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Identification of LukPQ, a novel, 
equid-adapted leukocidin of 
Staphylococcus aureus
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Anette Loeffler14, Igor Loncaric15, Armando E. Hoet16,17, Karin Bergström18, Luisa De Martino19, 
Constança Pomba20, Hermínia de Lencastre21,22, Karim Ben Slama23,24, Haythem Gharsa23, 
Emily J. Richardson25, Edwin R. Chilvers3, Carla de Haas2, Kok van Kessel2, Jos A. G. van Strijp2, 
Ewan M. Harrison26,‡ & Mark A. Holmes5,‡

Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, 
which target white blood cells preferentially and consist of an S- and an F-component. The S-component 
recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which 
the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have 
been described, some of which are host and cell specific. Here, we identify and characterise a novel S. 
aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal 
lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific 
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killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the 
S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ 
and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes 
to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin 
specificity is driven solely by the S-component.

The human and animal pathogen Staphylococcus aureus is capable of colonizing and infecting a broad range of 
host species. S. aureus has been shown to adapt to its hosts through acquisition of mobile genetic elements and the 
introduction of allelic variation through chromosomal mutations. For example, ruminant and equine S. aureus 
strains have acquired pathogenicity islands encoding host-specific variants of von Willebrand factor-binding 
protein1,2 and recently a single nucleotide polymorphism in the dltB gene was shown to make a human S. aureus 
strain capable of infecting rabbits3.

Leukocidins are a family of bicomponent pore-forming toxins contributing to S. aureus pathogenicity. 
Currently there are six known leukocidins of S. aureus (HlgAB, HlgCB, LukAB/HG, LukED, Panton-Valentine 
leukocidin (LukSF-PV/PVL), and LukMF’), all consisting of two subunits (an S- and an F-component) that 
together induce pore formation. In the current model of pore formation, the S-component first binds to a specific 
receptor on the cell surface, after which the F-component can associate to form octameric beta-barrel pores in the 
host cell membrane4. Both gamma-hemolysins (hlgAB and hlgCB) and lukAB/HG are encoded in the core genome 
of S. aureus, while lukED is located on a common pathogenicity island (vSaβ​). In contrast, pvl and lukMF’ are 
located on prophages4. While pvl is mostly found in S. aureus isolates from human origin, lukMF’ is almost exclu-
sively harboured by strains from ruminant origin5–8. Corresponding with their distribution, these leukocidins 
display specific host tropisms, explained by the high-affinity interaction of the toxins with receptor molecules 
which differ between host species9–12. This leads to large differences in leukocidin activity between host species. 
For example, PVL has been shown to lyse neutrophils from rabbits and humans, but to have no effect on Java 
monkey neutrophils13, while LukMF´ is highly toxic to ruminant neutrophils, but not to human neutrophils14,15.

Here, we describe a novel phage-encoded member of the S. aureus bicomponent leukocidin family named 
LukPQ, which shares 91% and 80% amino-acid sequence identity with LukE and LukD respectively. We show 
that LukPQ is strongly associated with S. aureus strains isolated from Equidae (horses and donkeys) and, in 
accordance with this distribution, preferentially kills neutrophils from equine origin with a higher efficiency than 
its closest relative LukED. We identify the equine-CXCRA and CXCR2 as receptors for the S-component, but, 
in contrast to the current paradigm, we show that the observed host specificity is not solely determined by the 
S-component, but also in part by the F-component.

