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ABSTRACT Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degen-
eration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months
of age. Using a genome-wide association study approach with three cases and 170 breed matched controls,
a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing
approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional
cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of
cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This
investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping
using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be
possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie
breed population.
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Sensory neuropathy (SN) in the Border Collie is an autosomal reces-
sively inherited disease first described in the scientific literature in 1987
(Wheeler 1987), with subsequent cases reported in 2005 (Vermeersch
et al. 2005; Harkin et al. 2005). Clinical signs start between 2 and
7 months of age and include progressive proprioceptive ataxia with
intermittent knuckling of the paws, hyperextension of the limbs, and
self-mutilation wounds in the distal part of the limbs (Figure 1). Usu-
ally, the pelvic limbs are more severely affected than the thoracic limbs.

There is decreased or loss of proprioception and nociception in all
limbs, and in some cases autonomic signs such as urinary inconti-
nence and, in the later stage, regurgitation has also been reported
(Vermeersch et al. 2005). Electrophysiological studies show decreased
or absent sensory nerve compound action potentials, normal or re-
duced motor nerve conduction velocities, and normal electromyogra-
phy in the appendicular muscles.

In analysis of 1mm resin sections ofmixedmotor and sensory nerve
biopsies from clinically affected Border Collies, the predominant
changes in all cases included axonal degeneration, endoneurial fibro-
sis, and extensive large nerve fiber loss. Results of these studies and
illustrations have been previously published (Vermeersch et al. 2005;
Harkin et al. 2005). Involvement of the sensory nerve was consistently
severe, while mixed motor and sensory nerves varied from mild to
moderate nerve fiber loss. Regenerative clusters or sprouts were not
found. Given the severe changes in the sensory nerves and the absence
of regeneration, the prognosis for recovery was poor and all reported
cases were euthanized within 18months of diagnosis (Vermeersch et al.
2005; Harkin et al. 2005).
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Although SN in the Border Collie could be categorized as either an
inherited sensory and autonomic neuropathy (ISAN) (Granger 2011) or
an inherited sensory and motor neuropathy (ISMN) due to the reported
motor involvement (Harkin et al. 2005), SN in the Border Collie is
most comparable with the human hereditary sensory and autonomic
neuropathies (HSAN). Dominantly inherited forms include: hereditary
sensory and autonomic neuropathy type I (HSAN-I, which is caused
by mutations in SPTLC1, SPTLC2, and ATL1; Dawkins et al. 2001;
Rotthier et al. 2010; Guelly et al. 2011); Charcot-Marie-Tooth Neurop-
athy type 2b, which is caused by RAB7A mutations (Verhoeven et al.
2003); and HSAN-I with dementia and hearing loss, which is caused
by mutations in DNMT1 (Klein et al. 2011). Recessive forms include:
HSAN-II, which is caused by mutations in WNK, FAM134B, and
KIF1A (Shekarabi et al. 2008; Kurth et al. 2009; Riviere et al. 2011);
HSAN-III, which is caused by mutations in IKBKAP (Slaugenhaupt
et al. 2001); HSAN-IV, which is caused by mutations in NTRK1(Greco
et al. 1999); and HSAN-V, which is caused by mutations in NGFB
(Einarsdottir et al. 2004). HSAN with spastic paraplegia is caused by
mutations in CCT5 (Bouhouche et al. 2006).

Onlyamodest collectionof threeSNcaseswasavailable forour initial
study making a candidate gene study a possible approach. However,
suitablebreedmatchedcontrolDNAswere incidentallybeinggenotyped
for an independentgenome-wideassociationstudy (GWAS) so the three
SN cases were genotyped in parallel with the available control set, with
the aim of identifying potential indicator loci for SN. Genome sequenc-
ingwould thenbeused to interrogate suggestive loci from theGWAS for
potential causalvariants. Insummary, ouraimswere tomapthe locus for
SN using a minimal case set, with the use of genome sequencing
techniques to identify the causal variant.

MATERIALS AND METHODS

Diagnosis of SN cases and sample set selection
Three 4-month-old clinically affected [two full-sibling (one male and
one female) and one unrelated (one female)] Border Collie dogs were
evaluated. The two full sibling dogs belonged to a litter of eight puppies
and the third affected dog belonged to another unrelated litter of two
puppies. The two full sibling dogs were examined at the Animal Health
Trust (AHT) and the third dog at the School of Veterinary Medicine,
University of Glasgow.

