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Objectives: In human medicine, genome wide association studies have identified 25 

genetic variants in uromodulin (UMOD), which have been associated with blood 26 

pressure (BP) and renal function. Given the homology of UMOD between 27 

mammalian species, the goal of this study was to evaluate the association of 28 

currently annotated single nucleotide polymorphisms (SNPs) at the feline UMOD 29 

locus with both renal function and BP. 30 

 31 

Methods: Cats aged 14 years with systolic blood pressure (SBP) and renal 32 

function measures, and DNA samples were retrospectively selected for analysis. 33 

SNPs in the feline UMOD gene were identified, and association between UMOD 34 

SNPs and renal function (assessed by plasma creatinine concentration), and 35 

systolic blood pressure (SBP) as continuous variables were explored. Longitudinal 36 

data was used to determine associations between genotype and the dichotomous 37 

diagnoses of chronic kidney disease (CKD) and systemic hypertension.  38 

 39 

Results: Eight intronic SNPs, one 1372 base-pairs up-stream from UMOD and two 40 

exonic SNPs were evaluated in 227 cats with renal and BP data. An analysis of 188 41 

cats (where BP modifying therapy was not used) found four SNPs (p<0.01) to be 42 

significantly associated with SBP (g.9879T>C, g.9858T>C, g.9764A>C, g.8539A>C) 43 

although all were in linkage disequilibrium (LD). No significant associations were 44 

identified between SNPs and renal function or CKD. 45 

 46 

Clinical Significance: The results of this pilot study suggest that genetic variation 47 

in UMOD might influence BP in cats, similar to findings in humans and provides 48 

potential insights into the pathophysiology of hypertension in this species. The 49 



pathophysiology of this association is incompletely understood but is 50 

hypothesized to relate to sodium and water homeostasis involving the apical Na+ 51 

K+ 2Cl- cotransporter in the thick ascending limb of the loop of Henle.  52 

 53 
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 55 

Introduction: 56 

Uromodulin, otherwise known as Tamm-Horsfall protein, is a 57 

glycosylphosphatidylinositol-anchored protein that is expressed on the luminal 58 

surface of renal tubular cells of the thick ascending limb (TAL) of the loop of Henle 59 

(Vyletal et al. 2010). From this location, yet to be identified proteases release 60 

uromodulin into the urine, where it represents one of the most abundant urinary 61 

proteins in all mammalian species, and forms high molecular weight polymers 62 

(Vyletal et al. 2010). Despite uromodulin being identified in the 1950s its 63 

physiological function is still incompletely characterised. Nevertheless, 64 

uromodulin has been proposed to play an important role in the formation and 65 

trafficking of apical membrane-targeted cargo vesicles. The complex gel-like 66 

filamentous structure that it forms on the apical surface of the TAL is believed to 67 

provide a barrier to water permeability in that region and simultaneously regulate 68 

ion transportation. It has also been hypothesised that uromodulin is a receptor for 69 

binding of certain ligands which may link uromodulin to cell surface events and 70 

that localisation to cilia may indicate that uromodulin plays a role in 71 

mechanosensitisation to urinary flow and therefore intracellular signaling 72 

pathways. Within urine, it has been suggested that uromodulin maintains its gel-73 

like properties retarding the passive passage of positively-charged electrolytes 74 



such as sodium and potassium through the TAL whilst facilitating active 75 

absorptive mechanisms. In the distal tubule, it has been suggested that 76 

uromodulin may bind pathogenic bacterial strains helping to prevent urinary tract 77 

infections and in a similar manner may also act as an inhibitor of urinary stone 78 

formation (Vyletal et al. 2010, Rampoldi et al. 2011). 79 

 80 

In feline medicine, similar to other mammalian species, uromodulin has been 81 

localised to the TAL of loop of Henle (Brandt et al. 2012). Urinary uromodulin has 82 

predominantly been explored in relation to struvite and calcium oxalate calculus 83 

formation (Rhodes et al. 1993, Buffington et al. 1994, Matsumoto & Funaba 2008, 84 

Lulich et al. 2012). More recently, differential expressions of urinary proteins 85 

including uromodulin were identified in the urine of cats with chronic kidney 86 

disease (CKD) by two-dimensional gel electrophoresis (Ferlizza et al. 2015). 87 

 88 

In humans, urinary uromodulin concentrations decline with a variety of renal 89 

diseases (Thornley et al. 1985, Torffvit et al. 1998, Kottgen et al. 2010, Lhotta 90 

2010, Prajczer et al. 2010). Mutations in the UMOD gene encoding for uromodulin 91 

have been identified and associated with a series of conditions collectively 92 

referred to as uromodulin-associated kidney disease (UAKD)(Rampoldi et al. 93 

2011, Eckardt et al. 2015). UAKD represent autosomal dominant disorders for 94 

which over 50 mutations have been identified and that are characterised by 95 

tubulointerstitial fibrosis, hyperuricaemia, development of renal cysts at the 96 

corticomedullary junction and loss of urine concentrating ability (Bleyer et al. 97 

2011, Eckardt et al. 2015). More recently, interest in genetic variation within the 98 

UMOD gene has extended beyond monogenic conditions. Genetic variations 99 



within UMOD have been identified, from genome-wide association studies 100 

(GWAS) and meta-analyses, to be associated with estimated glomerular filtration 101 

rate (eGFR), CKD, incident CKD, decline in renal function and end-stage renal 102 

disease (Kottgen et al. 2009, 2010, Gudbjartsson et al. 2010, Boger et al. 2011, 103 

