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Abstract 

Aim: To investigate the effect of extracellular matrix proteins (ECM) on characteristics of 

mesenchymal stem cells (MSCs) and tendon-derived cells (TDCs).  

Materials and Methods: MSCs and TDCs, cultured in monolayer (2D) or hydrogels (3D), 

with or without ECM protein supplementation, and on non-cellular native tendon matrix 

(NNTs) were assayed for adhesion, proliferation, gene expression and integrin expression.  

Results: MSCs exhibited a fibroblastic, spindle-shaped morphology on 2D matrices except in 

the presence of fibronectin. In 3D matrices, MSCs displayed a rounded phenotype except 

when cultured on NNTs where cells aligned along the collagen fibrils but, unlike TDCs, did 

not form inter-cellular cytoplasmic processes. MSC proliferation was significantly (p<0.01) 

increased by collagen type I in 2D culture and fibronectin in 3D culture. TDC proliferation 

was unaffected by substrata. MSCs and TDCs differentially expressed α2 integrin. Adhesion 

to substrata was reduced by RGD-blocking peptide and β1 integrin antibody. The presence of 

collagen I or fibronectin upregulated MSC expression of collagen type I and collagen type 

III, COMP, decorin, osteopontin and fibronectin. 

Conclusions: The morphology, gene expression and adhesion of both MSCs and TDCs are 

sensitive to the presence of specific ECM components. Interaction with the ECM is therefore 

likely to affect the mechanism of action of MSCs in vitro and may contribute to phenotypic 

modulation in vivo.  



	

Introduction 

Mesenchymal stem cells (MSCs) are now routinely used in clinics to treat overstrain injury of 

equine tendons, following establishment of a protocol (Smith 2003; Frisbie 2010) and 

demonstration of treatment efficacy (Godwin 2012). To what extent their therapeutic effect is 

as a result of subsequent in situ differentiation and how much is due to paracrine activity is 

unclear. MSCs can adhere to equine tendon surfaces in vitro and to migrate into the tendon 

extracellular matrix (ECM) (Garvican 2014). Cell-ECM interactions have been shown to 

effect changes in cell behaviour including migration, proliferation, differentiation, survival 

and quiescence (Behonick 2003) but the impact of the tendon matrix on implanted MSCs is 

not known. 

Adherence of cells to the ECM is a result of complex cellular interactions mediated by 

specific transmembrane receptors of which the integrin family are most abundant (Garcia 

2005) and important (Hidalgo-Bastida 2010). Functional ECM contacts are thought to be 

essential for survival, proliferation and differentiation (Linsley 2013). Integrins play a vital 

role in this interaction (Schwartz 2008) which may ultimately dictate cellular fate (Nho 2005; 

Salasznyk 2007). Cell adhesion to fibrillar collagens is mediated by the α1β1 and α2β1 

integrins (Morimichi 2000). The most abundant protein in tendon is collagen type I and cell-

seeded collagen I scaffolds have been used for the repair of tendon injuries (Awad 2000; Cao 

2002; Beitzel 2014; Mathieu 2014). Another abundant ECM protein involved with cell 

adhesion is fibronectin which binds to cells via integrins α5β1 and α2β3. It is found primarily 

in the endotenon and in sites of tendon injury (Harwood 1998) and may play an important 

role in the recruitment of progenitor cells to lesion sites as well as potentially enhancing 

matrix production through up-regulation of fibrillogenesis (Mao 2005). 



	

ECM proteins have been shown to regulate MSC behaviour by modulating both endogenous 

and exogenous growth factor stores (Bi 2005; Chen 2004). Cellular differentiation is highly 

dependent on external stimuli and the presence of extracellular matrix (ECM) proteins can 

influence the differentiation status, (Mauney 2004; Salasznyk 2004; Mauney 2005) 

proliferative response (Kantlehner 2000; Hashimoto 2006) and morphology (Allen 2006) of 

cells cultured in vitro. In particular, the use of ECM proteins as a substrate on which to 

culture human MSCs has shown that specific lineage differentiation can be enhanced by the 

presence of certain proteins (Klees 2004).  