Results
LukPQ: a new phage encoded leukocidin associated with equids.  In the genome sequences of a 
collection of S. aureus clonal complex (CC)133 from horses and donkeys we identified a 45 kb prophage (named: 
Φ​Saeq1) that displayed considerable sequence similarity and synteny to the previously reported phage Φ​Saov3, 
which encodes the ruminant LukMF’ (Fig. 1a). Φ​Saeq1 was highly conserved among equid CC133 strains and 
was integrated at a position ~0.5 Mb into the chromosome at approximately the same site as Φ​Saov1 and SaPIbov1 
in ED133 and RF122, respectively2. Φ​Saeq1 encoded a novel leukocidin, close to the amidase genes of the phage 
(Fig. 1a). As the strains carrying this new variant were isolated from two species of Equidae, we propose that the 
new toxin be named LukPQ (P for Paardachtigen, Dutch for Equidae) and use isolate 3711 as a reference strain 
for describing this phage and leukocidin locus. Phylogenetic analysis of LukPQ in comparison to the rest of the 
leukocidin family showed that LukP was most closely related to LukE (91% amino acid identity), whereas LukQ 
was most similar to the ruminant associated LukF’ (83% amino acid identity), but also shared 80% amino acid 
sequence with LukD (Fig. 1b). Molecular modelling of LukP and LukQ confirmed that both subunits adopt 
classical leukocidin folds (Supplementary Fig. 1). To further validate the association with equids we screened our 
collection of sequenced genomes by BLASTn and found lukPQ with 99–100% nucleotide identity in 29 isolates 
from 5 different clonal complexes (CC1, CC133, CC350, CC522, CC1660), and from a broad geographical dis-
tribution of countries (Brazil, Switzerland, Tunisia, United Kingdom), primarily from equid hosts, but also in 5 
isolates from ruminants (Supplementary Table 1). In the majority of positive isolates (96%), lukPQ was present on 
a phage, but in two strains from Brazilian buffalo, lukPQ was flanked by only two phage-related genes (amidase 
and holin); the remainder of the phage was not present in the genome of these strains. Between CCs, the phage 
encoding lukPQ showed considerable variation, but lukPQ was highly conserved, showing only few SNPs, which 
were associated with clonal lineage (Supplementary Table 1), comparable to what has been shown for pvl-encod-
ing phages16.

We estimated the prevalence of lukPQ in an international collection of equid S. aureus isolates (The 
Netherlands (unpublished), Austria17, the United States18, Sweden19, Portugal20, Italy21 and Spain22) using a PCR 
assay to identify the three prophage-encoded leukocidins (lukSF-PV, lukMF’ and lukPQ). lukPQ was present in 
29 out of 194 strains (15%, 95% CI: 10 to 21%) from the Netherlands, Italy and Portugal, whereas lukSF-PV and 
lukMF’ were only found once and twice, respectively (Supplementary Table 2). Between isolate collections, the 
prevalence of lukPQ differed considerably. In the Dutch collection LukPQ was found in 25 of 74 isolates (34%); 
interestingly this included 11 out of 21 isolates (52%) from the spa-type t011 (CC398) - a lineage that has been 
reported to be specifically associated with horses23.

LukPQ preferentially kills horse neutrophils.  As there was evidence for the association of LukPQ with 
equid hosts, we sought to identify if it exhibited specific activity against horse neutrophils, leukocytes known to be 
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instrumental in the host defence against S. aureus24. Equine, bovine and human neutrophils were incubated with 
the three prophage-encoded leukocidins with an assumed host specificity (LukPQ (putatively equid), LukMF’ 
(ruminant) and LukSF-PV (human)) and pore formation was quantified in a dose dependent manner. Equine 
neutrophils were highly susceptible to LukPQ-induced lysis with a half-maximal lytic concentration (EC50) of 
0.46 nM (±​SD 0.23) (Fig. 2a). This was higher than the EC50 of LukMF’ on bovine neutrophils (0.08 nM (±​SD 
0.02), p <​ 0.001) (Fig. 2b)14, but significantly lower than the EC50 of LukSF-PV on human neutrophils (1.63 nM 
(±​SD 0.66), p =​ 0.006) (Fig. 2c). Both LukMF’ and LukSF-PV were unable to induce pore formation in equine 
neutrophils, emphasizing their described host restrictions13,15. LukPQ, however, was able to permeabilise both 
human and bovine neutrophils, but at significantly higher EC50’s (45.82 nM (±​SD 11.10) and 5.68 nM (±​SD 1.64) 
respectively, both p <​ 0.0001) (Fig. 2a).