All three dogs presented with a 2–3 wk history of an insidious onset
of chronic progressive proprioceptive ataxia, mainly affecting the pelvic

limbs. The unrelated dog also presented with urinary incontinence. Phys-
ical examination revealed generalizedmuscle atrophymainly affecting the
pelvic limbs and self-mutilating wounds on the distal part of the pelvic
limbs. The neurological examination revealed normal mental status, and
proprioceptive ataxia with spontaneous knuckling more evident on the
pelvic limbs. Proprioceptive reactions were absent on the pelvic limbs and
decreased to absent on the thoracic limbs. Segmental spinal reflexes were
normal. Nociception was absent on the pelvic limbs and decreased to
absent on the thoracic limbs. Cranial nerve examination was normal. The
cutaneous trunci reflex was present. No discomfort could be detected on
palpation of the spine or cranium. Due to the progressive condition and
the poor quality of life, the owners elected euthanasia of the three affected
dogs. A video demonstrating the clinical signs for sensory neuropathy in
the Border Collie is shown in Supplemental Material, File S6.

The two-affected full siblings underwent postmortem examination
and peripheral nerve tissue and cerebrum was preserved in RNAlater
(Life Technologies) for RNA extraction. Buccal swabs samples were also
collected for the extraction of DNA. Sections of the left and/or right sci-
atic nerve, left and/or right radial nerve, and digital flexor muscles of the
thoracic and pelvic limbs were submitted for histopathological studies.
Theresultswere consistentwith thebreed specific (BorderCollie) sensory
and motor neuropathy (Harkin et al. 2005; Vermeersch et al. 2005).

The third unrelated dog also underwent postmortem examination
and EDTA blood samples were taken for DNA. The histopathological
findings in the left sciatic nerve, left common peroneal nerve, and left
radial nerve were consistent with the reported SN of the Border Collie.
Moreover, there wasmild axonal degeneration in the vagus nerve in this
third affected dog.

The additional SN cases for mutation screening were clinically and
pathologically similar to the three cases used in the initial investigation.

DNA extraction and genotyping
DNA was extracted from buccal swabs and blood samples using the
QIAamp Midi kit (Qiagen). High throughput SNP genotyping was
performedusing the IlluminaCanineHDarray,whichassays for173,662
genome-wide SNPs. Genotyping data can be found in File S3, File S4,
and File S5. Genotyping data were analyzed using the PLINK software
package. Genome-wide homozygosity mapping was performed by al-
lelic association analysis with PLINK (Purcell et al. 2007), and only in-
cluding SNPs that were homozygous in all three cases (85,672 SNPs).

Genotyping of the SN associated inversion was performed by anal-
ysis of a fragment length polymorphism generated by PCR. Primers for
PCRwereas follows:SN_F, 6FAM-TGGAGAACTGACCTGCAACTT;
SN_R1, GGCCCGTGTTGTGATCTTAG; SN_R2, AGGGATCAT
GACCTGAGCTG. PCRs were carried out in 12 ml volumes consisting
of 1.5mMdNTPs, 1·Qiagen PCR buffer, 0.5mMof each primer, 0.6 U
of Qiagen HotStarTaq polymerase, and template DNA. Thermal cy-
cling consisted of 5 min at 95�, followed by 35 cycles of 95� for 30 sec,
57� for 30 sec, and 72� for 30 sec, with a final elongation stage of 72� for
5 min. Products of PCR were analyzed using the fragment analysis
module of an ABI3130xl genetic analyzer. Exon resequencing of the
FAM134B gene was carried out by standard Sanger sequencing meth-
odology, using BigDye3.1 chemistry (Life Technologies) and capillary
electrophoresis on an ABI3130xl genetic analyzer. Sequencing data
were analyzed using the Staden Gap4 software package. Primer se-
quences are shown in Table S2 (Staden et al. 2000).