Reznichenko et al. 2012, Gorski et al. 2015). Genetic variants in UMOD have also 104 

been associated with hypertension (HT) using both GWAS and candidate gene 105 

approaches (Padmanabhan et al. 2014, Cabrera et al. 2015). An extreme case–106 

control GWAS study of European individuals identified that the minor allele for 107 

SNP rs13333226 was protective against HT (Padmanabhan et al. 2010). When the 108 

association of rs13333226 with continuous blood pressure measurement was 109 

evaluated, the minor allele was found to be significantly associated with a 0·5 110 

mmHg lower systolic blood pressure (SBP) and 0·3 mmHg lower diastolic blood 111 

pressure, results of which are concordant with the odds of HT (Padmanabhan et 112 

al. 2010). This discovery study was subsequently validated in a large-scale case–113 

control study in which this protective effect was replicated (Padmanabhan et al. 114 

2010). Studies by Han et al. and Iwai et al. evaluated single nucleotide 115 

polymorphisms (SNPs) in UMOD as a candidate gene in Chinese and Japanese 116 

populations, respectively (Iwai et al. 2006, Han et al. 2012). 117 

 118 

Both CKD and systemic HT are common conditions in the ageing feline population, 119 

which may be considered as complex disease traits likely influenced by both 120 

genetic and environmental factors (Lulich et al. 1992, Syme et al. 2002, 2006, 121 

Jepson 2011, Marino et al. 2014). To date there have been no studies that have 122 

evaluated potential genetic associations in these conditions. Indeed the concept of 123 

investigating genetic associations in complex disease traits in cats is novel. The 124 



aim of this study was to build on the known homology and conservation of the 125 

UMOD gene across mammalian species, and using publically-available genetic 126 

polymorphism data for the feline UMOD gene to evaluate associations between 127 

genotype and the continuous traits of renal function and SBP, and the 128 

dichotomous traits of CKD and systemic HT. Further information about the design 129 

and interpretation of genetic association studies can be found in the following 130 

review articles: Cordell & Clayton 2005, Hattersley & McCarthy 2005, Palmer & 131 

Cardon 2005, Bush & Moore 2012. 132 

 133 

Materials and Methods: 134 

Case selection:  135 

Cats included in this study were selected retrospectively from a computerised 136 

database containing clinical data for cats that had participated in a longitudinal 137 

geriatric cat monitoring programme. All cats had been evaluated at one of two first 138 

opinion clinics in (Beaumont Sainsbury Animal Hospital, Camden, London and 139 

People's Dispensary for Sick Animals, Bow, London) and at enrollment to the 140 

longitudinal programme a full history had been obtained, physical examination 141 

performed and SBP assessed as previously described using the Doppler technique 142 

(Syme et al. 2002). 143 

 144 

The collection and storage of blood samples was performed with owner consent 145 

and the protocols adhered to within this study had been approved by the Ethics 146 

and Welfare Committee at the Royal Veterinary College, London, UK. Blood 147 

samples were obtained by jugular venipuncture and collected into lithium heparin 148 

and EDTA. Samples were held on ice (4°C) for a maximum of 6 hours before 149 



centrifugation and separation. Plasma biochemical analysis (Idexx laboratories), 150 

packed cell volume and total protein evaluation were routinely performed for all 151 

cats on enrollment to the longitudinal monitoring programme. Total serum 152 

thyroxine concentration was measured in all cats in which the history (e.g. 153 

polyphagia, weight loss), physical examination findings (e.g. tachycardia, 154 

arrhythmia, poor body condition, palpable goiter), or serum biochemical findings 155 

(increased alanine transferase or alkaline phosphatase activities) raised concern 156 

for hyperthyroidism. In all cases in which the urinary bladder was palpable, a 157 

urine sample was collected by cystocentesis. For every cat enrolled in the 158 

longitudinal monitoring programme residual sample (EDTA, serum, heparinised 159 

plasma) and EDTA cell pellets mixed with a 1:1 ratio of EDTA-phosphate buffered 160 

saline were stored at −80°C, the latter to be used for genomic DNA extraction. 161 

 162 

Cats that were considered healthy on the basis of these data were offered re-163 

examination on a 6-monthly basis. Cats were diagnosed with azotaemic CKD if 164 

plasma creatinine was greater than laboratory reference interval (177 µmol/L) on 165 

two occasions a minimum of 4 weeks apart in association with inappropriate urine 166 

concentrating ability (urine specific gravity<1·035). Cats were diagnosed with 167 

systemic HT if SBP was greater than 170 mmHg on one occasion in association 168 

with hypertensive ocular target organ damage or if SBP greater than 170 mmHg 169 

on at least two occasions. 170 

 171 

Cats diagnosed with hyperthyroidism, HT and/or CKD either at enrollment or at 172 

subsequent visits in the longitudinal monitoring programme were offered 173 

standard management and re-examined every 8 weeks. At each re-examination 174 



visit clinical information was reviewed and physical examination including repeat 175 

assessment of SBP and bodyweight performed. At every other visit (i.e. every 16 176 

weeks), blood and urine samples were obtained. For cats diagnosed with 177 

hyperthyroidism this included assessment of total thyroxine and renal 178 

parameters providing euthyroidism was maintained. For cats with a diagnosis of 179 

CKD or systemic HT this included assessment of renal parameters. When urine 180 

could be obtained a full urinalysis including specific gravity, dipstick and sediment 181 

examination was performed. Urine culture was performed for patients with 182 

compatible clinical signs (stranguria, dysuria, pollakiuria, haematuria) or where 183 

there was indication on urine sediment examination (pyuria, bactiuria, 184 

haematuria) for a urinary tract infection. 185 

 186 

Cats diagnosed with CKD were provided with a commercially available renal diet 187 

free of charge and, where indicated in accordance with the IRIS guidelines, 188 

additional intestinal phosphate binder and potassium supplementation. Systemic 189 