While MSCs are cultured frequently in 2D culture, they are known to behave differently in 

3D culture. Adoption of a 3D culture system, more analogous to that found in vivo, may 

enable maintenance or enhancement of desirable cell characteristics. Evidence suggests that 

although gross effects of ECM culture on cell characteristics are non-specific (Marinkovic 

2015) the presence of components of the particular cellular “niche” may be critical for the 

initiation of more sophisticated cellular attributes.   

The aim of this study was to explore the effect on MSC behaviour of individual tendon ECM 

proteins which have relevance for the development of cell and cell-scaffold implants for 

tendon therapy. The interaction of MSCs with components of the ECM is likely to have a 

profound effect on both cellular mechanism of action and retention. We hypothesised that the 

addition of specific tendon extracellular matrix proteins which contribute to the formation of 

the tenocyte niche, would alter MSC phenotype manifested by changes in proliferation, 

morphology, gene expression, adhesion characteristics and cell-surface antigen expression. 

This influence was then compared with the behaviour of differentiated tendon derived cells 

(TDCs) on identical matrices. 



	

Materials and Methods 

Isolation of cells  

The collection of equine tendons at post mortem or from a local abattoir was carried out 

under approval from the Ethics and Welfare Committee at the Royal Veterinary College 

(URN 2013 1230 R 2005). No horses were euthanised for the sole purpose of obtaining 

tissues for this study. Macroscopically normal superficial digital flexor tendons (SDFT) were 

aseptically harvested from skeletally mature horses (age 4 – 10 years) euthanised for reasons 

other than orthopaedic disease, finely diced and digested with pronase (1% w/v) for 1 h, then 

collagenase (0.5% w/v; Worthingtons, UK) for 18 h. Cells were recovered following 

straining of the digest through a 70 µm filter and centrifugation, and seeded in culture flasks 

at 5,000 cells/cm2. Cells were expanded in culture in D10 medium (Dulbecco’s Modified 

Eagle Medium, supplemented with fetal bovine serum (FBS, 10% v/v), 100 U/mL penicillin, 

and 100 U/mL streptomycin (all from Invitrogen, Paisley, UK)).  Cells between passage 0 

and 2 (P0 to P2) (Goodman 2004) were re-suspended in cell freezing medium (90% FBS, 

10% DMSO) and stored in liquid nitrogen until use. Cells of the same passage number were 

used in each paired 2D and 3D experiment. Equine bone marrow-derived mesenchymal stem 

cells (MSCs) used in this study were derived from surplus stocks used to treat clinical cases 

of overstrain SDFT injury examined at the Royal Veterinary College, for which MSC tri-

lineage differentiation capacity was determined (Smith 2013). Cells chosen for use were 

obtained from horses aged 4 – 10 years of age and stored frozen, as before, until use. 

2D culture systems  

Glass coverslips (VWR International, Dorset, UK) were cleaned with 70% ethanol and 

sterilised by autoclaving prior to coating with matrix proteins or cells (Inoue 2005). 

Thermanox plastic coverslips (VWR International, Dorset, UK) used as plastic controls, were 

supplied pre-sterilised. Glass coverslips were coated with either purified ECM proteins 



	

(collagen I, fibronectin (Roman 2004)) or poly-L-lysine) or left uncoated to act as controls. It 

should be noted that serum proteins within the cell culture medium (D10) will adsorb to glass 

and plastic surfaces, thus the uncoated coverslips cannot be considered totally devoid of 

protein (Brodkin 2004). Poly-L-lysine was selected over poly-D-lysine as the latter has been 

reported to cause a significant decrease in the proliferation rate of human MSCs when 

compared to poly-L-lysine and ECM proteins (Qian 2004). Cells (n=3 horses) were seeded 

onto coverslips at a concentration of 60,000 cells/cm2 and cultured for 24 or 72 h. 

Photomicrographs were taken to evaluate differences in morphology (Olympus BX60F5 

microscope and QICAM FAST 1394 digital camera, QImaging). 

