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Abstract 

Our aim was to examine size-specific effects of Hyaluronan (HA) on preimplantation embryo 

development. We investigated the effects of Hyalovet (HA, 500–750 kDa; the size produced by HA 

synthase-3, which is abundant in the oviduct), or HA treated with Hyaluronidase-2 (Hyal2; also 

expressed in the oviduct that breaks down HA into 20 kDa fragments). In experiment 1 (in vivo), 

oviducts of synchronized and superovulated ewes (n = 20) were surgically exposed on Day 2 post-

mating, ligated, and infused with either Hyalovet, Hyalovet + Hyal2, Hyal2, or PBS (control). Ewes were 

killed 5 days later for recovery of embryos and oviductal epithelial cells (OEC). Blastocyst rates were 

significantly higher in Hyal2 and Hyalovet + Hyal2 oviducts. Hyaluronidase-2 infusion resulted in higher 

blastocyst cell numbers and hatching rates. This was associated with increased HSP70 expression in 

OEC. In contrast, Hyalovet resulted in the lowest development to blastocyst stage and lowest hatching 

rates, and decreased IGF2 and IGFBP2 expression in OEC. IGF1 and IL1α expression were not affected. 

In experiment 2, to rule out indirect effects of oviductal factors, ovine embryos were produced and 

cultured with the same treatments in vitro from Day 2 to 8. Hyaluronidase-2, but not Hyalovet, 

enhanced blastocyst formation and reduced inner cell mass apoptosis. Hyalovet inhibited hatching. In 

conclusion, the presence of large-size HA (500–750 kDa) in the vicinity of developing embryos appears 

to disturb the oviductal environment and embryo development in vivo and in vitro. In contrast, we 

show evidence that breakdown of HA into smaller fragments is required to maximize embryo 

development and blastocyst quality. 

Introduction 

The oviduct provides the appropriate conditions required for the process of zona maturation, 

capacitation, fertilization and early stages of early embryo development. Distinctive differences in the 

oviductal transcriptome (Hess, et al. 2013) and proteome (Seytanoglu, et al. 2008) between follicular 

and luteal phases of the reproductive cycle in human and animal models are regulated by the 

hormonal environment of the oviduct. This in turn interacts with and influences gametes and embryos 
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during early development. The secretory proteome of the oviduct was also shown to change in 

response to gametes (Georgiou, et al. 2005) illustrating bidirectional cross-talk.  A vast number of 

oviductal factors that support oocyte and embryo development have been described (Aviles, et al. 

2010). Among those factors, hyaluronic acid (Hyaluronan, HA) is of special interest.  

Hyaluronan is a major component of the extracellular matrix. It is synthesized by hyaluronic acid-

synthase (HAS) enzymes (HAS1, HAS2 and HAS3) (Weigel, et al. 1997) in the form of linear polymer 

that extrudes  through the membrane during its synthesis to the outside of the cell (Laurent 1998). 

The molecular weight of HA is determined by the isoform of HAS which also determines its functions 

(for review, see Dicker, et al. 2014, Stern, et al. 2006). HAS1 and HAS2 produce large-sized HA (up to 

2000 kDa) while HAS3 produce a lower molecular-weight HA (100–1000 kDa).  The functions of low 

molecular weight HA are mainly mediated through HA receptors, most commonly, CD44 (Aruffo, et al. 

1990) and is reported to be involved in cell proliferation, survival, and differentiation, as well as cell-

cell and cell-matrix interaction (Dicker, et al. 2014, Lesley, et al. 1993). 

Ovulated cumulus oocyte complexes (COCs) reach the oviduct embedded in a large-sized HA-rich 

matrix of expanded cumulus cells (Russell and Salustri 2006). In addition, HA is synthesized by the 

oviduct and embryos; HA could be detected in the oviductal fluid of the cyclic heifers and cows and 

has been shown to be at highest concentration on the day of ovulation (Bergqvist, et al. 2005). 

Transcripts for HAS2 and HAS3 have been found in the oviduct of several animal species (Mohey-

Elsaeed, et al. 2015, Tienthai, et al. 2003, Ulbrich, et al. 2004). It was noticed that HAS3 expression 

was higher in the isthmus compared to ampulla (Mohey-Elsaeed, et al. 2015, Ulbrich, et al. 2004) 

suggesting that a gradient decrease in the molecular size of HA is required during embryo 

development in the oviduct. In addition, HAS2 messenger RNA (mRNA) has been detected in all stages 

of preimplantation human embryos (Choudhary, et al. 2007). In cattle, we have demonstrated that 

HAS2 and HAS3 are expressed at all stages of early embryo development (from 2-cell to blastocyst 
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stage). We have found that HAS2 mRNA expression tends to decrease with the progression to the 

blastocyst stage, whereas level of HAS3 expression did not change (Marei, et al. 2013).  

