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Abstract

Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with

reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n

expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-

loops and are associated with epigenetic modifications. With the aim of interfering with

higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we exam-

ined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of dif-

ferent lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple

helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA

repeats of different lengths; however, single stranded regions were not detected within the

medium size pathological repeat, suggesting the presence of a more complex structure.

Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA struc-

tures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the

DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canoni-

cal-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA

repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA

repeat expansions, and atomic force microscopy analysis showed significant relaxation of

plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher

order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have poten-

tial for discovery of drugs aiming at recovering Frataxin expression.
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Introduction

Friedreich’s ataxia (FRDA) is the most common inherited autosomal recessive ataxia, and in

>96% of cases the disease is correlated by expansion of (GAA)n repeats in the first intron of

the Frataxin gene (FXN) [1,2]. Disease-associated expanded alleles consist of approximately 70

to more than 1000 repeats [1–3]. The (GAA)n expansions result in a substantial reduction in

Frataxin mRNA and protein levels [4], and non-symptomatic carriers (heterozygous for the

expanded allele) show ~50% reduction [1,3–5]. Frataxin deficiency causes excessive free radi-

cal production, dysfunction of Fe-S center containing enzymes, and progressive iron accumu-

lation in mitochondria [6]. Several studies have focused on increasing the level of Frataxin
through targeting the epigenetic regulation of gene expression. Unfortunately, there are no

FRDA therapeutics available, only symptomatic management strategies.

Expanded (GAA)n repeats readily form non-canonical (non-B-DNA) structures including

intramolecular triplex structures (H-DNA) (Fig 1), and R-loops, which have also been pro-

posed to be of importance in other triplex-repeat disorders [7]. Several models have been pro-

posed for alternative structures formed at expanded (GAA)n repeats [8–12]. Formation of a

higher order structure named “sticky DNA” has been reported in (GAA)n containing plasmids

and the structure was analyzed using electron microscopy [8,13–16]. It is believed that the

structural properties of (GAA)n repeats that lead to the formation of higher order structures

also affect the genomic stability of the repeat length as well as the expression of Frataxin [17–

19]. Long (GAA)n repeats stall replication in Saccharomyces cerevisiae [20] and inhibit tran-

scription both in vitro [5,21] and in mammalian cells [13,22]. The observed effects on DNA

replication and transcription are dependent on the length and orientation of the (GAA)n

repeats, which correlate with the predisposition of these repeats to form well-defined second-

ary/tertiary DNA structures [7,23]. Finally, the expanded repeats are associated with silenced

chromatin via DNA methylation and histone trimethylation and deacetylation in the adjacent

regions [24,25].

An understanding of the DNA structural properties and chromatin modifications associ-

ated with (GAA)n repeats raises possibilities to reverse Frataxin silencing. For example, histone

deacetylase inhibitors have been used to increase Frataxin mRNA in FRDA mouse models and

in patient cell lines [26–29]. Also, sequence-specific polyamides and low molecular weight

minor groove binders enhance Frataxin expression [30,31]. Therefore, it is particularly inter-

esting to develop specific (GAA)n repeat targeting molecules to elucidate the possible patho-

logical structures formed at the Frataxin locus, which could facilitate the development of new

therapeutic strategies.

The GAA expanded repeats in FRDA consist of large polypurine.polypyrimidine (R.Y)

regions. In principle, these stretches can be specifically targeted by triplex forming oligonucle-

otides (TFOs), which bind in the major groove of the dsDNA. This, so-called anti-gene

strategy, can be used to modulate transcription at specific loci [32–34] and to induce recombi-

nation [35,36] and repair [37–39]. For example, to enhance TFO binding of DNA under physi-

ological conditions, modified nucleotides, such as morpholinophosphoroamidates (PMO),

locked (LNA) or peptide nucleic acids (PNA) can be exploited [40].

Fig 1. Purine and pyrimidine H-DNA motifs formed at (GAA)n repeats.

doi:10.1371/journal.pone.0165788.g001
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PNAs are DNA mimics having a peptide like backbone [41]. PNA binds to sequence comple-

mentary DNA or RNA with high affinity and sequence specificity. More interestingly, PNA is

able to invade dsDNA through binding of the purine (R) strand leaving the pyrimidine (Y) strand

displaced. PNA was originally designed to bind dsDNA to form a triplex structure; however, it

was soon discovered that an invasion mechanism is involved and several other PNA-DNA com-

plexes can also be formed [41]. Binding of short homopyrimidine PNA to dsDNA leads mainly

to formation of a triplex-invasion structure, of very high stability [42]. Formation of a triplex-

invasion complex is slow and negatively affected by DNA duplex stabilizing conditions, such as

physiological salt concentrations [43]. Formation of triplex-invasion structures requires two PNA

molecules for Watson-Crick and Hoogsteen binding, respectively, of the target. To increase the

rate of formation of a triplex-invasion complex, bis-PNAs, where two PNA molecules are linked

together, have been developed [44]. Duplex invasion complexes have been reported for homo-

purine PNAs [45] and also for backbone modified, high affinity PNAs [46] (e.g. gamma-PNAs

[47]). Additionally, long homopyrimidine PNAs (>15 nucleotides) can form regular triplex

structures (PNA-triplexes) at physiologically relevant salt concentrations [48], whereas stable

PNA-triplex and triplex-invasion complexes have not been reported for homopurine PNAs.

Locked nucleic acid (LNA) is an RNA analogue having a 20-oxygen and 40-carbon-methy-

lene linkage. The presence of this bridge promotes a conformational restriction in LNA con-

taining oligonucleotides, favoring duplex formation [49]. LNA modification has also been

introduced in TFOs to increase triplex stability. Like PNA, LNA is also able to invade dsDNA

through Watson-Crick hydrogen bond formation to the DNA complementary sequences or

through combined Watson-Crick and Hoogsteen hydrogen bonds forming a bisLNA con-

struct, analogous to bisPNA [50].

In a previous study on the formation of triplex structures at FRDA (GAA)n repeats, we

showed that a low-molecular weight benzoquinoquinoxaline compound (BQQ), recognizes

triplex structures formed at (GAA)n repeats in plasmids. BQQ is a DNA intercalating com-

pound that specifically binds and stabilizes triplex structures of both purine and pyrimidine

motifs [51–54]. Furthermore, BQQ is cell permeable, and we have shown that the compound

binds and stabilizes H-DNA structures formed in plasmids in growing Escherichia coli cells

[55]. Additionally, we have converted BQQ to a triplex-specific cleaving agent (BQQ-OP) by

conjugation to a 1,10-phenanthroline ligand [52]. In the presence of Cu2+ and a reducing

agent BQQ-OP causes dsDNA cleavage specifically at the site of formation of a triplex, and we

have previously demonstrated the ability of BQQ-OP to probe triplex formation of both

H-DNA and TFO-directed triplex structures in plasmids in vitro [55,56].

Sequence-specific targeting of GAA repeats using synthetic single strand oligonucleotides

(ONs) is an attractive approach to examine the molecular mechanisms of non-canonical DNA

structure formation at FRDA repeat expansions. While modified ONs as mRNA targeting

therapeutics have made major progress lately, also in relation to triplet-repeat diseases [57,58],

successful DNA targeting of nucleotide repeats using ONs has not been reported. In this study

we aimed to target the alternative DNA structures at FRDA (GAA)n repeats using modified

ONs. We chose to examine PNA and LNA binding to these repeats owing to their ability to

both invade dsDNA and to form triplex structure and thereby interfere with the formation of

H-DNA and other higher order structures in FRDA expanded repeats. BQQ-OP mediated tri-

plex-specific cleavage of dsDNA and chemical modification of ssDNA regions using chloroa-

cetaldehyde were used to characterize the DNA structures and PNA-DNA complexes formed

in short, medium and long (GAA)n repeats. To assess global structural changes in plasmids

containing (GAA)n repeats in the presence of LNA oligomers, we used Atomic Force Micros-

copy (AFM). Our results demonstrate that targeting GAA repeats with PNA or LNA oligomers

can resolve higher order structures formed in FRDA expanded repeats.