3D culture systems  

Hydrogels:  MSCs and TDCs (both n=3 horses) were suspended in 1 mL of 10% sucrose (in 

Tissue culture grade water) at a concentration of 1×106 cells/mL. Aliquots of 20 µL cell 

suspension were then added to 40 µL of 1% Puramatrix (BD Biosciences, Bedford, UK) to 

give a final concentration of 2 x 104 cells in each hydrogel (recommended by the 

manufacturer). Hydrogels were prepared as detailed in Table 1; components were combined 

within a 1 mL syringe, left to set at room temperature for 1 h then transferred into 24-well 

plates. Collagen I (1% w/v, Sigma-Aldrich, Dorset, UK) was supplied dissolved in acetic acid 

which was brought to pH 7 by the addition of sodium hydroxide, then combined with 30% 

sucrose (in Tissue culture grade water) to give a final concentration of 0.1% collagen type I. 

Hydrogels were cultured in 0.5 mL of D10 for 24 or 72 h before mechanical disruption by 

aspiration with a pipette and re-suspension in 0.5 mL Trizol reagent (Sigma-Aldrich, Dorset, 

UK) for RNA extraction. Separate groups of hydrogels were prepared for each experiment. 

Non-cellular native tendon matrices (NNTs): Superficial digital flexor tendons (SDFT) were 

obtained from healthy horses euthanased for reasons unrelated to the musculoskeletal system. 

NNTs were prepared from the mid-metacarpal region of the superficial digital flexor tendon 



	

(SDFT) that had undergone repeated freeze-thaw cycles and therefore contained no viable 

cells (Dudhia 2007). Longitudinal sections of 75 µm and 10 µm thickness were cut in a 

cryostat (Bright Instrument, Huntingdon, UK) and immediately placed into sterile PBS. 

These dimensions were previously determined to balance explant integrity and prevent tears 

during handling whilst also being thin enough to allow nutrient diffusion within the explant. 

Sections were then sterilised in 70% ethanol for 90 minutes before rehydrating for 2 h in PBS 

containing 1% Fungizone (Gibco, Paisley, UK) and 1% penicillin and streptomycin (PAA, 

Somerset, UK) and 10 – 12 NNTs placed in a 12-well suspension culture plate in 2.5 mL D10 

containing 4 x 106 MSCs or TDCs (per NNT). Cells were allowed to adhere to the tissue for 

18 h (Garvican 2014). The D10 was then discarded and NNTs washed with D10 to remove 

loosely adherent cells, then placed in a new 12-well plate (1 explant per well with 2 mL D10 

per well) and cultured for 7 or 14 days to allow migration of cells into the matrix (Garvican 

2014). On conclusion of the culture period, explants were frozen at -80 ºC, homogenised with 

a Braun Mikrodismembranator (Sartorius, Epsom, UK) and stored in Trizol reagent (0.5 mL 

per NNT) at -80ºC. 

Assessment of cell viability and proliferation  

Hydrogels were incubated in PBS containing 5.6 mM glucose, 0.5 mM MgCl2, 0.9 mM CaCl, 

4 µM ethidium homodimer and 2 µM Calcein AM (Molecular Probes, Oregon, USA) for 1 h 

protected from light.  The hydrogels were then imaged using a confocal laser scanning 

microscope (Leica SP2 AOBS, Leica Microsystems, Milton Keynes) with dual-channel 

fluorescence (laser wavelengths 488nm and 543nm). 

Cell proliferation was assessed at 24, 48 and 72 hours using the bromodeoxyuridine (BrdU) 

assay kit (Calbiochem, Nottingham, UK) (Muir 1990) according to the manufacturer’s 

instructions. Absorbance was quantified at dual wavelengths of 450 nm and 540 nm using a 



	

spectrophotometer (Spectramax 250, Molecular Devices Ltd, Berkshire, UK). Cell 

proliferation on NNTs has previously been reported (Garvican 2014). 

Cell adhesion assay 

Pre-coated coverslips were incubated with 0.5mL containing 120,000 cells (n=3 horses; 

density 60,000 cells/cm2) and incubated for 15, 30, 45 or 60 minutes before washing with 

D10 (two washes with 500 µL D10, flow rate 3 mL/minute). Resultant monolayers were 

fixed with 4% paraformaldehyde and stained with Haematoxylin for cell counting and the 

percentage of cells adhered was calculated using image analysis software (Image-Pro Plus 5, 

Media Cybernetics, Berkshire, UK.). 