LukPQ acts on CXCRA and CXCR2.  Based on the high degree of similarity (91% amino-acid identity) 
between receptor binding components LukE and LukP, we hypothesized that the most likely receptors for LukPQ 
would comprise CXCR1, CXCR2, CCR5, and the Duffy antigen receptor (DARC) analogous to LukED10,11. We 
cloned and expressed the equine homologues of these receptors (the putative CXCR1 homologue in equids is 
CXCRA25) and CCR2 and C5aR in HEK293T cells and exposed these cells to LukPQ and LukED. This identified 
CXCRA and CXCR2 as the major receptors for LukPQ with EC50’s of 5.81 nM (±​SD 3.9) and 3.46 nM (±​SD 1.09) 
respectively (Fig. 3a). Pore formation through CCR5 was less efficient (EC50 >​ 270 nM), while no pore formation 
was observed in HEK293T cells expressing DARC, C5aR or CCR2. Additionally, we showed that LukED also per-
meabilises cells carrying equine CXCRA, CXCR2 and CCR5 at efficiencies similar to LukPQ (EC50’s of 8.97 nM  
(±​SD 5.74) for CXCRA and 6.93 nM (±​SD 3.24) for CXCR2) (Fig. 3b). To further investigate the interaction of 
the S-component LukP with the CXCRA and CXCR2 receptors, we tested its ability to functionally antagonize 
stimulation of these receptors. The horse CXCRA and CXCR2 receptors expressed on HEK293T cells were shown 
to respond to stimulation with human CXCL6 and CXCL8 (ligands for CXCRA) or CXCL5 and CXCL6 (ligands 
for CXCR2) by intracellular calcium mobilization (Fig. 3c). After priming the CXCRA and CXCR2 transfected 
cells with LukP, we observed that intracellular calcium mobilization upon stimulation with their specific cytokines 
was significantly reduced. This suggests that LukP interacts with CXCRA and CXCR2 at the ligand-binding site of 

Figure 1.  The novel Staphylococcus aureus toxin LukPQ in the context of other leukocidins. (a) Comparison 
of the novel prophage Φ​Saeq1 in isolate 3711, carrying the equid specific lukPQ, with Φ​Saov3 (ruminant strain 
ED133) and Φ​Sa2 (human PVL strain MW2). Areas of red show regions conserved between the sequences and 
homologous coding DNA sequences are marked in the same colour. (b) Phylogenetic tree based on amino acid 
sequences of mature leukocidins, with alpha-hemolysin as an outgroup.
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Figure 2.  LukPQ is a potent killer of equine neutrophils. (a,b and c) Equine, bovine and human neutrophils 
were analysed for pore formation upon incubation with LukPQ (A), LukMF’ (B), and LukSF-PV (C). Mean 
percentages of permeable cells ±​ standard deviation (SD) are shown (n =​ 3–5).
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Figure 3.  CXCRA and CXCR2 mediate pore formation by LukPQ in equine neutrophils. (a) Pore formation 
in HEK293T cells stably transfected with equine CCR2, CCR5, C5aR, CXCRA, CXCR2 and the Duffy antigen 
receptor (DARC) upon treatment with LukPQ. Mean percentages of permeable cells ±​ SD are shown (n =​ 3). 
(b) HEK293T cells stably transfected with equine CXCRA, CXCR2 and CCR5 were incubated with LukED and 
analysed for pore formation. Mean percentages of permeable cells ±​ SD are shown (n =​ 3). (c) Relative calcium 
mobilization by CXCRA and CXCR2 transfected HEK293T cells preincubated with buffer or 10 μ​g/ml LukP 
upon stimulation with CXCL5, CXCL6 and CXCL8. Bars indicate SD with n =​ 3. Statistically significant effects 
of preincubation with LukP are indicated. **P <​ 0.01 and *P <​ 0.05. Pre-incubation with LukP resulted in a 
significant decrease in calcium mobilization in both CXCRA and CXCR2 cells stimulated with CXCL6 (p <​ 0.01 
and p <​ 0.05 respectively), and in CXCR2 cells stimulated with CXCL5 (p <​ 0.05). A trend was seen in CXCRA 
cells stimulated with CXCL8 (p =​ 0.06).
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these receptors and has immunomodulatory properties when present as a single component. Alternatively, it may 
be that LukP induces internalization of the receptor, resulting in less surface receptor and therefore in reduced 
calcium mobilization.