HT was routinely treated with amlodipine besylate (0·625 to 2·5 mg/cat once a 190 

day) to a target SBP less than 160 mmHg. Hyperthyroidism was initially managed 191 

medically with the option for uni-/bi-lateral surgical thyroidectomy. Data from 192 

every cat enrolled in the longitudinal monitoring programme from every visit 193 

were collated within a searchable computerised database. Longitudinal 194 

monitoring was provided for cats for the duration of their life or until the client 195 

elected to withdraw from the study. Cats were excluded from the longitudinal 196 

monitoring programme only if significant concurrent disease precluded provision 197 

of care through the clinic, e.g. diabetes mellitus. 198 

 199 



Data from approximately 2900 cats greater than nine years old available on the 200 

computerised database were initially screened. Cats for inclusion in the current 201 

genetic association study were selected from the computerised database by 202 

identification of the first visit after they turned 14 years old, where full 203 

biochemical and SBP data were available, as well as a stored cell pellet for genomic 204 

DNA extraction. Cats were excluded if they were identified as newly-diagnosed or 205 

uncontrolled hyperthyroid at the visit of interest. Cats diagnosed with 206 

hyperthyroidism but adequate control of hyperthyroidism (total T4 10 to 45 207 

nmol/L) documented at the time of biochemical assessment were included in the 208 

study. Ultimately, all cats identified from the computerised database fulfilling the 209 

inclusion and exclusion requirements and from which genomic DNA was available 210 

were used in this study. Sample size was therefore driven by availability. In 211 

addition, when evaluating the association of genotype with SBP at enrollment, cats 212 

were excluded if they were receiving antihypertensive medication, typically 213 

amlodipine besylate, or medications that might modify BP, e.g. angiotensin 214 

receptor blocker, angiotensin converting enzyme inhibitor, beta-blocker. 215 

 216 

Data available permitted cross-sectional evaluation of the outcome variables 217 

relating to renal function (quantitative creatinine and dichotomous CKD 218 

diagnosis) and quantitative SBP at the first visit when cats were aged 14 years and 219 

also longitudinal evaluation of the development of systemic HT throughout follow-220 

up. 221 

 222 

Single nucleotide polymorphism identification:  223 



The currently reported coding sequence of UMOD was explored (Ensembl 224 

http://www.ensembl.org/Felis_catus/Info/Index; ENSFCAG00000004381. 225 

GenBank Assembly ID GCA_000181335.1, Felis_catus_6.2 ChrE3: 27156434-226 

27168778). Previously published annotated single nucleotide polymorphisms 227 

(SNPs) within either intron and exon regions of the UMOD gene were identified 228 

using a previously available genome assembly (http://genome-euro.ucsc.edu 229 

NHGRI/GTP V17e/felcat4/GenBank assembly accession: GCA_000003115.1) and 230 

a recent release of annotated feline SNPs 231 

(http://public.dobzhanskycenter.ru/Hub/hub.txt) which were mapped to the 232 

Felis_catus_6.2 genome assembly (Mullikin, Hansen et al. 2010, Tamazian, 233 

Simonov et al. 2014). Location of SNPs within the UMOD gene sequence was 234 

confirmed by blast search against the feline, canine and human nucleotide 235 

collection (BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi). Polyphen 236 

(http://genetics.bwh.harvard.edu/pph2) was used to predict the impact of the 237 

amino acid substitution on the structure and function of UMOD for non-238 

synonymous SNPs within UMOD exons.  239 

 240 

Genotyping:  241 

Genomic DNA (gDNA) was extracted from buffy coat enriched packed cells using 242 

a commercially available kit (Sigma GenElute Blood Genomic DNA kit, Sigma-243 

Aldrich Company Ltd.) according to the manufacturer's instructions and 244 

subsequent spectrophotometric (Nanodrop 1000 Spectrophotometer, Thermo 245 

Scientific) quantification. gDNA was diluted with nucleic acid-free H2O (Water, 246 

Molecular Biology Reagent, Sigma-Aldrich Company Ltd) to a final concentration 247 

of 5 ng/μL for genotyping. 248 

http://www.ensembl.org/Felis_catus/Info/Index
http://genome-euro.ucsc.edu/
http://public.dobzhanskycenter.ru/Hub/hub.txt
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://genetics.bwh.harvard.edu/pph2


 249 

For all evaluated SNPs, primers were designed based on the SNP locus sequence 250 

for a PCR-based competitive allele-specific PCR (KASP™) genotyping assay 251 

(KASP™, LGC Genomics) using Primerpicker [Primepicker (previously 252 

KBiosciences) LGC Genomics, KBS-1016-022 (25 mL) KASP™  Master Mix, LGC 253 

Genomics]. This produced two allele-specific oligonucleotides with unique 5′ 254 

tails and one common reverse oligonucleotide. For each genotyping assay, the 255 

allele-specific and common primers were diluted in nucleic acid-free H2O to a final 256 

concentration of 100 μM and combined as a SNP-specific assay mix (12 μL allele-257 

specific primer 1+12 μL allele-specific primer 2+30 μL common primer+46 μL 258 

dH2O). Buffer mix was prepared using KASP™ assay mix (KBS-1016-022 (25 mL) 259 

KASP™ Master Mix, LGC Genomics) [containing universal fluorescent resonance 260 

energy transfer (FRET) cassettes with the dyes FAM and VIC, high ROX™ passive 261 

reference dye, Taq polymerase and free nucleotides] and MgCl2 (50 mM) to give 262 

a final concentration of 1·8 mM. 263 

 264 

For genotyping assays, 7·5 ng of gDNA was applied per well using a 384 well 265 

format (AB Biosystems) and air-dried at 65°C for a minimum of 2 hours or 266 

overnight. A master mix was prepared by the addition of 16 μL SNP-specific assay 267 

mix and 1008 μL buffer mix with 2·5 μL added to each well before covering with 268 

optical adhesive PCR film. The following PCR cycling sequence (Tetrad PTC 225 269 