Gene expression  

Total cellular RNA was isolated from hydrogel or NNT preparations (n=3 horses) using 

RNeasy minicolumns and reagents (Qiagen Ltd., Crawley, Surrey, UK). Residual DNA 

contamination was removed by performing an on-column DNAse digestion using an RNase-

Free DNAse kit (Qiagen Ltd). The quality and quantity of RNA eluted from the column was 

assessed by spectrophotometry (260 nm). cDNA was synthesized using the RNA as template 

with the Superscript first-strand synthesis system for RT-PCR (Invitrogen, Paisley, UK). 

Aliquots of cDNA were amplified by polymerase chain reaction (Opticon II DNA engine 

thermocycler, MJ Research Inc, Massachusetts, USA), using gene specific primers (Table 2) 

in a 25 µL reaction volume with a SYBR® Green Core kit for detection (Eurogentec, Seraing, 

Belgium). Relative expression levels were normalized with GAPDH and calculated with the 

2-ΔΔCT method (Livak 2001).  

Immunocytochemistry 

Cells (n=3 horses) adhered to glass coverslips were fixed in 90% methanol and permeabilised 

with 0.1% Triton X-100 in PBS, prior to blocking with goat serum (diluted 1:20 with PBS) 



	

containing 0.1% Tween 20. Primary monoclonal antibody diluted in the blocking buffer (anti-

vinculin (final dilution at 1:100; Sigma, Poole, UK) or anti-human integrin alpha 2 (final 

dilution 1:500; Chemicon International, CA, USA) or anti-human integrin alpha 5 ( final 

dilution 1:1000; Chemicon) was added and cells were incubated for 1 h at room temperature 

then washed three times for 5 minutes each. Secondary antibody (AlexaFluor 488 conjugated 

goat anti-mouse antibody, 15 µg/mL) was added and coverslips were incubated in the dark 

for 1 h, washed in PBS and counterstained with Hoechst (diluted 1:2000 in PBS) for 1 

minute. Following a final wash, coverslips were mounted in Vectashield H-1000 mountant 

(Vector Laboratories, Peterborough, UK) and multiple images obtained using a fluorescent 

microscope (Leica SP2 AOBS, Leica Microsystems, Milton Keynes). Cells cultured on 

Thermanox plastic coverslips were not assessed using immunocytochemistry because these 

coverslips exhibit a background fluorescence that interferes with the cell analysis. Equine 

liver was used as a positive control for anti-vinculin antibody binding (Kawai 2003) and the 

secondary antibody alone used as a negative control (for non-specific binding). 

Integrin-mediated cell binding assays 

MSCs and TDCs (n=3 horses) were detached from the substrate using trypsin-EDTA and 

maintained in suspension at 2 ×105 cells/mL of D10 at 37˚C (humidified 5% CO2 and air) for 

2 h to allow for re-expression of integrins that may have been cleaved from the cell 

membrane by trypsin. Cultures were gently agitated to minimise cell aggregation. Cyclic 

RGD (Peptides International, Kentucky, USA) at concentrations 0.01, 0.1, 1 and 10µM, 

cyclic RAD (analogue peptide sequence; Peptides International, Kentucky, USA) at 10 µM or 

β1 integrin antibody (BD Biosciences, Bedford, UK) at 1µg/mL were then added to the cell 

suspensions. After 15 minutes incubation, 0.5 mL of each suspension was seeded onto pre-

coated coverslips (contained with a 24 well plate) and incubated for a further 45 minutes. Cell 



	

adhesion was evaluated as above and total cell numbers assessed using methylene blue dye 

staining (Dent 1995). 

Statistical analysis 

Where necessary, data were normalised, prior to parametric statistical analysis. A Student’s t-

test (paired or unpaired) was used to compare means, or an analysis of variance (ANOVA) 

with a Bonferroni post hoc test (for data with more than two groups) was performed using 

PASW software (version 14.0). No statistical interpretation was performed when data was 

presented as a ratio. 



	

Results 

Morphology and viability of cells on different substrata 

2D culture:  Both MSCs and TDCs exhibited cell morphologies that were small and rounded 

or flattened on glass and on poly-L-lysine surfaces (Figure 1 a, b, i, j) compared to growth on 

Thermanox and collagen type I surfaces where the morphology was characteristically 

elongated and spindle-shaped with long cell processes (Figure 1c, d, e, f). In contrast, while 

MSCs grown on fibronectin were small and rounded, TDCs were more elongated and formed 

denser cultures on this substrate (Figure 1 g, h).  