At the local cellular level, HA undergoes high rate of turnover which include de-polymerization by 

Hyaluronidases (Hyals). Hyal2 and Hyal1 are the major mammalian hyaluronidases in somatic tissues 

(Bastow, et al. 2008). They act sequentially to degrade high molecular weight hyaluronan to 

tetrasaccharides. Twenty-kDa hyaluronan fragments are generated at the cell surface by Hyal2, 

transported intracellularly by internalization (which is evident in bovine embryos (Furnus, et al. 2003)), 

and then further digested by Hyal1 to produce HA tetrasaccharide (Csoka, et al. 2001). The HA 

fragments generated by HA depolymerisation by Hyals are biologically active molecules that have 

diverse functions associated with embryo growth and survival, including stimulation of cytokine 

production, growth factor receptor expression, and protection against apoptosis (Stern, et al. 2006). 

Hyaluronan have been shown to regulate expression of factors such as insulin-like growth factors 

(IGFs) (Yevdokimova and Podpryatov 2005), heat shock proteins (Xu, et al. 2002), and interleukins, 

which are known to be important for early embryo development (Aviles, et al 2010). We have recently 

shown that the bovine oviductal epithelial cells (OECs) express Hyal2 and the level of expression in the 

isthmus is much higher than in the ampulla (Marei, et al. 2013) suggesting their dependence on the 

oviductal secretions for endogenous HA breakdown. The presence of HA and its turnover in the vicinity 

of the oocyte during fertilization and the developing embryo suggest a biological role of HA in 

regulating these processes; however, this role is not well defined. We have demonstrated that in vitro 

supplementation of cleaved bovine embryos with Hyal2 significantly increased their development to 

blastocyst stage and increased embryonic cell numbers (Marei, et al. 2013). However, the differential 

effects of HA and its fragments during early embryo development have not been previously studied. 

Building on the fundamental knowledge generated in our lab about the role of HA and Hyal2 during 

early embryo development in vitro, our objective in the present study was to compare size-specific 

effects of HA and its fragments on preimplantation embryo development. We compared the effects 
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of large-size HA (at the molecular weight produced by HAS3, 500–750 kDa), or fragmented HA (HA 

treated with Hyal2) versus vehicle control. Hyaluronidase 2 alone was also tested as an extra control 

to examine the effect of depolymerization of endogenous HA produced by oviduct and/or embryos. 

The effects on early embryo development were observed. In addition, the expression patterns of 

selected candidate genes expressed in the oviduct and known to affect embryo development were 

investigated in the OECs in each treatment group. Simultaneously, direct effects of the previously 

mentioned HA and Hyal2 treatments on embryo development were confirmed using in vitro–

produced ovine embryos. 

Materials and Methods 

Experimental animals  

The in vivo study was conducted at the Royal Veterinary College, after obtaining approval from the 

local ethical committee and authorization from the UK Home Office in compliance with Animal 

Scientific Procedures Act (1986). A total of 20 proven fertile, non-pregnant, 2-year old Welsh-

mountain ewes, were used for this study during their breeding season. After a period of 

acclimatization, ewes were scanned to confirm the absence of pregnancy. Ewes were synchronized to 

a common estrus in five groups of four ewes every other day using vaginal sponges (Chronogest, 

Intervet, UK) for 12 days. Ewes were superovulated using a single injection of 700 IU pregnant mare 

serum gonadotropin (PMSG, intervet) and 230U Follitropin (Bioniche Animal Health, Belleville ON) 2 

days before sponge removal to maximize the number of embryos recovered and increase the 

statistical power of the in vivo study. Receptal (8 μg Buserelin, GnRH agonist) was injected 24 hours 

after sponge removal to synchronize ovulations. Ewes in each synchronization group were then hand-

mated by one of two proven fertile rams. Two days after mating, ewes were anesthetised, and 

reproductive tract was exposed by laparotomy. The number of corpora hemorrhagica (indicating 

number of ovulations) on each ovary was recorded, and oviductal treatments were infused. 
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Oviductal infusions and treatments 

Oviducts were ligated with suture material (Silk) at the utero-tubal junction. A blunt needle attached 

to a syringe containing the treatment was introduced into the ampulla through the infundibulum. A 

loose ligation was placed at the base of the infundibulum around the needle and was tightened 

immediately after injection of 200 μL of one of the following four treatments into the oviduct. To 

minimize the effects of individual variation in nutritional, health, or hormonal environment on embryo 

development results, one oviduct in each ewe received either 0.5 mg/mL Hyalovet (0.5–0.75 × 106 Da 

of HA; Bioniche Animal Health, Ireland) or Hyalovet + Hyal2 (300 IU/mL), whereas the other oviduct 

received Dulbecco's Phosphate Buffered Saline (PBS, EGGTech, Wiltshire, UK) as a vehicle Control or 

Hyal2 (300 IU/mL) in a 2 × 2 factorial design within each group of four ewes. Hence, each treatment 

was infused into a total of 10 oviducts. All treatments were dissolved in PBS under complete sterile 

conditions and incubated for at least 2 hours at 37 °C before infusion. This period was enough to 

completely depolymerize HA by Hyal2 in the Hyalovet + Hyal2 treatment before infusion as tested by 

agarose gel electrophoresis and HA-binding protein staining described in our previous studies 

(Raheem, et al. 2013). Treatment concentrations were decided based on our previous results in the 

bovine (Marei, et al. 2013). After infusion, reproductive tract was gently placed back to its position in 

the abdomen, abdominal wall was sutured, and ewes were allowed to recover. Non-steroidal anti-

inflammatory products were not used for postoperative analgesia as they may interfere with 

prostaglandin E2 (PGE2) signaling during embryo development. Instead, fentanyl transdermal patches 

were fitted on the forelimbs and changed after 48 hours. All ewes were killed 5 days after oviductal 

infusion, and reproductive tracts were recovered and immediately transferred to the laboratory at 

37°C. 