PNA and LNA Targeting of FRDA GAA Repeats
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Materials and Methods

Plasmids

(GAA)n-containing plasmids, pMP179, pMP178 and pMP141, hereafter referred to as

pMP179(115 repeats), pMP178(75 repeats) and pMP141(9 repeats) to denote the number of

repeats, were a kind gift from Prof. M. Pandolfo’s Laboratory. The plasmids are derived from

pSPL3 and the inserts are all flanked by 352 and 256 bp of human genomic sequences 50 and 30

of the (GAA)n repeat, respectively [8,13].

PNA and LNA Oligomers

PNA oligomers were synthesized by solid phase Boc-chemistry, purified by RP-HPLC and

characterized by MALDI-TOF mass spectrometry and HPLC [41]. LNA-PS oligomers were

synthetized, purified by Reverse Phase - HPLC; quality control was accessed by MALDI-TOF

mass spectrometry and bought from Eurogentec S.A.

BQQ-OP Triplex-Specific DNA Cleavage of DNA-PNA Complexes at

(GAA)n Repeats

Plasmid pMP179(115 repeats) was linearized using ApaI, followed by DNA isolation using

miniprep columns (Qiagen). 0.2 μg linearized pM179(115 repeats) (2.2 nM) was incubated at

37˚C during 1 h in the presence of a 12-mer GAA-PNA (3320), a 15-mer CTT-PNA (3482)

(10 μM) or a 20-mer single strand CTT-DNA (4 μM) (Table 1) in buffer (10 mM sodium caco-

dylate, 100 mM NaCl and 0, or 2 mM MgCl2, pH 7.5). BQQ-OP (1.5 μM) and CuSO4 (2 μM)

were premixed at room temperature for 15 min and then added to the plasmid. The mixture

was left for 25 min at room temperature and mercaptopropionic acid (MPA, 2 mM, final vol-

ume 20 μl) was added to initiate the cleavage reaction, which was allowed to proceed for 2 h at

37˚C. Samples containing the crude reaction mixtures were then analyzed using 0.7% agarose

gel electrophoresis (50 V, 1 h) and ethidium bromide staining. Gel-doc XR with Quantity One

4.5.2 software (Bio-Rad) was used for gel analysis and quantification of the gel bands. MassRu-

ler (Fermentas) served as a molecular weight DNA ladder.

BQQ-OP Mediated Cleavage of H-DNA at (GAA)115 Repeats in the

Presence of PNA and LNA

Plasmid pMP179(115 repeats) (1 μg, 11 nM) was incubated in buffer (10 mM sodium cacody-

late, pH 7.5 and 100 mM NaCl and 2 mM MgCl2) at 37˚C during 2 h in the presence of 10 μM

Table 1. PNA, DNA and LNA oligomers used in the study.

Name Sequence Length (nt)

CTT-PNA (PNA3482) Ac-TTCTTCTTCTTCTTC-Eg1-Lys-NH2 15

GAA-PNA (PNA3320) H-LysLys-GAAGAAGAAGAA-Lys-NH2 12

CTT-DNA 50-cttcttcttcttcttcttct-30 20

GAA-DNA 50-agaagaagaagaagaagaag-30 20

GAA-LNA-PS 1 50-g�A�a�G�A�A�g�A�a-30 9

GAA-LNA-PS 2 50-g�A�a�g�A�a�g�A�a�g�A�a-30 12

GAA-LNA-PS 3 50-g�A�a�G�a�A�g�A�a�G�a�A-30 12

CTT-LNA-PS 50-c�T�t�C�t�T�c�T�t�C�t�T-30 12

SCR-LNA-PS 50-A�c�T�T�a�C�C�a�C�T�T�c-30 12

ER-LNA-PS 50-t�C�t�T�c�T�t�C�t�T�t�T-30 12

Italic – PNA; lowercase – DNA; UPPERCASE – LNA and * – phosphorothioate backbone.

doi:10.1371/journal.pone.0165788.t001
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of either a 12-mer GAA-PNA (PNA3320), a 15-mer CTT-PNA (PNA3482), a 9-mer GAA-L-

NA-PS (GAA-LNA-PS 1), a 12-mer GAA-LNA-PS (GAA-LNA-PS 2 or 3), a 12-mer CTT-

LNA-PS (CTT-LNA-PS), a 12-mer targeting the end of the repeat (ER-LNA-PS), a 20-mer sin-

gle strand GAA-or a 20-mer CTT-DNA (Table 1). BQQ-OP (1 μM) and CuSO4 (1.5 μM) were

premixed at room temperature (15 min) and then added to the plasmid solution. The mixture

was left for 45 min at room temperature and mercaptopropionic acid (MPA, 2 mM, final vol-

ume 20 μl) was added to initiate the cleavage reaction. The reaction was allowed to proceed for

3 h at 37˚C, followed by isolation of DNA using miniprep columns (Qiagen). As a control,

plasmid pMP179(115 repeats) was cleaved in the absence of ONs using BQQ-OP under similar

experimental conditions. The isolated DNA was digested using ApaI (1 U, Promega) during

3 h at 37˚C and then analyzed using 0.7% agarose gel electrophoresis (50 V, 1 h) and ethidium

bromide or SYBR-safe (Life Technologies) staining. Gel-doc XR with Quantity One 4.5.2 soft-

ware (Bio-Rad) was used for gel analysis and quantification of the gel bands.

Analysis of DNA and DNA-PNA structure formation at short and long

(GAA)n repeats using BQQ-OP cleavage and CAA modification

In all probing reactions, the plasmid (pMP141(9 repeats): 1 μg, 11.5 nM or pMP178(75

repeats): 11.2 nM) was first incubated in buffer (10 mM sodium cacodylate, 100 mM NaCl, 2

mM MgCl2, pH 7.5) at 37˚C, 2 h in the absence or presence of either 12-mer GAA-PNA or

15-mer CTT-PNA (10 μM) (Table 1). PNA binding was followed by BQQ-OP mediated DNA

cleavage or DNA chemical modification using chloroacetaldehyde (CAA).

BQQ-OP cleavage: BQQ-OP (1 μM) and CuSO4 (1.5 μM) were premixed (15 min) at room

temperature and added to the PNA-plasmid solution. The mixture was left for 45 min at room

temperature and mercaptopropionic acid (MPA, 2 mM, final volume 20 μl) was added to initi-

ate the cleavage reaction. The reaction was allowed to proceed for 3 h at 37˚C, followed by iso-

lation of DNA using miniprep columns (Qiagen). The isolated DNA was digested using ApaI

(Fermentas Fastdigest) and the enzyme was then inactivated, 5 min at 65˚C.

CAA chemical modification: CAA (2%) was added to the plasmid solution (final volume

20 μl) and the reaction was allowed to proceed during 30 min at 37˚C, followed by isolation of

the DNA using miniprep columns (Qiagen). Samples incubated under similar conditions in

the absence of CAA were used as controls. The isolated DNA was digested as described in the

previous section.