Peltier Thermocycler (previously MJ Research), BIO-RAD, Hemel Hempstead) was 270 

used for all assays: 94°C for 15 minutes, 10 cycles of 94°C for 20 seconds with 271 

touch down over 65 to 70°C for 60 seconds (reducing by 0·8°C per cycle), 26 cycles 272 

of 94°C for 20 seconds and 57°C for 60 seconds. Allelic discrimination was 273 



performed (ABI PRISM® 7900HT, Applied Biosystems, Thermo Fisher Scientific) 274 

with manual cluster detection (SDS 2.3, Applied Biosystems, Thermo Fisher 275 

Scientific). Genotyping assays were initially tested across 24 cats and assays that 276 

performed well were taken forwards for genotyping of all cats using a randomised 277 

format and including nucleic acid-free H2O (n=8) as a negative control. 278 

 279 

Statistical analysis:  280 

Summaries of the clinical data are presented in Table 1, showing the median and 281 

interquartile range (IQR) for each variable. A non-parametric Mann–Whitney U 282 

test was used to compare these clinical variables as well as the duration of follow-283 

up between normotensive and hypertensive cats and between cats diagnosed 284 

with azotaemic CKD aged 14 years and those, which were non-azotaemic aged 13 285 

years (see Tables 2 and 3). For all clinical statistical analyses P<0·05 was 286 

considered significant. 287 

 288 

Associations between quantitative and binary response variables and SNPs were 289 

performed using PLINK with either linear or logistic regression models 290 

respectively (Purcell et al. 2007). Quantitative variables were assessed for 291 

normality by visual inspection of histograms and also the Kolmogorov–Smirnov 292 

test. Due to skewness, creatinine concentration was logarithmically transformed 293 

before analysis. Genotype frequencies, minor allele frequency (MAF), Hardy–294 

Weinberg equilibrium (HWE; using the exact Hardy–Weinberg test) and linkage 295 

disequilibrium (LD) were evaluated. MAF greater than 10% was chosen to include 296 

only common variants and therefore to improve power to detect a significant 297 

association given the relatively small sample size. For quality control, summary 298 



statistics were checked for the genotype call rates per SNP and per cat, and a SNP 299 

call rate threshold of greater than 90% was used. Pairwise LD values were 300 

calculated in PLINK using data from our cohort of cats due to lack of available 301 

known feline LD reference data (unlike in human GWAS). An r2 value of >0·5 was 302 

used based on suggested threshold from PLINK of 0·5 “being necessary to declare 303 

that one SNP tags another” (Purcell et al. 2007). An additive model was used for 304 

all SNP associations, with results corresponding to a per allele unit effect. For 305 

genotyping analyses Bonferroni correction was applied to adjust for multiple 306 

testing. Based on pairwise LD the SNPs reduced to a set of five pairwise 307 

independent SNPs (Table S2) and therefore for genotyping analyses statistical 308 

significance was defined as P<0·01 (using Bonferroni correction: P=0·05/5). 309 

 310 

Associations were evaluated for the quantitative variables log-creatinine and SBP 311 

at the time of biochemical assessment aged 14 years and for the binary outcome 312 

of diagnosis of azotaemic CKD aged 14 years. Longitudinal clinical data available 313 

from computerised records for all cats were assessed in order to determine 314 

whether, during their entire period of monitoring, cats had ever been diagnosed 315 

with systemic HT. A single case–control association was then subsequently 316 

explored with the binary outcome of ever becoming hypertensive versus 317 

remaining normotensive during the available period of follow-up. For both the 318 

quantitative trait SBP and the binary outcome hypertensive/normotensive 319 

analyses, log-creatinine concentration was included as a covariate for adjustment 320 

based on potential association between renal function and likelihood of 321 

developing HT. For the quantitative variable log-creatinine and the binary 322 

outcome of diagnosis of CKD aged 14 years no covariates were included. 323 



 324 

Results: 325 

Stored cell pellets were available for 227 cats. The median age of cats was 14·4 326 

years (IQR 14·2 to 4·6 years). Of this population of cats 78·4% (n=178) were 327 

domestic shorthair, 8·8% domestic longhair (n=20) with the following breeds also 328 

represented; Burmese n=10 (4·4%), Persian n=6 (2·6%), Persian cross n=3 329 

(1·3%), with two each of the following breeds; British blue, Russian blue cross, 330 

Siamese and one each of the following breeds; American shorthair, Maine coon, 331 

occicat, Russian blue. 332 

 333 

Clinical and biochemical data for cats at recruitment to the study are provided in 334 