Embryo recovery  

Oviducts were dissected from the surrounding tissue, washed, and placed in a sterile 90 mm dish in 

sterile PBS containing polyvinylpyrrolidone (1 mg/mL). The two ligated ends were cut, and the 
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oviductal contents were flushed out by injecting 1 mL PBS-PVP into the uterine end of the oviduct. 

The number and stage of development of the recovered embryos were recorded. Blastocysts were 

immediately assessed for quality by differential staining combined with terminal deoxynucleotidyl 

transferase dUTP nick end labeling (TUNEL) (Fouladi-Nashta, et al. 2005). The OECs were harvested as 

previously described (Way, et al. 2006), pelleted and snap frozen for gene expression analysis.  The 

number of ovulations was recorded for each ovary.  Embryo recovery rate was calculated; the number 

of embryos recovered from each oviduct as a percentage of the number of ovulations (corpora 

hemorrhagica) in the ipsilateral ovary. Blastocyst rate was calculated in each oviduct as the proportion 

of blastocysts from the total number of recovered embryos. 

Ewes were considered not fertilized at mating if only non-fertilized oocytes were recovered at the 

time of embryo recovery. These ewes were excluded from the data analysis. One ewe had to be 

euthanized because of illness before embryo recovery. The final data presented for this experiment 

are derived from n = 8 oviducts infused with Hyalovet, n = 8 with Hyal2, n = 7 with Hyalovet + Hyal2, 

and n = 7 oviducts infused with PBS. 

In vitro embryo production 

Ovine embryos were produced in vitro as previously described by Marei et al. 2012 with some 

modifications. Briefly, ovaries were collected from a local abattoir and transported to the laboratory 

where COCs were aspirated from 3 to 5-mm antral follicles. Grade 1 and 2 COCs characterized by dark 

homogenous ooplasm and more than four layers of compact cumulus cells were washed twice in 

TCM199 supplemented with 20-mM HEPES and 0.4% (w:v) BSA and once in maturation medium. 

Groups of 50 COCs were then cultured in four-well dishes containing 500-μL/well maturation medium; 

TCM199 medium supplemented with 10% (v:v) fetal bovine serum, 5-μg/mL follicle stimulating 

hormone (Follitropin; Bioniche Animal Health), 5-μg/mL luteinizing hormone (Lutropin; Bioniche 

Animal Health), 1-μg/mL estradiol, 10-ng/mL epidermal growth Factor, 100-μM cysteamine, 2-mM L-

glutamine, 200-μM sodium pyruvate, and 50-μg/mL gentamycin. Cumulus oocyte complexes were 
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incubated for 24 hours at 38.5 °C under 5% CO2 in humidified air. Matured COCs were then fertilized 

(Day 0) in 4-well dishes containing 400-μL Fertilization-Tyrode's albumin lactate pyruvate (F-TALP) 

medium with 1 × 106 motile sperm/mL selected by swim-up in Sperm-TALP. Frozen semen of the same 

ejaculate from a proven fertile ram was used. Cumulus oocyte complexes were cultured for 18 hours 

at 38.5 °C in a humidified incubator of 5% CO2 in air. Presumptive zygotes were then denuded from 

cumulus cells by gentle pipetting and cultured in 500 μL of serum-free synthetic oviductal fluid (SOF) 

medium with amino acids, sodium citrate and myo-inositol (SOFaaci) that was supplemented with 

0.4% (w:v) fatty acid-free BSA at 38.5 °C in a humidified incubator with 5% O2, 5% CO2, and 90% N2. 

In three independent repeats, good-quality cleaved embryos at 4-cell stage or more exhibiting 

symmetrical divisions and no fragmentation were pooled on Day 2 and randomly allocated in equal 

groups of 20 to 30 embryos into one of the four treatment groups as those used for the in vivo 

experiment (Control, Hyal2, Hyalovet, and Hyalovet + Hyal2) prepared in SOFaaci. A total of 298 

embryos were used in three independent repeats. The culture was continued up to Day 8, and 

blastocysts (n = 88) were counted and stained for quality assessment. 