Primer extension: The primer pair pMP1764F (50-CTCTGGAGTAGCTGGGATTACAG-

30) and pMP1333R (50-CCAACATGGTGAAACCCAGTATCTAC-30) were 50-radioactively

labeled using [γ-32P]ATP and T4 polynucleotide kinase (Fermentas) according to the manu-

facturer’s protocol and subsequently purified using a QIAquick Nucleotide Removal Kit (QIA-

GEN). Plasmids treated by BQQ-OP or CAA were used as templates. A primer extension (PE)

mix (2 mM MgCl2, 1 U taq polymerase (Fermentas), 5 nM primer, 2 mM of each dNTP) was

added to approximately 100 ng template and a PE reaction was carried out according to the

following condition; 10 min at 94˚C, 30 cycles of 1 min at 94˚C, 2 min at 54˚C or 49˚C (primer

pMP1333R and pMP1764F, respectively), 3 min at 72˚C, and 10 min at 72˚C. As controls for

the PE reactions, plasmids were incubated under similar conditions in the absence of

BQQ-OP or CAA. Sequencing ladders were prepared by using plasmids (100 ng) that had

been cleaved by using PstI and SacI as templates for the PE reactions in the presence of dideox-

ynucleotides as described in the literature [59]. All samples were analyzed using denaturing

polyacrylamide gel electrophoresis (6%, 7 M urea, 0.5 mm) in buffer (1X TBE) at room tem-

perature and 1200 V, 32 mA, 2.5 h. Fuji FLA3000 phosphorimager was used for scanning,

analysis and gel bands quantification.

PNA and LNA Targeting of FRDA GAA Repeats
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AFM Analysis of pMP179(115 Repeats) in the Presence of LNA

Plasmid pMP179(115 repeats) (500 ng) was incubated in intranuclear buffer (final concentra-

tion: 50 mM Tris-acetate, 120 mM KCl, 5 mM NaCl, 0.5 mM Mg-acetate and pH 7.4) at 37˚C,

overnight and in the absence or presence of 10 μM of either GAA-LNA-PS 3, CTT-LNA-PS-or

a 12-mer scrambled phosphorothioate LNA (SCR-LNA-PS) (Table 1), after which the samples

were immediately frozen until further use. Sample preparations prior the AFM measurements

were identical for every treatment, where, after de-frost, 5 μL of each plasmid preparation

(2.5 ng/μL) was mixed with 25 μL of 20 mM NiCl2.5H2O solution (Sigma-Aldrich) and 25 μL

of 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.2 (HEPES, Sigma-

Aldrich), in a similar way as described by Pyne et al. [60]. The mixture was deposited on a

freshly cleaved mica surface (Sigma-Aldrich) and incubated during 30 minutes at room tem-

perature. The sample was then diluted with 50 μL of 10 mM HEPES buffer, pH 7.2, which

reduces the NiCl2 concentration to 5 mM. Subsequently, the mica surfaces were analyzed in

the liquid solution. PeakForce1 tapping mode (PTM) measurements were performed on an

atomic force microscope (Dimension Fast Scan, Nanoscope V, Bruker1) located in the Alba-

Nova Nanofabrication Facility (Stockholm, Sweden). In these measurements the scanner

vibrates at a low frequency (1–3 kHz), resulting in a tip-sample interaction with every oscilla-

tion. The maximum force applied was kept constant with a feedback loop, which adjusts the

overall extension of the piezo during scanning. This allows direct control of the force exerted,

which is not the case for the traditional tapping mode (TM) [61,62]. In this work, the AFM

images were obtained using silicon nitride cantilevers with silicon tips (ScanAsyst-Fluid+, Bru-

ker1) with a tip nominal radius of 2 nm and spring constants ranging between 0.4 and 0.7

Nm-1. The images presented in this work were obtained with scan rates between 1 and 1.5 Hz,

maximum force of 500 pN (lowest force possible to achieve due to optical interference), scan-

ner oscillation amplitudes between 60–40 nm, scanner resonance frequency of 2 kHz, image

resolution of 512 x 512 pixels and scan sizes around 5 x 5 and 1.3 x 1.3 μm2. In all the images,

the vertical limit was reduced to 1 μm in order to enhance the resolution. Plasmid areas from

all scans obtained were calculated by Image J software and GraphPad Prism 6 software was

used for statistical analysis.

Statistical Analysis

Data is presented as means ± S.D. or mean ± S.E.M., when indicated. Values were tested for

normality by the D’Agostino-Pearson normality test (omnibus K2). Statistical significance was

determined by one-way ANOVA two-sided, followed by comparison of each treatment with

the group control by Fisher’s Least Significance Difference (LSD) test (Graph Pad Prism 6 Soft-

ware, Graph Pad Software, Inc.). In all cases P<0.05 was considered significant.

Results and Discussion

Formation of PNA-Directed Triplex at (GAA)n Repeats

We previously demonstrated that homopyrimidine natural DNA TFOs bind dsDNA at GAA

repeat sequences forming a pyrimidine motif triplex. Binding occurs with moderate efficiency

at physiological pH. Conversely, purine motif triplex formation was not detected at this site

when using the corresponding homopurine TFO [56]. Here, we aimed to test whether PNA

would behave differently when targeted to FRDA expanded GAA repeats. PNA oligomers con-

sisting of CTT or GAA repeat sequences were used (Table 1, CTT-PNA and GAA-PNA,

respectively). Triplex formation by PNA oligomers was examined using a triplex-specific

dsDNA cleavage reaction mediated by BQQ-OP [52]. However, BQQ-OP cleavage of triplex

PNA and LNA Targeting of FRDA GAA Repeats
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DNA does not discriminate between H-DNA formed inherently by the FRDA (GAA)n repeats

and a TFO-directed structure. Because H-DNA only readily forms in supercoiled plasmids,

linearization of the GAA carrying plasmid by a unique site restriction enzyme is required

before carrying out the BQQ-OP cleavage assay to ensure that only the intermolecular PNA-

triplex (and not H-DNA) would be formed and detected.

We used plasmid pMP179(115 repeats), which contains 115 GAA repeats and flanking

sequences derived from the first intron of the FXN gene. After linearization with ApaI, the

plasmid was incubated with CTT-PNA or GAA-PNA and cleaved by BQQ-OP. As control a

triplex was also formed in the presence of a single strand CTT-DNA (Table 1). If dsDNA cleav-

age by BQQ-OP would occur specifically at the site of triplex formation, the reaction should

result in the formation of two DNA fragments. The size of these fragments is approximately

3814 and 3178 bp, assuming an average triplex cleavage to occur in the middle of the triplex

forming (GAA)115 repeat (Fig 2A). Binding of CTT-PNA or CTT-DNA followed by BQQ-OP

dsDNA cleavage resulted in the formation of two DNA fragments having the expected sizes

(Fig 2B, lanes 2 and 5 or 3 and 6, respectively). A stronger intensity of the bands corresponding

to the BQQ-OP cleavage was seen when CTT-DNA was used compared to conditions obtained

by CTT-PNA binding, indicating either stronger binding of the DNA (although PNA-DNA2

Fig 2. Triplex-specific DNA cleavage of PNA triplex at (GAA)115 repeats in linearized pMP179. A) Schematic

presentation of TFO-directed triplex formation and the two fragments generated after BQQ-OP cleavage indicated

as X (3814 bp) and Y (3178 bp). B) Representative gel of linearized pMP179(115 repeats) (Apa1) incubated with

GAA-PNA (10 μM), CTT-PNA (10 μM) or CTT-DNA (4 μM) (Table 1) in buffer (10 mM sodium cacodylate, 100 mM