3D culture: MSCs retained a rounded morphology in all types of hydrogel (Figure 2a, c, e) 

and in collagen type I hydrogels cells were distributed in focal clusters. In contrast, TDCs 

displayed a spindle-shaped morphology with long cell processes in collagen type I hydrogels 

only (Figure 2f). When cultured on ANTs, MSCs also adopted a spindle-shaped morphology 

and aligned with resident collagen fibres (Figure 2g). TDCs also demonstrated alignment to 

the collagen fibres but in addition formed networks of elongated processes that were not 

observed in MSCs (Figure 2h). Viable cells were visible throughout the hydrogels. 

Cell adhesion 

2D culture: Significant preferential adhesion was demonstrated on fibronectin over all other 

substrates for both cell types (p < 0.05; Figure 3a, b). In addition, MSCs demonstrated 

significantly greater adhesion to collagen I and poly-L-lysine for all time points compared to 

glass and Thermanox controls (p < 0.05). RGD peptide inhibited binding in MSCs but not in 

TDCs (data not shown). On all substrata, a significant reduction in cell adherence occurred 

after blocking with β1 integrin antibody for both MSCs (p < 0.001) and TDCs (p < 0.01) 

(Figure 3c, d). 

Cell proliferation 

2D culture:  MSCs and TDCs proliferated on all substrata studied, with proliferation rates 



	

peaking by 48 h (Figure 4a,b). Reduced rates at 72 h may have been due to cell confluency 

resulting in contact inhibition of further proliferation. MSCs cultured on collagen type I and 

poly-L-lysine exhibited a significantly higher proliferation rate (p ≤ 0.01) than those on 

untreated coverslips after 48 h (Figure 4c). TDCs exhibited a significantly greater 

proliferation rate compared to MSCs for all time points (p < 0.001), consistent with the faster 

growth rates observed on plastic surfaces, but substrata did not significantly affect TDC 

proliferation rate (Figure 4b).  

3D culture:  MSCs proliferated at a significantly greater rate in fibronectin hydrogels 

compared to control hydrogels (p < 0.02, Figure 4d) and at a significantly greater rate in 

hydrogels compared to 2D cultures (p < 0.05, data not shown). There were no significant 

differences in proliferation between TDCs in 2D and 3D culture (data not shown). 

Gene Expression 

2D culture:  MSCs cultured on all substrata expressed an up-regulation of Col I and III, 

COMP, decorin and fibronectin mRNA at 24 h. In contrast, only Col I expression was up-

regulated in TDCs. After 72 h, expression of Col I by MSCs cultured on collagen type I 

increased 2-fold with no other notable changes in gene expression. Fibronectin expression by 

TDCs cultured for 72 h on collagen type I substrate increased 7-fold, while expression in 

those cultured on poly-L-lysine increased 2-fold. Culture of TDCs for 72 h on fibronectin 

substrate resulted in a 2-fold decrease of Col I mRNA expression compared to that expressed 

at 24 h (data not shown).  

3D culture: Hydrogels: The ratios of Col I, III and decorin mRNA expression in MSCs 

cultured in the collagen type I hydrogel increased 30-fold, 28-fold and 16-fold respectively 

when compared to both control and fibronectin hydrogels (Fig 5a). MSCs cultured in 

fibronectin hydrogels expressed 15-fold more osteopontin. COMP mRNA was highly 

expressed in MSCs in all hydrogels but there were no significant differences between the 



	

ECM-supplemented hydrogels and the control. COMP mRNA expression by TDCs was 16-

fold greater in fibronectin hydrogels (Fig 5b).  

3D culture: ANTs: After 7 days of culture on ANTs, there were significant differences 

between MSCs and TDCs in the expression levels of aggrecan (p<0.05), tenomodulin 

(p<0.001) and Sox-9 (p < 0.001, Figure 5c), all of which were greater in MSCs that TDCs, 

but by 14 days of culture, no significant differences remained (Figure 5d). 