LukPQ and LukED exhibit different species specificities.  While the presence of lukPQ was enriched 
in equid isolates, the closely related lukED, located on a pathogenicity island, is present in most S. aureus isolates5. 
We identified that all of the sequenced equid strains in our collection (Supplementary Table 1) that harboured 
lukPQ also harboured lukED, although in CC133 strains, the lukE gene was disrupted by a nonsense mutation 
in amino acid position 174, as has been reported for other CC133 strains2. In order to assess the additional value 
of LukPQ in equid isolates in comparison to the ubiquitously present LukED, we compared the cytotoxicity of 
both toxins on equine, bovine and human neutrophils. Interestingly, when comparing EC50 values, LukED is a 
significantly less potent killer of equine neutrophils than LukPQ with an EC50 of 6.62 nM (±​SD 4.45) (p =​ 0.004) 
(Fig. 4a). This finding was not apparent in the data from the receptors expressed in HEK293T cells, where 
LukPQ and LukED displayed almost equal toxicity (p =​ 0.73 for CXCRA and p =​ 0.46 for CXCR2 expressing 
cells) (Fig. 3). Human neutrophils are permeabilised significantly more efficiently by LukED than by LukPQ 
(p <​ 0.001), while for bovine neutrophils the increased efficiency of LukED is minimal and non-significant 
(p =​ 0.079) (Fig. 4b and c).

The F-component is involved in host-specificity.  Next, because of the high degree of similarity between 
LukP and LukE, we analysed the effects of the non-canonical toxin pairs LukPD and LukEQ on the different neu-
trophils. LukEQ showed a significant increase in pore formation in equine neutrophils as compared to LukED 
with an EC50 of 0.74 nM (±​SD 0.59) (p =​ 0.007) and was as potent as the native pair LukPQ (p =​ 0.98) (Fig. 4a). 
This suggests that LukQ is involved in host specificity to horse neutrophils, a finding that was corroborated by 
the poor activity of other non-canonical pair: LukPD. Against bovine neutrophils, LukEQ and LukED displayed 
equal activity with EC50’s of 1.51 nM (±​SD 0.47) and 2.17 nM (±​SD 1.31) respectively (p =​ 0.9), and the EC50 of 
LukEQ was marginally better than the EC50 of LukPQ (5.68 nM (±​SD 1.64) p =​ 0.032, Fig. 4b), suggesting that 
LukE has a greater specificity for bovine neutrophils than LukP. Finally, against human neutrophils the canonical  
combination LukED displayed significantly higher activity than all other pairs (p <​ 0.001), which displayed 
low-level activity– suggesting that the targeting of human neutrophils requires both LukE and LukD (Fig. 4C). 
Taken together, the results demonstrate that both the S and F-components of LukED and LukPQ are involved 
in host specificity and importantly, reveal a previously unrecognised role for a leukocidin F-component in host 
specificity.