NaCl and 0 or 2 mM MgCl2, pH 7.5), as indicated. BQQ-OP mediated cleavage of pMP179(115 repeats) was

carried out in the presence of Cu2+ and MPA. Reference linearized pMP179(115 repeats) (Lin) and a molecular

weight DNA ladder (M) are also shown.

doi:10.1371/journal.pone.0165788.g002
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triplexes of identical length are much more stable than DNA triplexes [63]) or more efficient

BQQ-OP cleavage of the DNA triplex versus the PNA-DNA2 triplex. The same trend was

observed both in the presence as well as the absence of Mg2+ ions. However, it is well known

that an additional PNA-DNA complex, a PNA-triplex invasion, can be formed when homo-

pyrimidine PNA are targeted to polypyrimidine-polypurine dsDNA, and this is more stable

than a PNA-triplex [64]. In the case of PNA-triplex invasion, only the GAA DNA strand is

engaged in the triplex while the other strand is displaced. Therefore, BQQ-OP would only lead

to a single strand cleavage of the plasmid. Hence, the resulting DNA fragment would be of the

same size as the linearized plasmid (Lin), which can be seen in Fig 2B (lanes 2 and 5).

Next, we examined the ability of GAA-PNA to form a purine motif intermolecular triplex

using the BQQ-OP dsDNA cleavage assay. We detected only a single DNA fragment exhibiting

slightly slower gel mobility than the linearized plasmid (Fig 2B, lanes 1 and 4), which could

indicate stable PNA binding to the dsDNA plasmid, maybe due to formation of a duplex inva-

sion complex. Nevertheless, triplex formation in the presence of GAA-PNA was not detected

using the BQQ-OP assay. Interestingly, we did not observe a purine motif TFO-DNA triplex

nor a purine motif H-DNA in earlier studies [56]. Based on these observations and that the tri-

plex formed by CTT-PNA binding resulted in a clear BQQ-OP cleavage, we conclude that a

purine motif triplex is not formed in the presence of GAA-PNA.

PNA Binding to H-DNA Forming FRDA (GAA)115 Repeats

H-DNA is found in two different motifs (parallel pyrimidine or antiparallel purine triplex)

and both have been proposed to form at FRDA (GAA)n repeats (Fig 1). We recently showed

that expanded (GAA)115 repeats form a pyrimidine motif triplex in supercoiled plasmids by

using the BQQ-OP assay [56]. Also, binding of a single strand CTT oligonucleotide (identical

in sequence and length to the currently used CTT-DNA, Table 1) to the H-DNA forming plas-

mid enhanced triplex-formation significantly, whereas an analogous GAA oligonucleotide

(corresponding to GAA-DNA, Table 1) had no such effect. These findings prompted us to

examine whether binding of modified ON such as CTT-PNA or GAA-PNA (Table 1) to the

(GAA)115 repeats would have a comparable effect on H-DNA formation at this site. When

BQQ-OP mediated dsDNA cleavage occurs within the (GAA)115 triplex-forming repeat, the

subsequent unique site enzymatic digestion is expected to generate two linear DNA fragments

of approximately 3814 and 3178 bp (as shown in Fig 3A). In the absence of DNA or PNA olig-

omers, dsDNA cleavage by BQQ-OP, corresponding here only to inherent H-DNA formation,

was estimated, by quantification of the gel bands (Fig 3B, lane 3), to be on average 35.3±3.5%

(Fig 3C). On the other hand, binding of CTT-PNA to the (GAA)115 repeat leads to a statisti-

cally significant increase of the amount of triplex, as measured by the extent of BQQ-OP medi-

ated DNA cleavage (50.3±2.1%, P=0.0068) (Fig 3B, lane 1 and Fig 3C). As previously reported,

the presence of CTT-DNA also leads to a significant increase in the level of BQQ-OP cleavage

to 52.7±8.4%, P=0.0031 (Fig 3B, lane 4 and Fig 3C). Taken together, our findings suggest that

sequence-specific binding of CTT-PNA to FRDA expanded repeats enhances triplex formation

under these conditions.

We envision three models to account for these results. Either the H-DNA structure is stabi-

lized by PNA binding to the single stranded GAA loop formed as part of the H-DNA structure

or the H-DNA is replaced by a PNA-DNA2 triplex, or a PNA2-DNA triplex invasion structure

over the entire GAA repeat. However, under similar binding and cleavage conditions using

the linearized dsDNA we detected only TFO-triplex formation at a low level in the presence of

CTT-PNA (Fig 2B, lane 2), which suggests rather weak TFO-binding. Thus, it is most likely

that the enhancement of triplex-directed DNA cleavage by BQQ-OP, as shown in Fig 3B (lane
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1 and 4), reflects mainly a stabilization of the H-DNA structure through binding of CTT-DNA

or CTT-PNA (via a PNA2-DNA triplex structure) to the single stranded GAA repeat region of

the H-DNA.

Interestingly, when we targeted FRDA repeats in pMP179(115 repeats) using a GAA-PNA

oligomer (Table 1) there was no detectable triplex-containing structure, including H-DNA,

(Fig 3B, lane 2). Only one major DNA fragment was observed upon BQQ-OP treatment, cor-

responding in size and gel mobility to the linearized plasmid. These results indicate a

completely different behavior of the GAA-PNA when interacting with the FXN triplet repeats

as compared to GAA-DNA (Fig 3B, lane 5). Apparently, GAA-DNA does not bind to the

Fig 3. BQQ-OP mediated DNA cleavage of H-DNA forming (GAA)115 repeats in the presence of PNA. A)

Schematic presentation of pMP179 and the H-DNA forming site. The two DNA fragments generated by triplex-

specific cleavage followed by enzymatic digestion are indicated as X (3814 bp) and Y (3178 bp). B) Representative

gel for pMP179(115 repeats) incubated with 10 μM PNA (CTT-PNA or GAA-PNA, lane 1 or 2, respectively), in the

absence of ONs (lane 3) or with 10 μM ssDNA (CTT-DNA or GAA-DNA, lane 4 or 5, respectively) in buffer (10 mM

sodium cacodylate, 100 mM NaCl, 2 mM MgCl2, pH 7.5). Triplex-specific cleavage was carried out in the presence

of Cu2+ and MPA, followed by digestion with ApaI. Reference supercoiled (SC) and linearized (Lin) pMP179(115

repeats) and a molecular weight DNA ladder (M) are also shown. C) Graph represents the percentage of BQQ-OP

mediated cleavage obtained for pMP179(115 repeats) in the absence (indicate in the graph as pMP179) or in the

presence of PNA- or DNA oligomers. Values indicate the ratio between the intensity of DNA double strand cleavage

to the total band intensity from the respective lane and are expressed as mean±S.D. (n=3). No cleavage was

obtained in the presence of GAA-PNA and therefore not included in the graph. ** P�0.01 in relation to plasmid in

the absence of oligonucleotide (pMP179).

doi:10.1371/journal.pone.0165788.g003
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repeat region and consequently H-DNA is still formed to a comparable extent as in the control

sample (41.3±4.0%, Fig 3B, lane 3 and Fig 3C). It is worth noting that a slower-mobility band

is detected in the sample containing the (GAA)115 repeat plasmid and GAA-PNA (Fig 3B, lane

2). The presence and intensity of this band indicates a stable interaction, which we believe can

be attributed to a sequence-specific GAA-PNA binding to (GAA)115 repeats in the plasmid.