Assessment of Blastocyst Quality by Differential Staining of Blastocysts Associated with TUNEL 

Blastocysts recovered from the in vivo and in vitro experiments were differentially stained for counting 

cells in the inner cell mass (ICM) and trophectoderm (TE) as previously described (Fouladi-Nashta, et 

al. 2005). Briefly, fresh blastocysts were permeablized using Triton X-100 0.2% (v:v) in SOF containing 

0.4% (w:v) BSA for 20 seconds then washed and incubated in 30-μg/mL propidium iodide for 10 

minutes followed by washing and fixation in 4% paraformaldehyde containing 30 μg/mL bisbenzimide 

(Hoechst 33342). For detection of apoptotic cells, TUNEL labeling with a fluorescein isothiocyanate 

(FITC)-conjugated in situ cell death detection kit was applied (Roche, Penzberg, Germany). Briefly, 

embryos were permeabilized again in 0.1% Triton for 5 minutes and incubated in the kit reagent (1:10 

dilution of the enzyme solution [terminal deoxynucleotidyl transferase from calf thymus] in label 

solution [nucleotide mixture]) in a humid chamber for 45 minutes at 37 °C. In vitro–produced 
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blastocysts treated with DNase were also used as positive controls. Embryos were then washed and 

mounted in small droplets of anti-fading Vectashield mounting medium (Vector laboratories, Inc. 

Burlingame, A94010) and examined under a Leica epiflourescent microscope (Leica, Wetzlar, 

Germany). 

RNA isolation and reverse transcription 

Total RNA was extracted from oviductal cells using an RNeasy Mini Kit (QIAGEN Ltd, West Sussex, 

UK) following the guidelines supplied by the manufacturer. The concentration and purity of the 

isolated RNA samples were determined using a NanoDrop ND-1000 spectrophotometer (NanoDrop 

Technologies Inc., Wilmington, DE, USA). All samples had an A260:280 ratio of absorbance between 

1.9 and 2.1. RNA integrity was assessed using 1.5% denaturing formaldehyde agar gel 

electrophoresis by assessing intact 18S (1874 bp) and 28S (4781 bp) ribosomal RNA. All samples (500 

ng total RNA per reaction) were then DNase treated for potential genomic DNA carryover and 

reverse transcribed using random hexamer primers in a single reaction (Reverse Transcription 

System Kit; Promega Corporation, Madison, WI, USA). A mastermix of reagents was prepared for the 

previously mentioned reaction to minimize potential variation, and all samples were reverse 

transcribed at the same time. Selected reverse transcription (RT)-negative control samples were also 

prepared by including all reagents as mentioned previously except the reverse transcriptase. 

Primer design and optimization of RT-PCR 

RT-PCR assays were designed for the genes listed in table 1 using Ovis aries nucleotide sequences 

derived from the coding domain sequence (CDS) from the GenBank published in the National Centre 

for Biotechnology Information database (NCBI, Bethesda, MD). All primer pairs were deigned to be 

intron spanning or flanking to avoid co-amplification of genomic DNA using the Primer3 web software 

(Rozen and Skaletsky 2000). Primer alignment specificity was checked using the BLAST search tool 

(NCBI). Sequence information, accession numbers and product lengths are provided in Table 1. All 
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oligonucleotides were commercially synthesized as highly purified salt-free products (MWG-Biotech 

AG, London, UK).  

Table 1. Details for the primers used for real time PCR analysis 

Gene Forward and reverse primer sequences Product 

size 

NCBI Reference 

Sequence 

IL1A FW: accgaagaagAAATCATCAAGC 166 NM_001009808.1 

REV: TTAATGTAGCAGCCGTCATGTA 

IGFBP2 FW: TGAACTTGATGGGAGGTGGA 277 NM_001009436.1 

REV: gggatgtgtagggaatagaggt 

IGF2 FW: CATCGTGGAAGAGTGTTGCT 163 HQ711956.1 

REV: ccaggtgtcagattggaagaa 

IGF1 FW: TGCTCTCAACATCTCCCATCT 170 NM_001009774.2 

REV: ACTGGCATCTTCACCTGctt 

HSP70 FW: CGTGCTCATCTTTGACCTG 174 JQ807666.1 

REV: TCCTTCTTGTGCTTCCTCTTG 

B2M FW: cgccagaagatggaaagc 167 NM_001009284.1 

REV: gaactcagcgtgggacaga 

GAPDH FW: cactgtccacgccatcact 267 NM_001190390.1 

REV: gcctgcttcaccaccttct 

18S ribosomal RNA FW: GCTCGCTCCTCTCCTACTTG 326 AY753190.1 

REV: CGTTTCTCAGGCTCCCTCT 

HPRT1 FW: agcgtggtgATTAGCGATG 219 NM_001034035.1 

REV: caacaggtcggcaaagaac 
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Absolute quantification of candidate genes by Real time qPCR 

Gene transcripts were quantified by real-time PCR as previously described (Wathes, et al. 2011). 

Primers were tested by conventional PCR amplification using Multiplex PCR kits (Qiagen), 25 ng 

complementary DNA and 20 μM primers. Polymerase chain reaction products were purified using 

QIAquick PCR purification columns (QIAGEN, Crawley, West Sussex, UK) for the preparation of 

standards for absolute quantification. The precise concentration of purified PCR product was 

determined using the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies Inc.), and the 

presence of a single product was confirmed by electrophoresis on a 2% (w:v) agarose gel. The identity 

of the PCR products was confirmed by DNA sequence analysis (Geneservice Ltd, Cambridge, UK). 