Figure 4.  LukPQ and LukED exhibit distinct species specificities in an F-component-dependent manner. 
Pore formation in equine (a), bovine (b) and human (c) neutrophils upon incubation with LukPQ, LukED, 
LukEQ or LukPD. Mean percentages of permeable cells ±​ SD are shown (n =​ 3–5).
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Discussion
In this study, we describe a new member of the S. aureus bicomponent pore-forming toxin family: LukPQ, which 
is phage-encoded and associated with equid hosts. In accordance with its host distribution, we showed that 
LukPQ displays an enhanced cytotoxicity towards equine neutrophils. This suggests an important role for LukPQ 
in the evasion of the host defence mechanism of S. aureus in equids, in line with the assumed function of other 
phage-encoded leukocidins (LukMF’ and PVL) that have a similarly host-specific function13,14 and distribution26 
(Supplementary Table 3). S. aureus regularly causes problems in equine hospitals, leading primarily to joint, skin 
and wound infections27. Patient-to-patient transmission and outbreaks within equine hospitals as well as zoonotic 
transmission have been documented18,19,28–30. Recently, an epidemic subclone of CC398 MRSA was shown to have 
spread within and between equine hospitals23. This subclone consisted almost exclusively of spa-type t011 strains, 
which in our study had a high prevalence of LukPQ. Leukocidins protect S. aureus from migrating neutrophils, 
which are the hosts first line of defence24, by creating a protective zone around it14, enabling it to reproduce after 
initial entry into a new host. Likewise, LukPQ may enhance the transmission between equid hosts, driving the 
success of this clone in equine hospitals. However, further evaluation of the clinical impact of LukPQ in equid 
infection is required.

The γ​-hemolysins and LukED target a broad host range and are widely distributed amongst S. aureus  
lineages15,31–33, consistent with a more generalist function. LukPQ demonstrates host specificity, but has a broader 
host range than LukMF’ and PVL as at higher concentrations it is capable of lysing bovine and to some extent 
human neutrophils. We demonstrated that LukPQ targets CXCRA and CXCR2, the equine CXCL8 (IL-8)  
receptors expressed on neutrophils34, as well as CCR5, albeit with lower affinity. While the receptor tropism 
of LukPQ and LukED is similar, we found a species-dependent difference in cytotoxicity towards neutrophils: 
LukPQ is more toxic to equine neutrophils than LukED, while the opposite is true for human neutrophils. 
The S-components LukE and LukP are highly similar. The rim domain, particularly the DR4 region, of the 
S-component of the toxin is important for receptor binding. Consistent with their shared receptor specificity, the 
DR4 regions of LukE and LukP are almost identical, whilst that of LukM, which binds CCR1, is considerably dif-
ferent (Fig. 5A). The DR4 region of HlgA, which also binds CXCR1 and CXCR2, is highly similar to that of LukE 
and LukP, but lacks a GS insertion which may explain why HlgA also targets CCR2 rather than CCR512 (Fig. 5A).

Analysis of the effect of the non-canonical pairs LukPD and LukEQ suggests that the F-components LukD and 
LukQ (which share only 80% sequence identity) are the key determinants of the difference in activity between 
LukPQ and LukED against equine and human neutrophils, whereas LukD and LukQ have equal specificity 
for bovine neutrophils. Comparing LukQ, LukD and LukF’ identifies 20 residues that are unique to LukQ, but 
which are conserved between LukD and LukF’ and a further 13 residues that differ between all three toxins 
(Supplementary Fig. 2). Some of these LukQ-unique residues are found in the likely interface for binding with 
LukP, and one of the unique residues, I285 in the LukQ rim domain, maps to a position previously identified in 
LukF-PV as important for interaction with the cell membrane35 (Fig. 5B). Further studies involving chimeric 
F-components may yield insight in the actual importance of these residues. Still, the variable residues do not 
group onto one specific surface, so it is unclear whether the host specificity mediated through LukD and LukQ 
stems from the interaction between the F-component and the S-component, or from the interaction between the 