Genome sequencing
Genome sequencing was outsourced to the Wellcome Trust Centre
for Human Genetics, University of Oxford. Illumina sequencing of a

Figure 1 Self-mutilation wound of a sensory neuropathy case. Self-
mutilation wounds on the distal part of the pelvic limbs of a 4 month
old Border Collie diagnosed with sensory neuropathy.
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PCR-free library (100 bp paired-end reads) generated a dataset of
approximately 75 Gb, i.e., 31· coverage of the dog genome. Reads
were aligned to the canine reference genome (CanFam3.1) using
BWA (Li and Durbin 2009) and variant calls made using GATK
Haplotype Caller (McKenna et al. 2010; DePristo et al. 2011; Van
der Auwera et al. 2013). The genome sequencing dataset can be
accessed via the European Nucleotide Archive (ENA accession num-
ber: PRJEB12337).

RNAseq
RNA was extracted from cerebrum using the Qiagen RNeasy Midi kit,
and included an on-columnDNase treatment. Isolation ofmRNA from
total RNAwas performed using Sera-Mag oligo-dT beads. Libraries for
RNAseqwere generated usingNEBNextUltraRNALibraryPrepKit for
Illumina sequencing. Sequencing was performed on an IlluminaMiSeq
generating a 4 Gb dataset of 75 bp paired-end reads. Reads were aligned
toCanFam3.1 using bothBowtie/TopHat andBWAapproaches (Li and
Durbin 2009; Kim et al. 2013; Langmead 2010). Reads around exon 1 of
FAM134Bwere visualized and extracted from the Integrative Genomics
Viewer (Thorvaldsdottir et al. 2013). Assembly of exon 1was performed
using the Staden Gap4 software package (Staden et al. 2000). The
RNAseq dataset can be accessed via the European Nucleotide Archive
(ENA accession number: PRJEB12352).

RT-PCR and Sanger sequencing
RT-PCRwas carried out using the QiagenQuantitect reverse transcrip-
tion kit, followed by PCR with Qiagen HotStarTaq polymerase, using
standard reaction conditions. Primers and cycling parameters are listed
in File S1.

Ethics statement
Collection of DNA samples for the GWAS was performed with owner
consent by buccal swabbing, which is a noninvasive, nonregulated
procedure that does not require aUnitedKingdomHomeOffice license.
Tissue samples were obtained postmortem after euthanasia of affected
dogs on welfare grounds, with full owner consent. Collection of
DNA samples from the USA were Animal Care and Use Committee
approved, andwere collectedwith informed consent. All otherDNA
samples were extracted from residual samples taken as part of a
veterinary diagnostic procedure, and therefore did not require
ethics committee approval.

Data availability
The genome sequencing dataset can be accessed via the European
Nucleotide Archive (ENA accession number: PRJEB12337). The RNA-
seq dataset can be accessed via the European Nucleotide Archive (ENA
accession number: PRJEB12352). The GWAS genotyping data can be

Figure 2 Allelic association analysis plot for the sensory neuropathy (SN) study of three SN cases vs. 170 controls. A homozygosity mapping
approach was implemented by only using single nucleotide polymorphisms that were homozygous for the same allele in all three cases in the
analysis. The dashed line represents Bonferroni significance.
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found in File S3, File S4, and File S5. The full canine FAM134B tran-
script can be accessed via Genbank accession number KR119069.

RESULTS

Genome-wide association study (SN)
Genome-wide SNP genotyping of three SN cases and 170 controls was
performed on the Illumina CanineHD array (173,662 SNPs). All case
and control dogs were from the UK. After removing SNPs with a
genotyping frequency of less than 95%, 163,524 SNPs remained.
No minor allele frequency (MAF) filtering was performed to avoid
removal of rare disease associated SNPs. Allelic association analysis
revealedmultiple strong signals onall chromosomes as a consequenceof
the small case set (Figure S1). The genomic inflation factor based on the
median chi-squared statistic was 1.16. Multidimensional scaling anal-
ysis on the N · N matrix of genome-wide identity-by-state pairwise
distances, showed the three cases to cluster with the main cluster of
controls with no obvious stratification (Figure S2).

A homozygosity mapping approach was implemented by perform-
ing allelic association analysis and only retaining SNPs that were
homozygous in all cases (85,672 SNPs). Signals on chromosomes 4,
14, 30, 32, and 38 were defined as genome-wide significant (Bonferroni
correction for 86,672 SNPs, P , 5.77 · 1027) using the homozygosity
mapping approach (Figure 2).