Standards (10−1 to 10−7 ng/mL) were diluted in nuclease-free water. The optimal annealing 

temperature which resulted in lowest cycle threshold (Ct) was defined using the temperature gradient 

function of the real-time PCR machine (qPCR, CFX 96 Real-Time PCR Detection System, Bio-Rad 

Laboratories, Inc.) using a set of eight identical reactions for each gene. A melting curve analysis was 

performed for each amplicon between 50 °C and 95 °C, and accordingly, the reading temperature for 

qPCR analysis of samples was set so that any smaller nonspecific products such as dimers were melted 

(if present) before fluorescence acquisition. For each qPCR assay, a mastermix was prepared that 

contained a final concentration of 2 × KAPA SYBR Green (Anachem Ltd, Bedfordshire, UK), 500-nM 

forward and reverse primers, and nuclease-free water. For all unknown samples measured, 20 μL 

reactions containing the previously mentioned mastermix plus 50 ng of reverse transcribed RNA were 

used. External standards were run on the same plate in duplicate. No-template controls were included 

in every plate for each gene. Absolute concentrations of the PCR product were calculated by 

comparing the Ct values of the unknown samples to the standard curve using the CFX Manager 

Software version 1.0.1035.131 (Bio-Rad Laboratories Inc, Hemel Hempstead, Hertfordshire). Efficiency 

of the assays (E) was greater than or equal to 95%, and the standard curve R2 values were greater 

than or equal to 0.999. Data are presented as fg/μg reverse transcribed RNA. Results were normalized 
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using correction factor generated by GenNorm software on the basis of expression of four house-

keeping genes (B2M, GAPDH, 18S ribosomal RNA, and HPRT1) in the samples. 

Statistical Analysis 

All data were analyzed using SPSS (version 20). Binominal data from blastocyst development were 

analyzed using binary logistic regression in generalized linear model. The interaction between the ram 

used for mating and treatment was tested and removed from the model as it was found to be 

insignificant (P > 0.05). Numerical data of embryo cell numbers and gene expression analyses were 

analyzed using a Linear mixed model. If the main treatment effect was significant, pairwise 

comparisons with Bonferroni correction of P values were performed. Differences of values of P < 0.05 

were considered as significant. 

Results 

Superovulation and recovery efficiency 

All ewes responded to the superovulation on both ovaries. The overall average number of ovulations 

was 7.53/ovary, and the average embryo recovery rate was 78.6%. The mean (± standard deviation) 

number of ovulations in ovaries ipsilateral to the oviducts infused with PBS (7.6 ± 3.47), Hyal2 (7.3 ± 

2.50), Hyalovet (8.0 ± 2.38), and Hyalovet + Hyal2 (7.2 ± 2.49) did not differ between the groups (P > 

0.05). Embryo recovery rate (the number of embryos recovered/the number of ovulations) was also 

similar among different treatment groups; 79.8% ± 31.10, 82.1% ± 38.84, 71.4% ± 29.36, and 77.8% ± 

38.69, respectively, (P > 0.05). 

Effect of oviductal infusions on in vivo embryo development  

Recovered embryos from the in vivo experiment revealed that exposure of embryos starting at day 2 

to Hyalovet resulted in a numerical reduction of blastocyst rate by day 7 (31%±12.5 vs. 54%±9.7 in PBS 

control; P>0.05) (fig. 1a). The proportion of embryos reaching the blastocyst stage was significantly 
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higher (P < 0.05) when Hyal2 was infused alone (Hyal2; 73% ± 9.3) or in combination with Hyalovet 

(Hyalovet + Hyal2; 76% ± 12.6; Fig. 1A). Interestingly, Hyal2 resulted in highest hatching rate (31% ± 

10.8 vs. 11% ± 5.7 in PBS; P = 0.08), whereas Hyalovet tended to inhibit blastocyst hatching (7.5% ± 7) 

with mild nonsignificant improvement in the presence of Hyalovet + Hyal2 (14% ± 12; P > 0.05; Fig. 

1A). All blastocysts were stained using differential staining and TUNEL labeling to determine their 

quality. Hyal2 infusion (PBS-Hyal2) significantly increased the number of trophectoderm cells and total 

cell number compared to PBS (Fig. 1B). Variation in the percentage of apoptotic cells was high within 

different groups in vivo, and no significant difference could be detected among different treatments ( 

Fig. 1C). 

Figure 1. The effects of oviductal infusion with different combinations of Hyal2 and Hyalovet on 
preimplantation embryo development (1a), blastocyst cell counts (1b) and percentage of apoptotic 
cells (1c). Oviducts of synchronised and superovulated ewes were infused 2 days after mating with 
200 µl of either Hyal2 (300U/ml) or Hyalovet (0.5 mg/ml) while the other oviduct within each ewe 
received control vehicle (PBS) or PBS+Hyal2. Data are presented as means±SEM. Bars with different 
alphabets indicate significant differences at P<0.05. Asterisks denote significant difference compare 
to the control group at P<0.05. ICM; inner cell mass, TE; trophectoderm cells, Ap; apoptotic. 