Figure 5.  Unique residues in F-components may underlie functional specificity. (a) Structure-guided 
alignment of the DR4 region (highlighted yellow) in the rim domain of LukE, LukP, HlgA and LukM.  
(b) Homology model of the LukPQ heterodimer with LukP as a cartoon and LukQ as a surface representation. 
Residues unique to LukQ, but identical between LukD and LukF’ are coloured yellow; residues that differ in all 
three toxins are coloured cyan. The position of isoleucine 285 in the rim domain is annotated.
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F-component and the cell membrane. Although F-components do not interact with the cognate GPCR recep-
tors of the leukocidins9, LukF-PV has been suggested to bind to an F-component receptor prior to complex 
formation, possibly explaining the differences in activity between canonical and non-canonical combinations of 
F-components with LukS-PV36,37. In the case of LukPQ, we found no significant binding of the F-component to 
equine neutrophils (Supplementary Fig. 3), suggesting that interaction with an F-component receptor prior to 
pore-formation is unlikely. However, there is a possibility that F-components recruit a different receptor to the 
complex of alternating S- and F-components during the pore formation process. Involvement of such a receptor 
might explain the difference in species specificity of LukED and LukPQ. Future studies will be needed to elucidate 
the molecular mechanism of pore formation and identify all players involved in the process38.

In conclusion, we describe a novel leukocidin with a high sequence similarity to LukED, but we show that 
the small differences in amino-acid sequence of the S-components in combination with a different F-component 
leads to a substantial change in affinity for neutrophils of various host species, and therefore to host specificity.

Methods
Ethics statement.  All experiments were performed in accordance with relevant guidelines and regulations. 
Written informed consent was obtained from all human blood donors in accordance with the Declaration of 
Helsinki. The medical ethics committee of the University Medical Center Utrecht (The Netherlands) approved the 
use of human venous blood for this study. The use of blood from cattle was approved by the Ethical Committee 
for Animal Experiments of the Utrecht University (Permit No. DEC2012.II.10.152) and conducted according to 
national regulations.

Bacterial strains and genome sequencing.  Strains used in this study were isolated in the course of pre-
vious and on-going studies39,40 or collected as part of routine surveillance. Genomic DNA was extracted with the 
MasterPure Gram-positive DNA purification kit (Cambio, United Kingdom). HiSeq sequencing was performed 
according to the manufacturer’s protocol (Illumina, Inc., United States). Phage identification was performed 
using PHAST41. The nucleotide sequence of the LukPQ positive phage from strain 3711 has been deposited in the 
Sequence Read Archive database in the European Nucleotide Archive (LT671578).

To estimate the prevalence of the three phage encoded leukocidins, previously reported collections of horse 
isolates17,18,20–22,42 and a selection of isolates from an undescribed Dutch collection were screened by PCR (see 
Supplementary Methods).

Leukocyte isolation.  Bovine blood was collected from the coccygeal vein of healthy Holstein Friesian cows 
using a sterile blood collection system with EDTA anti-coagulant (BD Vacutainer). Neutrophils were isolated by 
using Percoll (1.09176 g/l) centrifugation14. Human blood was collected in heparin tubes from healthy volunteers 
and neutrophils were isolated by Ficoll/Histopaque centrifugation43. Blood was collected from healthy horses 
during the slaughter process (and immediately upon death) in tubes containing 3 mM EDTA anticoagulant. 
Equine neutrophils were isolated using 70 and 85% Percoll gradients as described44.

Cloning, expression and purification of recombinant proteins.  Recombinant LukP, LukQ, and LukD 
proteins were generated in E. coli according to methods described previously45. See Supplementary Methods for 
details and primer sequences. Recombinant PVL and LukMF’ used in this study were generated as reported pre-
viously9,14. Recombinant LukE was kindly provided by Thomas Henry (Lyon, France)46.

Cloning of receptor expressing plasmids.  Horse genomic DNA was obtained from Zyagen (San Diego, 
USA). Equine chemokine receptors CXCRA, CXCR2, CCR2, CCR5, C5aR1, and the predicted Duffy anti-
gen receptor (DARC) were amplified from equine genomic DNA by PCR using PfuTurbo DNA polymerase  
(Stratagene). Primers and accession numbers are listed in Supplementary Table 6. Exons encoding DARC were 
assembled using overlap extension PCR. All coding sequences were cloned into the pIRESpuro3 vector (Clontech) 
according to methods described elsewhere12. The human Ga16 cDNA (pCISG16 plasmid) was kindly provided 
by Melvin I. Simon47. The Ga16 gene was recloned in between the BstBI and EcoRV sites of the pIREShyg3 vector 
(Clontech) using the following primers:

5′​-AACTATTTCGAAGCCGCCACCATGGCCCGCTCGCTGACCTG-3′​ and
5′​-ATCGAGGATATCTCACAGCAGGTTGATCTCGTC-3′​.