Table 1. Hyperthyroidism had previously been diagnosed in 19% (44/227) of cats 335 

and was documented to be well-controlled, both on the basis of clinical signs and 336 

total thyroxine measurement (n=44 median total thyroxine 22·9 nmol/L; IQR 17·1 337 

to 31·7 nmol/L). Twenty-one of the cats that had been diagnosed with 338 

hyperthyroidism had previously undergone either uni- or bi-lateral 339 

thyroidectomy and therefore were not receiving any antithyroid medication at the 340 

point of enrollment. At the time of initial assessment 33·9% (77/227) of cats had 341 

been diagnosed with azotaemic CKD. Clinical data are compared between cats 342 

diagnosed with azotaemic CKD and non-azotaemic cats at entry to the study in 343 

Table 2. As may be anticipated cats diagnosed with azotaemic CKD had 344 

significantly higher plasma creatinine concentration, lower packed cell volume 345 

and urine specific gravity. Potassium concentration was unexpectedly 346 

significantly higher in cats with azotaemic CKD (P=0·034) and, despite selection 347 



of cats from the 14th year of life, cats with azotaemic CKD at enrollment were 348 

younger (P=0·02) than non-azotaemic cats. 349 

 350 

Systemic HT had previously been diagnosed in 17% (39/227) of cats at 351 

enrollment in the study of which all were receiving amlodipine besylate therapy 352 

and 46% (18/39) of these hypertensive cats had been diagnosed with azotaemic 353 

CKD. Clinical records for all 227 cats were reviewed to determine whether 354 

systemic HT developed during their period of follow-up. The median period of 355 

follow-up for all cats from the date of sampling in their 15th year until death, 356 

euthanasia or the study end point (end of December 2014) was 850 days (399, 357 

1218 days). During this period, 81 cats were diagnosed with systemic HT and 146 358 

remained normotensive and there was no significant difference in duration of 359 

follow-up between groups (Table 3). Twenty-one cats went on to develop 360 

hyperthyroidism of which 23·8% (5/21) underwent thyroidectomy and the 361 

remainder received medical management. Clinical data at entry to the study are 362 

compared between cats that developed systemic HT and those that remained 363 

normotensive throughout follow-up (Table 3). Potassium and urine specific 364 

gravity were significantly lower (P<0·05) in cats at enrollment if they were 365 

diagnosed during follow-up with systemic HT than if they remained 366 

normotensive. 367 

 368 

Single nucleotide polymorphism identification:  369 

Eight intronic SNPs and one SNP 1372bp upstream of the feline UMOD reference 370 

sequence were identified (Table 4) using published data by Mullikin and 371 

colleagues (2010) from a previously available genome assembly (NHGRI/GTB 372 



V17e/felcat4) GenBank assembly GCA_000003115.1). KASP™ assays were 373 

designed for genotyping (Supplemental Table A)(Mullikin et al. 2010). Location 374 

within the predicted UMOD gene sequence (Supplemental data Figure 1) from the 375 

current genome assembly was confirmed by performing a nucleotide BLAST 376 

search against the feline nucleotide collection. Genotype frequencies are reported 377 

in Table 4.  378 

 379 

A further three exonic UMOD SNPs were identified using recently published data 380 

by Tamazian et al. (Table 4). Two of these SNPs (g.1381T>A and g.1664A>G) are 381 

non-synonymous and located in exon 2; one is a synonymous SNP (g.4635T>C) 382 

located in exon 5 (Fig S1). Polyphen was used to predict the impact of the amino 383 

acid substitution on the structure and function for both non-synonymous SNPs 384 

(Adzhubei et al. 2010). The two SNPs were considered as benign (g.1381T>A, 385 

p.ser74thr: score 0·009, sensitivity 0·96, specificity 0·77 and g.1664A>G, 386 

p.asp168gly: score 0·002, sensitivity 0·99, specificity 0·3). KASP™ assays were 387 

designed for all three SNPs but were successful for only two (exonic g.1381T>A 388 

and intronic g.4635T>C). Ultimately the exonic non-synonymous SNP g.1381T>A 389 

which was considered benign using Polyphen modelling did not have a MAF 390 

greater than 10% and therefore was not evaluated within association studies. 391 

Genotyping frequency data are presented in Table 4. 392 

 393 

One reported SNP (g.1664A>G) failed to genotype in any of the cats and was 394 

excluded from further analysis with uncertainty whether this represented primer 395 

failure or that this was not a true SNP. Overall genotype rate was 0·967561 and all 396 

SNPs demonstrated a genotype failure rate less than 10%. Forty-eight cats failed 397 



to genotype in ≥1 SNP (28 cats failed in one SNP, 10 cats failed two SNP, four cats 398 

failed three SNPs, four cats failed four SNPs and one cat failed in five SNPs). 399 

However, given the relatively small sample size all cats were retained in the study. 400 

Evaluating genotype data from all cats, seven SNPs had a MAF greater than 10% 401 

(Table 4) and were used for further evaluation, restricting to analysis of common 402 

variants as appropriate for this sample size. HWE data are presented in Table 4. 403 

LD pairwise comparison identified that there were five independent SNPs (Table 404 

S2; g.4635T>C, g.1381T>A, g.6902C>T, g.3390G>A and 5′ upstream 1372 bp 405 

G>A). 406 

 407 

Association between UMOD genotype and renal function 408 

Seven SNPs with MAF greater than 10% (Table 4) were analysed for associations 409 

with renal function using the quantitative trait log-creatinine and the binary 410 

outcome of being diagnosed with azotaemic CKD in 15th year of life or being non-411 

azotaemic. We observed no significant association between SNPs and log-412 

creatinine (Table S3). Similarly there were no SNPs significantly associated with 413 

the diagnosis of CKD as a binary variable (all had P>0·01; Table S4). 414 

 415 

Association between UMOD genotype, systolic blood pressure and systemic 416 

hypertension 417 

After exclusion of cats that were receiving antihypertensive or BP-modifying 418 

medication at the time of enrollment, 188 cats were available for evaluation of 419 

association between genotype and SBP as a continuous variable (Table S6). Seven 420 