 

 

a

b

P=0.08a

b

0

10

20

30

40

50

60

70

80

90

100

Blastocyst Hatching

P
e

rc
e

n
ta

ge
 (

%
)

1a

PBS PBS_Hyal Hyalovet Hyalovet_Hyal



14 
 

 

 

 

 

 

  

*

*

0

50

100

150

200

250

PBS PBS+Hyal Hyalovet Hyalovet+Hyal

C
e

ll 
n

u
m

b
e

r

1b

Total

TE

ICM

0

1

2

3

4

5

6

7

8

9

PBS PBS+Hyal Hyalovet Hyalovet+Hyal

P
er

ce
n

ta
g

e 
(%

)

1c
Ap.Total

Ap.TE

Ap.ICM



15 
 

Effect of HA and Hyal2 on in vitro embryo development  

In vitro supplementation of the embryo culture media with Hyal2 resulted in a significant increase in 

blastocyst rate (64% ± 4.6 vs. 38% ± 7.9 in control; P < 0.05) with no effect on hatching rate. In 

contrast, Hyalovet had no effect on blastocyst rate (P > 0.05) and significantly inhibited hatching (0% 

compared to 31% in control; P < 0.05). Supplementation with Hyalovet + Hyal2 resulted in more 

blastocysts compared to Hyalovet (41% ± 0.8 vs. 32% ± 1.7; P > 0.05) both of which were not 

significantly different from the controls. Hyalovet + Hyal2 had significantly higher hatching rate (19% 

± 13.2) compared to Hyalovet only (P < 0.05) and did not differ compared to controls (P > 0.05; Fig. 

2). Blastocyst cell numbers were similar among different treatment groups with a numerical increase 

noticed in Hyal2 group (P > 0.05). Hyaluronidase-2 also decreased the percentage of apoptotic inner 

cell mass cells in Hyal2 and Hyalovet + Hyal2 groups (Table 2). 

 

Figure 2. The effects of Hyal2 and Hyalovet supplementation during in vitro culture of ovine 
embryos on blastocyst and hatching rates. Day 2 cleaved embryos were cultured in SOF media 
containing Hyalovet (0.5 mg/ml) or Hyaluronidase-2 (300U/ml). Blastocyst rate and hatching were 
assessed on day 8. Data are presented as mean% ± SEM. Mean values with asterisks denote 
significant difference at P<0.05 compared to control within the same category.  
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Table 2. The effects of Hyal2 and Hyalovet supplementation during in vitro culture of ovine embryos 
on blastocyst quality.  

 

Total 

cells TE ICM 

Total 

Apoptotic 

cells (%) 

Apoptotic 

TE (%) 

Apoptotic 

ICM (%) 

Control 101±14.2 79±11.9 22±2.6 1.5±0.44 1.3±0.46 2.0±0.89 

Hyal2 114±9.4 89±8.1 25±2.1 0.7±0.19 0.8±0.23 0.2±0.22* 

Hyalovet 101±9.4 78±7.5 22±2.4 0.8±0.62 0.8±0.53 1.1±1.10 

Hyalovet+Hyal2 94±6.0 75±5.6 19±1.4 1.0±0.53 1.3±0.67 0.0±0.0* 

Data are presented as mean% ± SEM. Mean values with asterisks indicate significant difference at 
P<0.05 compared to control within the same category.  

 

Effect of HA and Hyal2 on the gene expression in the oviductal epithelial cells. 

The expression of selected candidate genes was examined in the epithelial oviductal cells collected 
from the in vivo experiment at the time of embryo recovery. Hyalovet significantly decreased IGF2 and 
IGFBP2 mRNA expression (P < 0.05). Hyaluronidase-2 resulted in significantly higher HSP70 mRNA 
expression (P < 0.05) in both Hyal2 and Hyalovet + Hyal2 groups compared to PBS and Hyalovet group, 
which did not differ from each other. IGF1 and ILα mRNA expression in oviductal cells were not 
affected by Hyalovet or Hyal2 oviductal infusions ( Table 3). 

Table 3. The effects of oviductal infusion with different combinations of Hyal2 and Hyalovet on 
mRNA expression of selected candidate genes 

 IGF1 IGF2 IGFBP2 ILα HSP70 

Control 871±229.8 997±295.9a 3117±603.1a 64±8.7 160±56.2a 

Hyal2 763±114.7 1003±414.9a 2792±936.6a 85±12.2 441±157.0b 

Hyalovet 737±186.1 295±98.6b 912±591.1b 70±24.1 130±52.9a 

Hyalovet+Hyal2 868±144.5 387±113.5b 1197±797.6b 58±3.7 512±235.3b 

Data are shown as mean±SEM (n=8 per treatment). Mean values with different superscripts within a 
column are  significantly different at P<0.05. 
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Discussion 

To understand the size-dependent effects of HA we designed an in vivo experiment in which we 

altered the oviductal environment 2 days after natural mating of superovulated ewes with HA of 

different molecular sizes. We used sheep as an experimental model because of its good response to 

superovulation regimes (Ryan, et al. 1991) and the feasibility in surgical handling of oviducts. We used 

HyalovetTM, a commercial HA with a defined molecular weight of 0.5-0.7 x 106 Da, and Hyalovet treated 

with Hyal2 which is known to depolymerise HA into 20 kDa fragments (Stern, et al. 2006).  Verifying 

our results by conducting an in vitro experiment was useful to dissociate effects on embryos via 

HA/Hyal2-oviductal interactions.  