However, this assay cannot unravel the nature of this interaction, which called for further

detailed analysis as described in the following section. Nevertheless, our findings show that

binding of a GAA-PNA oligomer to FRDA repeats has the unique ability to completely abolish

all triplex structures, which are detected by BQQ-OP, including H-DNA, under these

conditions.

Structural Analysis of CTT-PNA and GAA-PNA Binding to (GAA)n
Repeats

To better understand the binding modes of CTT-PNA and GAA-PNA oligomers to the FRDA

expanded (GAA)n repeats and the effect of PNA binding on H-DNA, or other higher order

structure formation at these expansions, we examined PNA binding into two different super-

coiled plasmids carrying short or medium (GAA)n repeats (n=9 or 75, respectively) and

including FRDA flanking sequences. We employed structural probing analysis using either

chemical modification of ssDNA regions by chloroacetaldehyde (CAA) or BQQ-OP mediated

cleavage of DNA triplex structures. Chemical modifications of DNA and triplex-specific cleav-

age by BQQ-OP were analyzed using primer extension (PE) reactions where each of the

(GAA)n or (CTT)n containing strands, which are referred to as the R-strand and the Y-strand,

respectively, were used as template. Chloroacetaldehyde reacts with single strand adenosines

and cytosines, which prevents PE by DNA polymerase. BQQ-OP cleavage, on the other hand,

is used to map regions of triplex formation. Both probing reactions were carried out in the

absence or presence of PNA (CTT-PNA or GAA-PNA). For all DNA reactions, we included a

control sample, where the plasmid was incubated in the absence or presence of PNA but no

DNA chemical modification or BQQ-OP cleavage reaction was carried out (control C1, C2,

and C3). When analyzing DNA cleavage or chemical modification, the intensity of each band

was compared to the corresponding band in the control sample. This is necessary to identify

background signals, which are not related to any specific DNA modification or cleavage but

result from DNA polymerase pausing/arrest of PE at PNA binding sites, or by formation of

stable structures, in the DNA template.

H-DNA Formation at Short (GAA)9 Repeats

Chloroacetaldehyde probing clearly demonstrates the presence of a single strand region start-

ing in the middle of the (GAA)9 repeat and covering the 50-half of the repeat region (Fig 4, R-

strand, lane 2). Analysis of the corresponding Y-strand, only revealed a very short (1–3 nt) sin-

gle strand region (Fig 4, Y-strand, lane 14). This region is localized in the middle of the mirror

repeat (GAA)9 sequence, which is consistent with formation of a short loop in a 503030-pyrimi-

dine motif H-DNA. Fig 5A (upper panel) shows the sites of chloroacetaldehyde modifications

(indicated by blue arrows) and the corresponding H-DNA (lower panel, right side).

BQQ-OP probing of triplex regions of the R-strand showed that cleavage occurred mainly

at the 30-end of the repeat and also extended to the shorter A-rich (A5 – A9) flanking region

(Fig 4, lane 10). Moreover, cleavage is also detected at the 50-end flanking nucleotides corre-

sponding to the longer A-rich region (A10 – A23). The results suggest engagement of the R-

strand of the repeat in more than one triplex structure or H-DNA isomer. Analysis of

BQQ-OP cleavage of the Y-strand shows no significant cleavage (Fig 4, lane 22) when
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Fig 4. Structural- and chemical probing of DNA and DNA-PNA complex formation at (GAA)9 repeats. Non-denaturing PAGE of DNA

fragments mapped by BQQ-OP cleavage and chloroacetaldehyde (CAA) modification followed by primer extension (PE). Plasmid pMP141(9

repeats), was incubated in the absence (No PNA) or presence of 10 μM of GAA-PNA or CTT-PNA in buffer (10 mM sodium cacodylate, 100 mM

NaCl, 2 mM MgCl2, pH 7.5). The plasmid was then either chemically modified using 2% CAA or cleaved using 1 μM BQQ-OP. Untreated

plasmid was used in a set of four different controls (C) of the PE reactions: C1= plasmid incubated in the absence of PNA. C2= plasmid

incubated in the presence of CTT-PNA. C3= plasmid incubated in the presence of GAA-PNA. C4= plasmid not incubated. All samples were

linearized using ApaI and then used as templates for the PE reaction. Sequence ladders using dideoxynucleotides (C=ddCTP, T=ddTTP,

G=ddGTP and A=ddATP), linearized pMP141(9 repeats) and a PE reaction control (C4) are also shown. The left gel panel shows the DNA

fragments obtained in a PE reaction using the GAA containing (R)-strand as template, and the right gel panel shows the DNA fragments

obtained when using the CTT containing (Y)-strand as template. The A1 to A23 nucleotides flanking the repeats of the R-strand and T1 to T23

flanking in the Y-strand and the mid-point of the repeat sequence (M) are indicated.

doi:10.1371/journal.pone.0165788.g004
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compared to cleavage of the R-strand. We previously reported that intercalation of BQQ-OP

in pyrimidine motif triplex DNA and the corresponding in situ radical reaction results in a

lower rate of DNA cleavage of the pyrimidine-rich strand (corresponding here to the Y-strand)

and a more pronounced cleavage of the purine-rich strand (corresponding here to the R-

strand) [52]. BQQ-OP mediated cleavage is illustrated in Fig 5A (middle panel) and the site

and intensity of cleavage is indicated by red arrows (higher level of cleavage) or circles (lower

level). The combined chloroacetaldehyde and BQQ-OP probing results are in accordance with

previous reports [9,56] and the proposed 503030 H-DNA structure is based on these results

(lower panel, right side).

However, triplex-directed dsDNA cleavage using BQQ-OP indicates the formation of two

different H-DNA pyrimidine motif triplexes, but only one H-DNA isomer (Fig 5A, lower

panel, right side), corresponding to a 503030 H-DNA is also supported by the chloroacetalde-

hyde probing results (Fig 4, lane 2), where a clear single strand formation is demonstrated.

The different time kinetics of the chloroacetaldehyde reaction (30 min) and the BQQ-OP tri-

plex-specific cleavage (3 h) could (partly) provide an explanation. It has been shown that the

kinetics of H-DNA formation is different for each of the two isomers (503030 and 305050). Rob-

erts and Crothers reported, in a study using palindromic pyrimidine strands, which can fold

into a triplex structure upon binding of a complementary purine strand, that the 503030-isomer

of the intramolecular triplex folds 10–50 times faster than the 305050 isomer even though both

isomers are equally stable as final complexes [65]. Consequently, it is possible that chloroace-

taldehyde probing reveals only formation of the kinetically favored 503030 H-DNA isomer,

whereas the much slower BQQ-OP cleavage detects both isomers. This suggestion is supported

by the fact that the intercalating moiety in BQQ, BQQ-OP and other BQQ-conjugates has a

higher affinity to T.AxT stretches, as compared to C.GxC triads [52–54], which is the case here

including the 50-end flanking sequence of the R-strand. Therefore, the results of BQQ-OP

cleavage could correspond to the formation of an additional H-DNA isomer (Fig 5A; lower

panel, left side).

Probing PNA Binding at Short (GAA)9 Repeats

PNA binding to the (GAA)9 repeats in pMP141(9 repeats) was analogously studied using

chloroacetaldehyde modification and BQQ-OP cleavage.