SNPs demonstrated MAF greater than 10% (Table S5) and were included in the 421 

analysis (Table S6). Four SNPs were significantly associated (P<0·01; Table 5) 422 



with SBP as a quantitative variable, adjusted for plasma creatinine as a covariate 423 

(Table S6) but all four were in LD, suggesting one overall distinct association 424 

signal. 425 

 426 

Clinical record data for all 227 cats were reviewed in order to categorise cats as 427 

normotensive or hypertensive during their period of follow-up at the clinics 428 

(Table 3). No SNPs with MAF greater than 10% were significantly associated with 429 

the hypertensive state (all had P>0·01; Table S7). 430 

 431 

Discussion: 432 

This study demonstrates that genetic variants in UMOD are significantly and 433 

positively associated with SBP but not with systemic HT as a specific outcome. 434 

This finding is comparable to the associations that have been made to date in 435 

human medicine (Iwai et al. 2006, Padmanabhan et al. 2010, Han et al. 2012). The 436 

SNP identified in human medicine (rs13333226), located within the promotor 437 

region of UMOD has been associated with a lower risk of HT (Padmanabhan et al. 438 

2010). However, in our current study, SNPs that reached statistical significance 439 

were associated positively with SBP. The four SNPs that demonstrated association 440 

with SBP were not independent and shown to be in LD. There is relatively little 441 

known about LD in cats and the values generated for the current study were 442 

inferred from this population alone using an LD r2 value that was lower than 443 

typically applied to human studies (Alhaddad et al. 2013). The SNPs where 444 

significant association was identified were intronic. Therefore any effect from 445 

these SNPs will not be the result of structural change in the uromodulin amino 446 

acid sequence but could reflect, for example, alteration in splicing or post-447 



translational modifications (Shastry 2009). The overall effect of SNPs significantly 448 

associated with SBP in this study appears proportionally large compared to effects 449 

identified in human medicine. It can be hypothesised that potentially the cat may 450 

be different from the human in terms of the complexity of SBP as a trait giving rise 451 

to this greater effect. However, further work is required to validate the SNPs 452 

identified in independent cohorts of cats in order to establish this association. 453 

 454 

The mechanism by which genetic variation in UMOD is associated with control of 455 

BP is incompletely understood. However, studies suggest that this may relate to 456 

alteration in permeability of the TAL of the loop of Henle to water and modulation 457 

of sodium handling by the apical Na+K+2Cl− cotransporter (NKCC2). Recent 458 

studies have used uromodulin knockout mice to further elucidate the role played 459 

by uromodulin. Uromodulin knockout (UMOD−/−) mice demonstrate no 460 

abnormalities in electrolyte balance but do show significantly reduced creatinine 461 

clearance and impaired urine-concentrating ability and decreased NKCC2 activity 462 

(Bachmann et al. 2005, Mutig et al. 2011). Transfection of TAL cells with 463 

uromodulin resulted in increased concentration of phosphorylated NKCC2 and 464 

increased intracellular chloride concentration indicating that uromodulin plays an 465 

important facilitating role in absorption of sodium and activity of the NKCC2 466 

cotransporters within the TAL (Mutig et al. 2011, Trudu et al. 2013). In addition, 467 

knockout studies suggest that uromodulin may regulate expression of other 468 

channels including, amongst others, the renal outer medullary potassium channel 469 

(ROMK2) (Bachmann et al. 2005, Renigunta et al. 2011). This is a potentially 470 

interesting concept given that cats with systemic HT have previously been shown 471 

to have significantly lower plasma potassium concentrations than their 472 



normotensive counterparts, a finding which was also seen in the present study 473 

(Syme et al. 2002, Bijsmans et al. 2015). 474 

 475 

A study by Graham et al. has demonstrated that UMOD−/− mice have significantly 476 

lower SBP (116·6 ±0·3 mmHg) than wild-type mice (136·2 ±0·4 mmHg) and that 477 

the knockout mice show no response in terms of alteration in BP to sodium 478 

loading (Graham et al. 2014). The pressure-natriuresis curve was also shifted to 479 

the left in UMOD−/− mice (Graham et al. 2014). A further study conversely 480 

demonstrated that over-expression of uromodulin resulted in increased 481 

uromodulin excretion and increased BP (Trudu et al. 2013). 482 

 483 

TNFα has also been shown to downregulate NKCC2 expression in an autocrine 484 

manner and it has been suggested that TNFα may be a link between the intra- and 485 

extra-cellular roles of uromodulin and BP regulation (Battula et al. 2011); 486 

UMOD−/− mice showed increased urinary TNFα concentrations compared to 487 

wild-type mice (Graham et al. 2014). Cells from the TAL were isolated from wild-488 

type mice and stimulated with TNFα resulting in a reduction in NKCC2 expression, 489 

and simultaneous increase in UMOD mRNA expression (Graham et al. 2014). This 490 

work suggests that uromodulin modulates the effect of TNFα on NKCC2 491 

expression and hence may affect BP regulation. However, further work is required 492 

to exactly characterise this molecular mechanism. To date, although studies report 493 

the measurement of uromodulin in cats using experimental collection of large 494 

volumes of urine, it has not been possible to validate a human-based ELISA system 495 

for urine uromodulin quantification (Lulich et al. 2012). Nevertheless, this would 496 



be an interesting avenue for further study in order to explore the relationship 497 

between genetic variation and uromodulin expression in cats. 498 

 499 

In contrast to data from human medicine, no association could be identified 500 

between genetic variants in UMOD and plasma creatinine as a marker of renal 501 

function or the outcome of a diagnosis of CKD. In human medicine, a significant 502 

association has been identified between UMOD variant rs12917707 and CKD 503 

defined as an estimated GFR (eGFRcreat) using creatinine (eGFRcreat) of <60 504 

mL/kg/minute/1·73 m2 in both discovery and replication groups (Kottgen et al. 505 