Cell lines and Transfections.  HEK293T cells (a human embryonic kidney cell line obtained from the 
American Type Culture Collection) were maintained in DMEM supplemented with 10% FCS and 100 U/ml pen-
icillin and 100 μ​g/ml streptomycin. HEK293T cells were stably transfected with human Gα​16 plasmids prior to 
transfection with equine receptor encoding plasmids. Cells were selected for Gα​16 expression using 250 μ​g/ml  
hygromycin. Transfections with pIRESpuro3 and pIREShyg3-Gα​16 plasmids were performed as described12.

Cell permeability assays.  HEK293T cells and neutrophils (3 ×​ 106 cells/ml) were incubated with recom-
binant LukPQ, PVL, LukED, or LukMF’14 in a volume of 50 μ​l in RPMI, containing 0.05% human serum albu-
min (Sanquin) for 30 minutes at 37 °C, 5% CO2. Cells were analyzed by flow cytometry and pore formation was 
defined as intracellular staining by 4′​,6-diamidino-2-phenylindole (DAPI). Equimolar concentrations of S- and 
F-components were applied in all assays. For analysis, the percentage of DAPI-positive cells incubated with buffer 
(spontaneously permeabilised cells) was subtracted from the percentage of DAPI-positive cells that were incu-
bated with toxin. Half maximal lytic concentrations (EC50) were calculated using nonlinear regression analyses 
in Prism6 (Graphpad Software Inc., USA). EC50 data were log transformed and analysed using one-way ANOVA, 
followed by Tukey’s multiple comparison test.
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Intracellular Calcium mobilization assays.  Calcium mobilization assays with CXCRA and CXCR2 
HEK293T cells were performed as described48, with slight modifications. Cells were resuspended to 5 ×​ 106 
cells/ml in Hanks’ Balanced Salt Solution (HBSS) supplemented with 10 mM HEPES, 0.05% HSA and 25 μ​M 
Probenecid and were loaded with 2 μ​M Fluo-3-AM (Invitrogen) for 1 hour at 37 °C while shaking. Cells were 
washed, resuspended to 5 ×​ 106 cells/ml in the described HBSS buffer and incubated with buffer or 10 μ​g/mL 
LukP for 30 minutes at room temperature. Cells were stimulated with different concentrations of CXCL5, CXCL6, 
and CXCL8. The increase in calcium mobilization was assessed by flow cytometry for 10 seconds before and up to 
70 seconds after addition of the stimulus. Relative calcium mobilization was calculated by dividing the mean fluo-
rescence after stimulation by that of the background. The effect of stimulation with or without LukP was assessed 
using a general linear model, modelling the interaction between concentration of the ligand and presence or 
absence of LukP on the relative calcium mobilization.

Computational analysis and leukocidin homology modelling.  Homology models were generated with 
Modeller (v9.14)49. For LukM, LukF’, LukP and LukQ templates were derived either from the Homstraad database 
or from LukE (PDB ID: 3ROH50); whilst human CXCR1 (PDB ID: 2LNL51) was used as a template for equine 
CXCRA. Models were created using thorough MD optimisation and very thorough VTFM optimisation before 
analysis with the integral DOPE function of Modeller. The model of highest initial quality was further refined and 
improved using SCWRL451,52 and Molprobity53. Structural alignments were performed using the superposition 
function of PYMOL (Schrodinger Inc.). All structural images were generated with PYMOL. Sequence alignments 
and pairwise identities were determined with Clustal Omega54. Topology predictions for the membrane spanning 
receptor proteins were calculated using the Constrained Consensus Topology prediction server55,56.
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