An interval of homozygosity in cases could be defined for the regions
on chromosome 4 and 38 as chr4:75,488,014-88,076,462, containing
27 genes and chr38:12,508,392-13,098,194 containing two genes, based
on the CanFam3.1 genome build (Table S1). The region on chromo-
some 4 contained the gene FAM134B, which has been associated with
autosomal recessive sensory neuropathy (HSAN-II) in humans. Exon
resequencing of FAM134B in a subset of cases and controls identified
no variants that could be considered as potentially causal for SN in the
Border Collie. Whole genome resequencing of a single SN case was
undertaken to fully investigate the potentially associated chromosomal
regions.

Due to the strength of FAM134B as a candidate, sequence reads
aligning across this gene were visually assessed for potential causal
variants using the Integrative Genomics Viewer (IGV) (Robinson
et al. 2011). A 6.47 Mb inversion was identified with breakpoints in
intron 3 of FAM134B (chr4:86,910,352) and in an upstream intergenic
region (chr4:80,439,639) (Figure 3). Samples in the GWAS set were
genotyped for the inversion. All three cases were homozygous for
the inversion and all 170 controls homozygous for the reference allele
(P = 3.15 · 10277).

To further validate the identified inversion, three further SN cases
from the UK were genotyped using DNA extracted from archived
residual blood samples. Additional genotyping was also performedwith

five SN cases (all Border Collies) obtained from collaborating lab-
oratories presenting with consistent clinical signs, and 11 additional
controls. In the replication set, all eight additional SN cases were
homozygous for the inversion, and none of the 11 additional controls
(P = 7.35 · 1026). Genotyping results are shown in Table 1. Given
the extremely strong association of SN with inversion on chromo-
some 4 and the recessive mode of inheritance, the region on chro-
mosome 38 was excluded.

RNAseq analysis
To gauge whether the inversion had an impact on the FAM134B gene
expression pattern, RNAseq was performed. Cerebrum tissue was used
based on tissue availability and assessment of expression levels of
FAM134B by qRT-PCR (data not shown). RNAseq data generated
from cerebrum RNA of one SN case demonstrated no detectable ex-
pression of FAM138B exons situated 39 of the inversion breakpoint.
Expression of novel exons as the result of cryptic splicing was observed
after the final normally transcribed exon of FAM134B before disruption
by the inversion. An example of a novel exon established through a
cryptic splicing event is shown in Figure 4. A schematic diagram of
FAM134B exon arrangements is shown in Figure 5. Novel exons were
confirmed by PCR and Sanger sequencing, which also revealed an
additional novel exon (File S1). Multispecies alignment of FAM134B
suggested the Ensembl prediction for canine exon 1 was incorrect.
RNAseq data were used to assemble a full FAM134B transcript (Gen-
bank accession number KR119069).

DISCUSSION
In this study, we undertook aGWASwith aminimal number of cases to
identify a locus associatedwithanautosomal recessivedisease in thedog.

Figure 3 The SN associated inversion. (A) Reads align-
ing across the inversion breakpoints. Red reads in-
dicate a greater than expected insert size. Read mates
for red reads align in the same direction, indicative of
an inversion. Repeat elements are shown as green bars
with a blue outline. (B) Overview of the genomic re-
gion covered by the inversion. The inverted region
is highlighted in blue. chr, chromosome; SN, sensory
neuropathy.

n Table 1 Genotyping of an extended Border Collie sample set for
the SN associated inversion

wt/wt INV/wt INV/INV

UK SN cases 0 0 6
US SN cases 0 0 2
Danish SN case 0 0 1
Irish SN case 0 0 1
Japanese SN case 0 0 1
US controlsa 5 6 0
UK controls 170 0 0
Totals 175 6 11

Results of genotyping 192 Border Collies for the SN associated inversion. SN,
sensory neuropathy; wt, reference allele; INV, the inversion allele; UK, United
Kingdom; US, United States.
a
Relatives of cases.
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Due to the small number of cases, allelic association analysis using the
entire genotyping dataset did not produce a clear genome-wide signif-
icant signal, but use of a homozygosity mapping approach enabled a
probable disease associated locus to be identified. This study is a further
example of how autosomal recessive diseases can bemapped in the dog,
even with a very small number of cases, because of the high levels of
linkage disequilibrium (LD) within individual breeds (Sutter et al. 2004;
Safra et al. 2013). Despite there being a number of good candidate genes
for sensory neuropathy, a GWAS approach was chosen for this study in
preference to a candidate gene approach, due to the incidental avail-
ability of GWAS data from a large number of suitable controls, with the
aim of identifying a novel locus for sensory neuropathy. Given the
nonexonic nature of the mutation, the inversion would not have been
identified using a candidate gene exon resequencing approach. How-
ever, a pattern of linkage disequilibrium for neutral variants in and
around the exons of FAM134Bmay have prompted further investigation
of this gene. Use of genome sequencing is demonstrated as an effective
way of interrogating disease associated intervals, as it provides excellent
coverage across all regions including repetitive elements, which are often
not captured efficiently using targeted resequencing methods.