2009, Psaty et al. 2009). However, it is important to note that within the meta-506 

analysis, even when combining six risk alleles, only 0·7% of the variance in 507 

eGFRcreat could be explained (Kottgen et al. 2009). The association between 508 

UMOD variants and renal function have been replicated in an independent 509 

population in which the UMOD tag-variant rs4293393 was significantly associated 510 

with both CKD and serum creatinine concentration (The International HapMap C 511 

2005, Gudbjartsson et al. 2010). UMOD variants (rs12917707 and rs4293393) 512 

have also been significantly associated with the risk of incident CKD in humans 513 

and more recently they have been associated with development of end-stage renal 514 

disease in humans (Kottgen et al. 2009, 2010, Boger et al. 2011). 515 

 516 

It can be hypothesised that, if the effect of genetic association between UMOD and 517 

renal function is smaller than that for BP, lack of association with renal function 518 

in the current study may reflect the small sample size. In the current study every 519 

available cat meeting the study criteria was included. Given this available sample 520 

size, we have performed power calculations retrospectively (Purcell et al. 2003) 521 



to estimate the expected power achievable from an analysis of N=227 cats for 522 

detecting effects of associated SNPs with MAF≥10%. For BP traits, which are 523 

known to only have small effects for each SNP individually in humans, the sample 524 

of 227 cats may only have ~20% power. For renal trait associations, for which we 525 

anticipate higher power, as human studies indicate larger effect sizes, the sample 526 

of 227 cats may have ~40% power. These calculations include estimates and 527 

assumptions for heritability and LD structure known from human genetics. 528 

However, with no prior GWAS of BP and renal traits in cats, the accuracy of these 529 

estimates is unknown. Analysis of this pilot study data and the quality control 530 

diagnostics performed suggest that there may be stronger LD structure within 531 

cats, compared to humans. If this is the case, the power could actually be higher 532 

than has been estimated, which may explain the successful identification of 533 

associations among UMOD SNPs and SBP. Equally the small sample size means 534 

that there is insufficient evidence to conclude absence of a significant association 535 

between UMOD variants and HT or renal traits from this study. 536 

 537 

Although a range of intronic and exonic SNPs were evaluated in this study only 5 538 

out of 11 were ultimately identified to be independent, and therefore there were 539 

only a limited number of distinct signals that could be analysed for these data. 540 

Furthermore, in the current study, plasma creatinine was used as a marker of GFR 541 

whilst in comparable human studies estimated GFR based on either creatinine or 542 

cystatin C were commonly used. Creatinine is recognised to be a less precise 543 

marker of GFR particularly in the early stages of CKD than estimated GFR 544 

calculations. It is therefore possible that as yet undiscovered SNPs in the feline 545 



UMOD gene may be associated with renal function or that an association may be 546 

identified if more precise markers of renal function are employed. 547 

 548 

A further limitation of the current study was inclusion of cats which either had a 549 

prior diagnosis of hyperthyroidism and had undergone surgical thyroidectomy or 550 

medical management, or which were identified to become hyperthyroid during 551 

follow-up. Hyperthyroidism had previously been diagnosed in 19% of cats at 552 

enrollment to this study. From the feline literature, approximately 10% of cats are 553 

diagnosed with systemic HT at diagnosis of hyperthyroidism with approximately 554 

20% demonstrating HT after treatment and return to euthyroidism (Morrow et al. 555 

2009, Williams et al. 2010). In human patients and experimental studies, 556 

hyperthyroidism results in a reduction in systemic vascular resistance that is 557 

offset by an increase in cardiac output, thus the net effect of hyperthyroidism is 558 

towards a small decline in blood pressure (Syme 2007). The underlying 559 

pathophysiology of systemic HT documented in cats with hyperthyroidism 560 

remains to be determined, but may relate to the decline in renal function identified 561 

with return to euthyroidism (Williams et al. 2010, 2013). If this is the case then it 562 

remains possible that genetic variants, such as those identified in uromodulin, 563 

could be common to all cats and still play a predisposing role in the development 564 

of systemic HT. Every attempt was made to ensure that cats were truly euthyroid 565 

at the point of inclusion aged 14 years. It is therefore hoped that any effect of a 566 

prior diagnosis of hyperthyroidism on both SBP and renal function as assessed by 567 

plasma creatinine will have been minimised at this time. The association analysis 568 

for SBP was repeated excluding cats that were receiving medical therapy for their 569 

hyperthyroidism without documenting any change in association results (data not 570 



presented) implying that inclusion of these cats did not adversely affect the 571 

results. However, despite careful longitudinal monitoring, it is possible that either 572 

failure to make an early diagnosis of hyperthyroidism or medical management of 573 

hyperthyroidism in those patients where a diagnosis was made, could have 574 

impacted on our ability to define cats as hypertensive during follow-up. 575 

 576 

Further novel SNP discovery is warranted and continued exploration with novel 577 

