mg/ml at metoestrus (minimum)    
10.4 mg/ml proestrus (maximum) 

Pig Tienthai et al., 2000 
 

Cervix 3.0 ± 0.4 ng/mg dry tissue at pre-LH 
2.0 ± 0.2 ng/mg dry tissue at post LH 
2.1 ± 0.2 ng/mg dry tissue  

Sheep Perry et al., 2010a 

Amniotic fluid 20 µg/ml (weeks 16-20) 
1 µg/ml (week 30 to week 30) 
 
5.1 ug/ml (week 12) 
1.9 ug/ml  (weeks 15-17) 

Human 
 
 
Sheep 

Dahl et al., 1983 
 
Dahl et al., 1989 
 

 
Serum 
 
 

11.4 ± 4.5 ng/ml (weeks 5-14) 
13.6 ± 2.8 ng/ml (weeks 15-26)  
46.9 ±7.9  ng/ml (weeks 38-40) 
100.4 ± 11.3 ng/ml (labour) 

 
Human 

 
Kobayashi et al., 1999  
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Figure 1. Model of the regulation of HA biosynthesis, degradation and function in the reproductive 

system. We hypothesise that at least in ungulates, steroid hormones orchestrate a sequential 

expression pattern for HA of different sizes in the reproductive system, with oestradiol (E2) inducing 

expression of HAS-2 resulting in the production of large-molecular-weight HA to support ovulation 

and fertilisation, followed by the progesterone (P4)-dominated phase, which upregulates CD44 

expression and stimulates small-size HA production by HAS3 and HA fragments Hyal-2. Hyal-2 and HA 

fragments support early embryo development and induce the expression of adhesion molecules and 

signalling cascades required for the attachment of the blastocyst to the uterine luminal epithelium 

(LE) and establishment of pregnancy. FSH, follicle-stimulating hormone; GE, glandular epithelium; LH, 

luteinising hormone; IFNt, interferon tau; MUC1, mucin 1; OPN, osteopontin; OTr, oxytocin receptor; 

PG″2a, prostaglandin F2 alpha; PGE, prostaglandin E; St, uterine stroma cells. 

 

 