Binding of GAA-PNA. Chloroacetaldehyde reaction of the GAA-PNA treated pMP141(9

repeats) showed that a single strand region is formed throughout the entire repeat and flanking

sequences of the R-strand (Fig 4, lane 6) as compared to control samples that were not sub-

jected to chemical modification (Fig 4, lanes 1 and 5). In contrast, only a few single strand

nucleotides were identified at the 50-end flanking sequence of the repeat of the Y-strand (Fig 4,

lane 18, T15-T16) as compared to control lanes (Fig 4, lane 13 and 17). Only very weak bands

on both the R- and Y-strands were obtained from the BQQ-OP cleavage of the GAA-PNA

treated plasmid, pMP141(9 repeats) (Fig 4, lane 12 and 24, respectively), as compared to con-

trol lanes (Fig 4, lane 5 and 17, respectively). This together with a clear formation of single

strand region throughout the R-strand is therefore ascribed to GAA-PNA duplex invasion of

the repeat region, as illustrated in the proposed model structure in Fig 5C (lower panel).

Binding of CTT-PNA. Chloroacetaldehyde treatment of the R-strand in the presence of

CTT-PNA indicated two short single strand sites at the 30- and 50-end flanking nucleotides

within the A-rich regions (A5 – A9 and A10 – A23) (Fig 4, lane 4). As mentioned previously, a

control sample of the PNA binding plasmid is included to indicate bands that are present due

to polymerase pausing at the binding site (Fig 4, lane 3). Furthermore, analysis of the Y-strand,

following incubation with CTT-PNA revealed a single strand region that covers the whole
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Fig 5. Models showing the most predominant DNA and DNA-PNA structures formed at pMP141(9 repeats) in the absence or

the presence of CTT-PNA or GAA-PNA respectively. A) The H-DNA structure (lower panel, right side structure) corresponds to the

predominant structure formed in the absence of PNA. The H-DNA structure (lower panel, left side) corresponds to the putative 305050-

isomer of the H-DNA. B) The triplex-invasion structure (lower panel) corresponds to the predominant structure formed in the presence of

CTT-PNA. C) The duplex-invasion structure (lower panel) corresponds to the predominant structure formed under these conditions. In

A, B and C) CAA modifications and BQQ-OP cleavage sites of pMP141(9 repeats) in the absence or presence of PNA are indicated in

the DNA duplex as blue ( ) and red ( ), respectively and circles are used to mark a very low level of modification or cleavage. The

height of the arrow represents the relative within-lane intensities of gel bands corresponding to CAA modifications and BQQ-OP

cleavage. The nucleotides marked in blue or red indicate the sites of chloroacetaldehyde DNA modification or BQQ-OP mediated DNA

cleavage, respectively. All indicated modifications, of samples treated with BQQ-OP or CAA, are compared to the controls.

doi:10.1371/journal.pone.0165788.g005
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(CTT)9 repeat sequence (Fig 4, lane 16). The gel also shows that the band intensity in lane 16

gradually increases towards the 30-end of the repeat. Again, a control sample consisting of a

CTT-PNA treated plasmid was included (Fig 4, lane 15). The results are compatible with the

formation of a triplex invasion complex (Fig 5B, lower panel) of two CTT-PNA oligomers bind-

ing to the R-strand at the (GAA)9 repeats in pMP141(9 repeats). The prevalence of this structure

is also supported by BQQ-OP mediated triplex-specific cleavage (Fig 4, lane 11), which shows

only very little additional cleavage as compared to the control sample (Fig 4, lanes 3), possibly

indicating remaining H-DNA. Taken together, our results indicate that CTT-PNA binding to

the repeat region in pMP141(9 repeats) favors formation of a triplex-invasion.

Formation of Stable H-DNA Structure(s) at Medium (GAA)75 Repeats

Pathological GAA repeat expansions in FRDA may vary in length and structural probing of

long DNA sequences has proven challenging. Therefore, we chose to examine H-DNA and

higher order structure formation in a medium GAA repeats using an FRDA derived DNA

sequence that consists of 75 repeats and genomic flanking regions and we attempted to map

formation of single- and triple strand regions using chloroacetaldehyde and BQQ-OP, respec-

tively. Analysis of the R- and Y-strands that were subjected to BQQ-OP probing clearly indi-

cated the presence of triplex structures as judged from the gel bands corresponding to DNA

cleavage within the repeat region (Fig 6A, lanes 3 and 15). However, the band intensity in lane

3 shows that BQQ-OP mediated DNA cleavage is more pronounced at the 30-end of the R-

strand indicating formation of a 503030- pyrimidine H-DNA (Fig 6B, structure 1). Reaction of

the Y-strand also indicates some preference at the 30-end. In contrast to the clear single strand

probing of the GAA strand within the short repeat (Fig 4), chloroacetaldehyde modification of

the longer repeat failed to reveal bands that could indicate the presence of non base-paired

nucleotides in either of the R- or Y-strand. These findings may reflect the presence of more

complex higher order DNA structures at the medium GAA repeats indicating a difference

between the pathological and normal repeat lengths.

The Effect of GAA-PNA Binding on H-DNA Formation at (GAA) 75

Repeats

Binding of GAA-PNA to the (GAA)75 repeats in supercoiled plasmid was examined using

chloroacetaldehyde and BQQ-OP reactions. Binding of GAA-PNA resulted in a clear and

strong chloroacetaldehyde reaction with the R-strand providing evidence for a single strand

formation in particular at the 30-end of the GAA repeat (Fig 6A, lane 8), whereas reaction

above background could not be detected within the Y-strand (Fig 6A, lane 20) under similar

conditions. Most interestingly, no BQQ-OP mediated triplex-specific cleavage of the R- or Y-

strand was seen when the plasmid was incubated with GAA-PNA (Fig 6A, lanes 9 and 21 com-

pared to the control lanes 7 and 19, respectively).

The findings from chemical probing of the DNA structures formed using GAA-PNA tar-

geting of medium GAA repeats in pMP178(75 repeats) (Fig 6) are consistent with those

obtained when probing the short GAA repeat, pMP141(9 repeats) (Fig 4 and Fig 5). Together

they demonstrate that binding of GAA-PNA to GAA repeats results in formation of a duplex

invasion complex (Fig 6B, structure 5), which can explain the altered mobility of the linear

fragment seen in the presence of GAA-PNA in Fig 2 (lane 1 and 4). This in turn could prevent

the expanded repeats from forming an H-DNA or any other higher order structure, including

triplex. The results here are in complete agreement with the lack of BQQ-OP cleavage in the

GAA-PNA treated pMP179(115 repeats) as detected using agarose gel electrophoresis (Fig 3B,

lane 2).
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To the best of our knowledge, this is the first study that demonstrates formation of a duplex

invasion complex, which forms through binding of GAA-PNA to expanded FRDA repeats,

thereby dissolving a triplex containing higher order structure.

The Effect of CTT-PNA Binding on H-DNA Formation at (GAA) 75

Repeats

Based on the results of H-DNA probing and the outcome of PNA binding of pMP179(115

repeats) (Fig 3), we concluded that the presence of CTT-PNA enhances triplex formation

within the repeat sequence. Therefore, we examined how this PNA oligomer affects the

dsDNA medium repeat region by using the single strand and triplex region probing assays.

Targeting the (GAA)75 repeats in pMP178(75 repeats) with CTT-PNA resulted in an

enhanced triplex-directed cleavage by BQQ-OP of the R-strand (Fig 6A, lane 6) as compared

to the control (lane 3). This result quantitatively agrees with triplex-specific cleavage at

(GAA)115 repeats, analyzed using agarose gel electrophoresis (Fig 3B, lane 1). In addition, an

analogous enhancement was seen for the Y-strand (Fig 6A, lane 18 compared to lane 15).