Analysis of RNAseq data revealed FAM134B was majorly disrupted
by the inversion, with novel exons occurring 39 of the final normally
transcribed exon before the inversion, due to cryptic splicing. Although
an exact tissue matched control was not available, amplification of
two of the three novel exons would not have been possible without
the inversion due to primer orientation. The unavailability of suit-
able antibodies targeting the two genes prevented western blot anal-
ysis to determine whether proteins are still produced from the
altered transcript sequence. Visual analysis of RNAseq data aligned
to the genes flanking and within the inversion region suggests gene
expression for these genes was not affected. Genotyping analysis of
192 Border Collies for the SN associated inversion was consistent
with the inversion being causal. Based on the location of two iden-
tical SINEs (SINEC_c2) at the two inversion breakpoints, we spec-
ulate that these repeat elements are likely to have been involved in
the inversion mechanism.

The FAM134B gene is highly conserved across species and encodes
a cis-Golgi protein found in sensory and autonomic ganglion neurons
(Kurth et al. 2009). Little is known about the function of FAM134B but
it is thought to be critical in the survival of sensory nerve cells (Kurth
et al. 2009). Knockdown of FAM134B has shown to result in structural
rearrangements of the cis-Golgi compartment, inducing apoptosis in
dorsal root ganglia (Kurth et al. 2009), highlighting the importance of
this gene in the survival of sensory and autonomic neurons. Mutations
in FAM134B have been associated with SN in humans and, in common
with the inversion identified in the dog, all mutations have been high
consequence mutations (i.e., nonsense, splice site, and frameshift mu-
tations) (Ilgaz Aydinlar et al. 2014; Murphy et al. 2012; Kurth et al.
2009). This may suggest that major disruption of the gene is required to
see the severe early onset phenotype of SN in these cases. Nerve con-
duction studies in a human patient with FAM134B associated SN
showed axonal SN with some motor involvement, which is in agree-
ment with the presentation of SN seen in the Border Collie (Murphy
et al. 2012; Kurth et al. 2009). The human FAM134B gene codes for a
497 amino acid protein, compared with a 485 amino acid protein in the
dog, with the size difference being due to a shorter exon 1 in dog. Exon
1 of canine FAM134B is positioned in an unsequenced region of the
canine genome, and as a consequence the Ensembl gene prediction for
this gene was incorrect. Canine exon 1, which was assembled using
RNAseq data, is 82.4% GC rich, which is likely to be reason for its
absence from the canine genome build.

In summary, we have used a GWAS approach using a minimal
number of cases and genome sequencing to identify an inversion
associated with SN in the Border Collie. This approach is particularly
attractive when suitable control genotyping datasets from unrelated
GWAS are readily available, and has the advantage over candidate gene
studies of potential novel locus identification.
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Figure 4 Example of novel exon formation through
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stream of inversion breakpoint. Two further novel splice
acceptor sites are located within the inverted region.
Transcription of exons 4 to 9 of FAM134B is abolished
in the SN case due to relocation of exons 1 to 3 through
the inversion event. Note: The control RNAseq dataset
is from cerebellum and is shown to illustrate a normal
FAM134B splicing pattern. The choice of control tissue
was based on availability. Chr4, chromosome 4; RNA-
seq, RNA sequencing; SN, sensory neuropathy

Figure 5 Schematic gene arrangements for the refer-
ence and inversion alleles. Transcript arrangements for
FAM134B for (A) the reference gene arrangement and
(B) the gene arrangement after the inversion events.
Novel exons are marked with an asterisk, and result in
three novel FAM134B isoforms. Novel exons all con-
tained stop codons (File S2). The presence of many
additional minor novel isoforms cannot be excluded.
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