The results presented here show that sheep oviduct were better able to support embryo development 

in the absence of Hyalovet (which caused about 20% reduction in blastocyst rate compared to PBS-

infused oviducts). In addition, Hyalovet did not enhance development to the blastocyst stage when 

supplemented in vitro compared to the controls and did not influence apoptotic cell indices either in 

vitro or in vivo. Looking at previously reported effects for HA during embryo development, it is clear 

that results are variable among different studies. Few studies have actually reported positive influence 

of HA in terms of increased development to blastocyst stage (Furnus, et al. 1998), whereas others 

reported either no effects (Lane, et al. 2003) or a significant decrease (with 1.0 mg HA/ml) in the 

percentage of blastocyst rates (Torner, et al. 2014). Nevertheless , we have previously shown strong 

evidence that endogenous HA is critically essential for oocyte maturation and embryo development 

since addition of HA-synthesis inhibitor (4-methylumbelliferone; 4MU) to in vitro embryo maturation 

or culture medium completely inhibited blastocyst formation (Marei, et al. 2012, Marei, et al. 2013). 

So, the question remained to verify whether exogenous HA supplementation (in the oviduct or in vitro) 

would be beneficial for blastocyst development or quality. The controversy among different studies 

can be attributed to differences in culture medium or combination with other supplements as 

suggested by Block, et al. (2011), but also we suggest that the source of HA (its molecular size) is rather 



18 
 

an important variable. The source of the HA used is not mentioned in some of the previous studies. In 

this notion, here we show evidence that 0.5 to 0.7 × 106 kDa of HA is not supportive for embryo 

development. In contrast, in the Hyalovet + Hyal2 group where Hyalovet was treated with Hyal2 

before infusion (to produce 20 kDa fragments), negative effects of Hyalovet were completely 

alleviated and resulting blastocyst rates were ∼20% higher than PBS-infused oviducts and ∼40% 

higher than Hyalovet-infused group. Because Hyalovet + Hyal2 treatment in vitro resulted only in a 

10% increase in blastocyst rate (P > 0.05) compared to Hyalovet alone, this shows that part of the 

effect of Hyalovet + Hyal2 group in vivo might be mediated through interaction between HA-fragments 

and the oviductal cells. 

Regarding the effects of Hyal2 in the absence of exogenous HA, the dramatic increase in blastocyst 

rate in vitro (doubled blastocyst rate compared to control) is in accordance with our previously 

reported Hyal2 effects on bovine embryos (Marei, et al. 2013). It was also interesting to see that Hyal2 

retains the same effects when infused in the oviduct. We and others have previously shown that 

oviductal epithelial cells and embryos at all stages of development are equipped with the machinery 

to synthesise HA as they express different HA synthases and are positively stained when 

immunolabelled with biotinylated HA-binding protein (Marei, et al. 2013, Ulbrich, et al. 2004). 

However, we have previously shown that Hyal2 mRNA was also expressed in oviducts at the early 

luteal phase and was only detected in the embryos at morula and blastocyst stages (Day 6 and 7 post-

fertilization) but not at earlier stages of development (Marei, et al. 2013). The degradation of HA by 

HYAL2 into smaller fragments is known to initiate CD44 cell signaling (Ohno-Nakahara, et al. 2004), 

which involves multiple signaling pathways like Rac1-MAPK, PI3-AKT, and NFkB (Toole 2001) that may 

support embryo development and increase cell proliferation (Bourguignon, et al. 1997). Therefore, we 

suggest that the increase in blastocyst rates in the present study associated with Hyal2 

supplementation in vivo or in vitro is mediated by fragmentation of endogenous HA produced by the 

oviduct and/or embryos resulting in cell signaling. In fact, we have previously reported that the 

increase in blastocyst rate and cell numbers observed with Hyal2 supplementation to bovine embryos 
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in vitro were associated with and dependent on increased phosphorylated mitogen-activated protein 

kinases (MAPK1 and 3) in the embryos through CD44 signaling (Marei, et al. 2013). 

Through binding to its specific receptors like CD44 and HARE (Pandey and Weigel 2014), hyaluronan 

and its fragments are involved in signalling pathways that can influence cellular functions though 

regulation of gene expression. For example, HA is associated to increased growth factors expression 

during particular healing processes including epidermal growth factor (EGF), insulin-like growth factor 

(IGF) (Saliba, et al. 2014). Therefore, in an attempt to further understand the role of HA in the oviduct-

embryo interaction, we collected the OECs 5 days after infusion at the time of embryo recovery and 

investigated gene expression of some candidate genes that are known to be important for embryo 

development at this stage; IGF1, IGF2, IGFBP2, IL1α, and HSP70. 

Therefore, in an attempt to further understand the role of HA in the oviduct-embryo interaction, we 

collected the oviductal epithelial cells 5 days after infusion at the time of embryo recovery, and 

investigated gene expression of some candidate genes that are known to be important for embryo 

development at this stage; IGF1, IGF2, IGFBP2, IL1α, and HSP70.   