Chemical modification using chloroacetaldehyde of the pMP178(75 repeats) in the pres-

ence of CTT-PNA did not detect any major single-strand regions in the R-strand (Fig 6A, lane

5 as compared to control lane 4), as also observed in the absence of PNA (Fig 6A, lane 2 as

compared to control lane 1). However, chloroacetaldehyde probing of the Y-strand in

pMP178(75 repeats) in the presence of CTT-PNA strongly indicates the formation a single

strand region that extends to nearly half the length of the mirror repeat sequence (towards the

30-end) (Fig 6A, lane 17). Since homopyrimidine PNA has the ability to invade dsDNA poly-

purine-polypyrimidine duplexes, we attribute the single strand in the Y-strand to formation of

a PNA2-DNA triplex-invasion complex (Fig 6B, structure 3). This result is in full accordance

with the data obtained for the pMP141(9 repeats) as shown in Fig 4 and Fig 5, although it can-

not, on its own, explain the pronounced BQQ-OP cleavage in the presence of this PNA. Thus,

a triplex-invasion complex of the dsDNA may co-exist with H-DNA under these conditions

(Fig 6B, structure 2). CTT-PNA may also bind to the GAA repeat forming a traditional

PNA-DNA2 triplex (Fig 6B, structure 4) analogous to that formed by CTT-DNA oligonucleo-

tides. Such a triplex is cleaved by BQQ-OP (Fig 2, lanes 2 and 5), but much less efficiently than

pure DNA-triplexes, and thus could not account for the increased BQQ-OP sensitivity. There-

fore the present data do not allow for a detailed quantitative structural description of the inter-

action of CTT-PNA with medium GAA repeats, but a combination of PNA triplex invasion as

well as H-DNA (like) structures must be involved. The difficulties in interpreting this data

may also reflect different kinetics of formation of the different DNA structures (B-DNA,

Fig 6. Structural- and chemical probing of DNA and DNA-PNA complex formation in pMP178(75 repeats). A) Non-denaturing

PAGE of DNA fragments mapped by BQQ-OP cleavage and chloroacetaldehyde (CAA) modification followed by primer extension

(PE). Plasmid pMP178(75 repeats), was incubated in the absence (No PNA) or the presence of 10 μM of PNA (GAA-PNA or

CTT-PNA) in buffer (10 mM sodium cacodylate, 100 mM NaCl, 2 mM MgCl2, pH 7.5). The plasmid was then chemically modified

using 2% CAA or cleaved using 1 μM BQQ-OP. Non-treated plasmid was used in a set of four different controls (C) of the PE

reactions C1= plasmid incubated in the absence of PNA. C2= plasmid incubated in the presence of GAA-PNA. C3= plasmid

incubated in the presence of CTT-PNA. C4= plasmid not incubated. All samples were linearized by ApaI then subjected as

templates for the PE reaction. Sequence ladders using dideoxynucleotides (C=ddCTP, T=ddTTP, G=ddGTP and A=ddATP),

linearized pMP178(75 repeats) and the PE reaction control (C4) are shown as references. The DNA fragments detected in a PE

reaction using the GAA (R)-strand as template, and the right gel panel shows the DNA fragments detected in a PE reaction using the

CTT (Y)-strand as template. The A1 to A9 nucleotides flanking the repeats of the R-strand and T1 to T12 flanking in the Y-strand and

the middle point of the repeat sequence are indicated (M). B) Models showing the most predominant DNA and DNA-PNA structures

formed at pMP178(75 repeats) in the absence or the presence of CTT-PNA or GAA-PNA respectively. They correspond to: 1. 503030-

pyrimidine motif H-DNA, 2. CTT-PNA stabilized 503030-pyrimidine motif H-DNA, 3. Triplex-invasion, 4. Intermolecular triplex and 5.

Duplex-invasion structure. Thin line= purine strand, thick line= pyrimidine strand, grey line= PNA. Regions modified by CAA (π) or

cleaved by BQQ-OP (o) are indicated.

doi:10.1371/journal.pone.0165788.g006
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H-DNA and triplex-invasion structures), which can transiently co-exist and hence conse-

quently be detected by chloroacetaldehyde or BQQ-OP reactions.

LNA Binding to H-DNA Forming FRDA (GAA)115 Repeats

To examine whether another type of modified oligomer, with comparable dsDNA invasion

properties as PNAs, could mediate results similar to those previously observed, the BQQ-OP

cleavage assay was performed in the presence of CTT- or GAA-LNA-PS oligomers. Fig 7A

shows, in an analogous way as in Fig 3B, that indeed in the presence of a 9-mer GAA-LNA-PS

(lane 1) or 12-mer GAA-LNA-PS (lane 2 and 3) the BQQ-OP cleavage was almost abolished,

presumably due to the destabilization of the H-DNA structure. When compared with the plas-

mid alone, a statistic significance (P�0.0001) was determined for all GAA-LNA-PS ONs, how-

ever different mean±S.D. percentages of BQQ-OP cleavage were found depending of the ONs

size, decreasing with increase of length (GAA-LNA-PS 1: 9.5±2.9%, while GAA-LNA-PS 2 and

3: 2.4±1.8% and 2.7±2.5%, respectively) (Fig 7B). Interestingly, is the lack of significance for

the ER-LNA-PS ON (26.1±1.4%), showing that indeed the ON effect is sequence specific.

Regarding CTT-LNA-PS, no significant increase in the BQQ-OP cleavage percentage was

found (33.7±1.5%). These results support the hypothesis that modified GAA ONs can be used

to destabilize triplex structures formed at (GAA)n repeats.

Monitoring the Effect of LNA Binding to (GAA)115 Containing Plasmids

Using AFM

DNA topology is affected by formation of higher order DNA structures not the least at expanded

triplet repeats. Atomic force microscopy (AFM) has been used to examine cruciforms, H-DNA

and higher order structures at CAG and GAA repeats, respectively. In a similar way, we reasoned

Fig 7. BQQ-OP mediated DNA cleavage of H-DNA forming (GAA)115 repeats in the presence of LNA-PS. A) Representative gel

from pMP179(115 repeats) incubated with 10 μM LNA-PS (GAA-LNA-PS 1, 2 or 3 or ER-LNA-PS or CTT-LNA-PS, lane 1, 2, 3, 4 or 7,

respectively), in the absence of oligonucleotide (lane 8) or with 10 μM ssDNA (CTT-DNA or GAA-DNA, lane 5 or 6, respectively) in

buffer (10 mM sodium cacodylate, 100 mM NaCl, 2 mM MgCl2, pH 7.5). Triplex-specific cleavage was carried out in the presence of

Cu2+ and MPA, and the plasmid was subsequently digested using ApaI. The two obtained DNA fragments have approximately 3814

and 3178 bp. Reference supercoiled (SC) and linearized (Lin) pMP179(115 repeats) and a molecular weight DNA ladder (M) are also

shown. B) Graph represents the percentage of BQQ-OP mediated cleavage for pMP179(115 repeats) in the absence (indicate in the

graph as pMP179) or in the presence of LNA- or DNA oligomers. Values indicate the ratio between the intensity of DNA double strand

cleavage to the total band intensity from the respective lane and are expressed as mean±S.D. (n=3). *** P�0.001, **** P<0.0001 in

relation to plasmid in the absence of oligonucleotide (pMP179).

doi:10.1371/journal.pone.0165788.g007
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that oligomer binding to structure forming GAA expansions should be reflected by changes in

DNA topology (and thereby morphology of circular DNA) and could be detectable by AFM. To

examine this hypothesis, we monitored the effects of LNA binding to pMP179(115 repeats)

using CTT-, GAA- or a scrambled-LNA (Table 1) and the binding conditions described above.