renal markers, e.g. symmetric dimethylarginine. In particular, the SNP 578 

associations in human medicine both with renal function and BP have been 579 

located within the promoter region for the UMOD gene (Kottgen et al. 2009, 580 

Padmanabhan et al. 2010). Focusing on SNPs within the promoter region of the 581 

feline UMOD gene may be of greatest benefit. A further aspect of association that 582 

was not performed in the current study on cats but which has been evaluated in 583 

human medicine is the association between genetic variants and progression of 584 

renal disease (Gorski et al. 2015). 585 

 586 

In conclusion, this exploratory pilot study suggests that there may be similarities 587 

between humans and cats in the underlying mechanisms of BP regulation and the 588 

role that genetic variants in UMOD play in modifying BP. Further work is required 589 

to replicate and validate these preliminary findings in a separate cohort of cats 590 

and to explore the relationship between uromodulin excretion and UMOD genetic 591 

variation in cats. 592 
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Table 1: Clinicopathological data for cats at enrollment to the study 610 
 611 
 612 

Clinical parameter Median (25th, 75th) N 
Age (years) 
 
Urea (mmol/L) 
 
Creatinine (µmol/L) 
 
 
Phosphorus (mmol/L) 
 
USG 
 
UP/C 
 
Total thyroxine (nmol/L) 
 
SBP (mmHg) 
 
Weight (kg) 
 
Diagnosed with azotaemic CKD 
at enrollment 
 
Previous diagnosis of systemic 
hypertension at enrollment 
 
Proportion of cats with systemic 
hypertension diagnosed with 
azotaemic CKD 

14·4 (14·2, 14·6) 
 
12·0 (9·7, 15·9) 
 
154·3 (127·6, 192·7);  
range 63·8 to 550·8 
 
1·28 (1·10, 1·48) 
 
1·030 (1·020, 1·042) 
 
0·15 (0·00, 2·99) 
 
22·3 (16·5, 28·2) 
 
140 (127·2, 155·6) 
 
4·06 (3·42, 4·65) 
 
- 
 
 
- 
 
 
- 
 

227 
 
227 
 
227 
 
 
227 
 
191 
 
70 
 
141 
 
227 
 
219 
 
52/227 
22·9% 
 
39/227 
17% 
 
18/39 
46% 

 613 
  614 



Table 2: Comparison of clinical parameters between cats diagnosed with 615 
azotaemic CKD at enrollment versus non-azotaemic cats 616 

 617 
 618 
 619 
 620 

Variable 
(units) 

Non-
azotaemic 

cats 
n 

Cats 
diagnosed 

with 
azotaemic 

CKD 

n Significance (P) 

 

Age at visit 
during 15th year 

14·4 (14·2, 14·6) 150 14·3 (14·1, 14·6) 77 0·02 

Creatinine 
(µmol/L) 

137·0 (116·7, 
155·3) 

150 215·0 (190·0, 
251·0) 

77 <0·0001 

Phosphorus 
(mmol/L) 

1·27 (1·09, 1·44) 150 1·31 (1·16, 1·61) 77 0·127 

Potassium 
(mmol/L) 

3·90 (3·70, 4·20) 150 4·07 (3·72, 4·30) 77 0·034 

Weight (kg) 4·01 (3·42, 4·64) 146 4·10 (3·48, 4·70) 73 0·502 

Systolic blood 
pressure 
(mmHg) 

138 (126·0, 
156·0) 

150 143 (128·5, 156) 77 0·257 

Packed cell 
volume (%) 

37·0 (34·0, 40·0) 149 34·5 (30·0, 38·0) 76 0·005 

Urine specific 
gravity 

1·036 (1·028, 
1·050) 

120 1·020 (1·016, 
1·024) 

71 <0·0001 

Urine protein to 
creatinine ratio 

0·16 (0·12, 0·29) 38 0·14 (0·09, 0·26) 32 0·328 

Duration of 
follow-up (days) 

899·0 (484·5, 
1274·5) 

150 799·0 (246·0, 
1106·0) 

77 0·069 



Table 3: Comparison of clinical parameters between cats documented to be 621 
hypertensive and those, which remained normotensive during follow-up 622 
 623 
  624 

Variable 
(units) 

Cats remaining 
normotensive 

n 
Cats developing 

hypertension 
n 

Significance 
(P) 

Age at visit during 
15th year 

14·4 (14·1, 14·6) 146 14·3 (14·1, 14·6) 81 0·106 

Creatinine 
(µmol/L) 

151·7 (125·1, 186·4) 146 159·2 (132·4, 
201·0) 

81 0·127 

Phosphorus 
(mmol/L) 

1·28 (1·12, 1·46) 146 1·31 (1·07, 1·51) 81 0·778 

Potassium 
(mmol/L) 

4·0 (3·7, 4·3) 146 3·9 (3·6, 4·1) 81 0·02 

Weight (kg) 4·01 (3·46, 4·62) 146 4·17 (3·31, 4·68) 81 0·853 

Packed cell volume 
(%) 

36 (32, 39) 146 36 (33, 39) 79 0·845 

Urine specific 
gravity 

1·031 (1·021, 1·046) 119 1·025 (1·019, 
1·034) 

72 0·01 

Urine protein to 
creatinine ratio 

0·16 (0·11, 0·27) 40 0·16 (0·10, 0·34) 30 0·476 

Duration of follow-
up (days) 

822 (371, 1151) 81 968 (486, 1401) 81 0·138 

Diagnosis of 
hyperthyroidism 
at enrollment 
during 15th year 

- 28 - 16   

Cats diagnosed 
with 
hyperthyroidism 
during follow-up 

- 10 - 11   
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