The use of a combination of recombinant growth factors and cytokine, as IGF1, IGF2, bFGF, TGF-beta1, 

LIF, and GM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-

produced bovine embryos (Neira, et al. 2010). Transcripts for IGF1 and IGF2 have been detected in 

the oviduct of bovine (Schmidt, et al. 1994) in addition to their regulatory binding proteins IGFBP1-6 

(Fenwick, et al. 2008). The expression of IGF1 and IGF2 receptors were also detected in bovine oocytes 

and embryos at different stages of development (Wang, et al. 2009). IGF system in the oviduct was 

suggested to act as an important modulator of oviductal function (Fenwick, et al. 2008). 

Messenger RNA expression of the IGF system (IGF1, IGF2) and their binding proteins (IGFBP2, 3, and 

4) have been reported in ovine (Stevenson and Wathes 1996) and bovine (Schmidt, et al. 1994; 

Fenwick, et al. 2008) oviducts. In ovine, IGF1 and IGF2 expression was found to be higher in the 
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mucosal layer during late-follicular to early-luteal phase of the estrous cycle (Stevenson and Wathes 

1996). IGFBPs (2–5) are also expressed by bovine and ovine preimplantation embryos (Watson, et al. 

1999). The IGF system in the oviduct was suggested to act as an important modulator of oviductal 

function (Fenwick, et al. 2008). The maintenance of embryos in an IGF-rich environment while free 

living in the oviduct and its influence on enhancing development to the blastocysts stage was 

previously reviewed (Watson, et al. 1999). 

Looking at specific effects of IGF2, it was shown that its supplementation to SOF media increased the 

total blastocyst rate when added to bovine IVM or IVC medium (Wang, et al. 2009) and also resulted 

in early blastocyst formation on day 6, and hastened blastocyst hatching (higher hatching rate on day 

7 and lower hatching rate on day 8) compared to control embryos with no growth factor 

supplementation (Neira, et al. 2010). In the present study, Hyalovet was found to significantly 

decrease IGF2 expression in oviductal cells compared to oviducts infused with saline. In contrast, IGF2 

expression was not affected in Hyal2-infused group.  This may explain, at least in part, its effect on the 

observed embryo development and hatching. In addition, IGFBP2, the second most abundant IGFBP, 

plays an important role in the regulation of several cellular processes such as proliferation, cell 

migration, and adhesion as in case of tumor progression (Tombolan, et al. 2011). Here, Hyalovet but 

not Hyal2 was observed to decrease expression of IGFBP2. This might be secondary to the reduced 

IGF2 expression because IGFBP2 has higher affinity to IGF2 (Oesterreicher, et al. 2005). 

On the other hand, in the present study, IGF1 expression was the same among different experimental 

groups. IGF1 is linked to embryo development. IGF1 is locally produced by the oviduct (Pushpakumara, 

et al. 2002) and the uterus (Robinson, et al. 2000) and can affect embryos though its receptors on the 

embryo. The bovine embryo can respond to IGF1 treatment in vitro and improved development to the 

blastocyst stage was demonstrated in many studies (see Block, et al. 2011 for review). In human, 

follicular fluid IGF1 was considered to be a plausible biochemical marker of embryo quality and 

implantation rate as it was associated with higher rates of fertilization, cleavage, blastocyst formation 
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and top grade embryos as well as high top grade embryos and clinical pregnancy rates (Mehta, et al. 

2013). Although IGF1 was not altered by Hyalovet, it is possible that hyalovet may block its delivery to 

the embryo. A previous study demonstrated that the addition of high levels (5.00 mg/mL) of HA can 

entrap IGF1 and interfere with the delivery of IGF1 to chondrocytes (Yoon, et al. 2009).  

We also noticed that both Hyal2 and Hyalovet-Hyal2 infusions increased mRNA expression of HSP70. 

Heat shock proteins are known to play an important role to protect cells from environmental stresses 

and they are among the first genes to be expressed by the embryo (Hahnel, et al. 1986). HSP70 is also 

expressed in the oviduct and has been shown to be responsive to hormonal changes during the estrous 

cycle in the rat oviduct (Mariani, et al. 2000). It is also an active component of the ewe oviduct that is 

required for maintenance of sperm viability (Lloyd, et al. 2009). The presence of anti-HSP70 in culture 

medium from day 3 to day 9 of development increased apoptosis in bovine embryos and significantly 

reduced the number of embryos reaching the blastocyst stage (Matwee, et al. 2001) illustrating its 

importance during this period. Therefore, the increased HSP70 expression in ovine oviducts as 

reported in the present study may mediate its positive effects on blastocyst rate and increased cell 

numbers. 

In conclusion, we show evidence that 500-750kDa HA fragments do not enhance development of 

embryos to blastocyst stage and inhibit hatching possibly via a disruption in the IGF system. In 

contrast, we provide further evidence that Hyal2 improves blastocyst rate and quality, and increases 

hatching by maintaining IGF system and an increased expression of HSP70 mRNA.  
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