We assumed that physiological buffers, containing Mg2+ and Na+, which are both required for

DNA structure stabilization, would be sufficient for visualization of DNA [66,67]. However,

while Mg2+ binds very weakly to mica surfaces, the presence of Na+ promotes the release of

DNA molecules from the surface. This can be overcome by the addition of Ni2+ ions to the

buffer. Thus, the Ni2+ concentration used in this work permits suitable attachment of DNA to

the mica surface, avoiding Ni2+ precipitation and poor DNA binding, occurring at higher and

lower NiCl2 concentrations, respectively [60,68]. Studies by Billingsley et al. (2010) demonstrate

that the hydration of the sample during AFM measurements is crucial to determine morphology

of supercoiled plasmids. Specifically, they show that supercoiled samples prepared with Ni2+

with high hydration are more condensed, with a large number of crossovers, local conformation

changes and more turns effects that seem to be topologically driven. They also postulate that

under these conditions, the configuration is closer to the 3D solution form [69]. DNA supercoil-

ing is also dependent on the plasmid integrity, and PeakForce1 tapping (PTM) mode, where the

applied force can be controlled and decreased below the nano-Newton range, is a suitable tech-

nique for this type of measurements where the preservation of the sample is crucial [61].

In view of these considerations, we performed AFM measurements by PTM in liquid in the

presence of Ni2+ ions using pMP179(115 repeats) incubated in the presence or absence of

LNA ONs. All analyses were performed under the same conditions. As shown in Fig 8,

pMP179(115 repeats) the supercoiled state (Fig 8A) presents a very condensed morphology,

resembling a compact sphere structure and this morphology is maintained in the presence of

scrambled-LNA (Fig 8B) or CTT-LNA (Fig 8C) oligomers. However, in the presence of

GAA-LNA (Fig 8D) a clearly more relaxed morphology was observed. As control, we per-

formed similar AFM analysis using the parent plasmid pSPL3, lacking the GAA repeat

sequence, in the absence or presence of the same set of oligomers, and in all cases we did not

observe any change of the plasmid morphology (S1 Fig). This confirms that oligomer mediated

change of plasmid structure is dependent on the presence of the GAA expansions.

To provide a quantitative analysis of the oligomer binding effect, detected by AFM, we mea-

sured the distribution (mean±S.E.M. values) of all the areas determined under each condition

tested as shown in the graph of Fig 8E. On average, pMP179(115 repeats) occupies an area of

0.053±0.0016 μm2 (pMP179 SCR-LNA-PS: 0.050±0.0019 μm2 and pMP179 CTT-LNA-PS

0.059±0.0061 μm2) while in the presence of GAA-LNA-PS 3 an area of 0.076±0.0047 μm2 is

observed, significantly increasing the area by 43.4%. Statistical analysis shows that GAA-L-

NA-PS 3 binding of the repeat-containing plasmid clearly has a significant effect (P�0.0001),

whereas CTT-LNA-PS shows no statistically significant difference as compared to the control

(P=0.3740), consistent with the BQQ-OP cleavage data (Fig 7). In other words, GAA-LNA-PS

3 significantly changed the conformation of the GAA-repeat plasmid, both as compared to the

control plasmid, and as compared to the CTT-LNA-PS treated plasmid (P=0.0071).

These results support the conclusion that GAA-LNA (but not CTT-LNA) in analogy to

GAA-PNA can resolve triplex containing higher order structures thereby promoting a more

relaxed structure that is topologically similar to duplex DNA.

Conclusions

Chemical and structural probing of GAA repeats provides evidence for pyrimidine triplex (H-

DNA) formation and the presence of different structures at the pathological repeats.
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Furthermore, we find that PNA and LNA sequence-specific targeting of Friedreich’s ataxia GAA

repeat expansions can alter and resolve higher order DNA structures. BQQ-OP mediated triplex-

specific cleavage of double strand DNA and chloroacetaldehyde chemical modification of single

strand DNA regions at (GAA)n repeats demonstrate that GAA-PNA binding result in a duplex

invasion complex, that completely dissociates all detectable triplex containing higher order struc-

tures at this site, whereas this is not the case for CTT-PNA. Additionally, we obtained a similar

pattern using LNA based ONs. Furthermore, a significant change in plasmid morphology in the

presence of GAA-LNA was detected using atomic force microscopy. Our results suggest that

DNA targeting by modified GAA-oligomers at expanded (GAA)n repeats can be employed to

examine the possible role of non-canonical DNA structures in FXN gene silencing and potentially

applied to develop new nucleic acids-based therapeutic strategies in Friedreich’s ataxia disease.

Fig 8. Topography analysis of pMP179 (115 repeats) in the absence or presence of LNA-PS ONs. Representative AFM

topography images of 12.5 ng of supercoiled pMP179(115 repeats): A) in the absence of LNA; B) in the presence of SCR-LNA-PS

oligomer; C) in the presence of CTT-LNA-PS or D) in the presence of GAA-LNA-PS 3. Sample preparation in a 10 mM HEPES

supplemented with 5 mM Ni2+ solution, pH 7.4 was deposited onto fresh clean mica. Colour scales: 2.5 nm. Images were acquired in

liquid with the Dimension FastScan, Nanoscope V operating in Peakforce® tapping mode. E) Plasmid area distribution from different

AFM overview fields of pMP179(115 repeats) supercoiled alone or in the presence of the different LNA ONs. The graph shows the

mean±S.E.M. determined for each condition (pMP179 n=312; pMP179+SCR-LNA-PS n=185; pMP179+CTT-LNA-PS n=63; and

pMP179+GAA-LNA-PS 3 n=216). A highly significant increase in the area occupied by the plasmids is observed in the presence of the

GAA-LNA-PS 3, representing a more relaxed morphology. ** P�0.01, **** P�0.0001 in relation to plasmid in the absence of

oligonucleotide (pMP179).

doi:10.1371/journal.pone.0165788.g008
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Supporting Information

S1 Dataset. BQQ-OP cleavage raw data and statistical analysis. File contains all the data

analysis regarding the BQQ-OP cleavage experiments in the presence or absence of or PNA or

LNA oligomers.

(XLSX)

S2 Dataset. AFM raw data and statistical analysis. File contains all the data analysis regard-

ing the AFM experiments with pMP179 or pSPL3 in the presence or absence of LNA oligo-

mers.

(XLSX)

S1 Fig. Topography analysis of pSPL3 in the absence or presence of LNA-PS ONs. Repre-

sentative AFM topography images of 12.5 ng of supercoiled pSPL3: A) in the absence of LNA;

B) in the presence of SCR-LNA-PS oligomer; C) in the presence of CTT-LNA-PS or; D) in the

presence of GAA-LNA-PS 3. Sample preparation in a 10 mM HEPES supplemented with 5 mM

Ni2+ solution, pH 7.4 was deposited onto fresh clean mica. Colour scales: 2.0 nm. Images were

acquired in liquid with the Dimension FastScan, Nanoscope V operating in Peakforce1 tap-

ping mode. E) Plasmid area distribution from different AFM overview fields of pSPL3 super-

coiled alone or in the presence of the different LNA ONs. The graph shows the mean ± S.E.M.

determined for each condition (pSPL3 n=159; pSPL3+SCR-LNA-PS n=152; pSPL3+CTT-

LNAPS n=127; and pSPL3+GAA-LNA-PS 3 n=154). No statistic significance was found among

all the treatments when compared to plasmid (pSPL3) in the absence of oligonucleotide.

(TIF)
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