Immunocytochemistry (2D) 

MSCs and TDCs cultured on all substrates stained positive for vinculin which was 

concentrated in focal areas in the cytoplasm, although TDCs displayed only weak staining for 

vinculin on collagen type I (Figure 6a, b). Positive staining for the α2 integrin sub-unit was 

only present in MSCs cultured on collagen type I whereas TDCs were negative on all 

substrata (Figure 6c, d). All cells, cultured on all substrata, stained positive for the α5 integrin 

subunit. Particularly intense staining (punctate signal) around the nuclei and the membrane of 

the cell was observed in both MSCs and TDCs cultured on the poly-L-lysine substrate 

(Figure 6e, f).  

 



	

Discussion 

This study demonstrated the interaction of both progenitor and differentiated cells with the 

extracellular matrix influences their phenotype in different ways. This may not only impact 

homeostatic mechanisms of resident cells but may also be of direct relevance for implantation 

of MSCs in cell therapy. 

 

3D culture environments are believed to represent an environment of greater relevance to the 

in vivo situation.  In this study, 3D environments resulted in a more rounded morphology 

while 2D environments resulted in the more spindle-shaped cell, characteristic of fibroblasts 

and MSCs. The rounded morphology of both cell types in poly-L-lysine may have arisen 

through decreased adherence or promotion of a chondrogenic phenotype (Malda 2003). 

Decreased adhesion is unlikely as greater number of cells were seen on this surface.  In 

support of the latter explanation, a poly-L-lysine scaffold has previously demonstrated 

potential for supporting the initiation of chondrogenic differentiation of MSCs (Jung 2014).  

 

Improved attachment of both MSCs and TDCs in the presence of ECM proteins is logical and 

in agreement with previous studies; in particular, fibronectin plays a major role in cell 

attachment and migration (Cool 2005; Khademhosseini 2006; Popov 2011). Preferential 

adhesion to fibronectin has been used to isolate a population of chondrocyte progenitor cells 

from the surface of articular cartilage (Dowthwaite 2004) and could be utilised as a selection 

criterion for stem cells within a heterogeneous population. Adherence of MSCs to fibronectin 

is modulated by α5β1 integrin binding (Koblinski 2005). This study showed that both MSCs 

and TDCs express the α5 subunit and by demonstrating reduced adhesion of both cell types 

after incubation with β1 blocking antibodies, we have confirmed that MSCs and TDCs 

express this integrin and therefore their adherence to all culture substrates may be enhanced 



	

by the presence of fibronectin in culture media serum. The α2β1 integrin is involved in cell 

adhesion to fibrillar collagens and its expression in MSCs cultured on collagen type I 

substrate is in agreement with previously published studies of human MSCs (Heckmann 

2006; Popov 2011). The presence of these integrins in MSCs may be important for 

transplanted cells in binding to the tendon matrix after implantation.  Given the loss of cells 

after implantation in vivo (Becerra 2013) and the loss of integrins from the cell surface after 

release of the cells from tissue culture passage, retention of implanted cells may be improved 

by allowing re-expression of these integrins on the cell surface. 

 

The constitutive expression profile of the undifferentiated, unstimulated MSC in vitro has 

been shown to include osteogenic and chondrogenic genes (Tremain 2001; Liu 2014) which 

is confirmed here. Cartilage oligomeric matrix protein (COMP) is highly abundant in tendon 

and cartilage and appears to be important for the development of optimal tendon tissue with 

optimal mechanical properties (Smith 2002; Smith 2002). It is most abundantly expressed in 

growing collagen-rich matrices under load and hence may be a useful biomarker for 

differentiation towards these tissues (Barry 2001). However, MSCs cultured in monolayer 

expressed COMP in the absence of cytokine or growth factor stimulation. Culture in 

fibronectin greatly enhanced COMP expression in TDCs but this effect was not seen in MSCs 

suggesting fibronectin induced this effect only after differentiation has occurred.  

 

Whilst MSCs proliferated at a significantly faster rate in fibronectin hydrogels compared to 

monolayer culture, we have previously demonstrated a reduced rate of proliferation for both 

MSCs and TDCs when cells are cultured on NNTs (Garvican 2014). This is also consistent 

with the observations of scattered small numbers of labelled MSCs persisting for up to 5 

months in tendon after implantation which do not appear to have undergone any cell division 



	

(Kasashima Y, unpublished data).  Thus, it is possible that the tendon matrix inhibits MSC 

proliferation.  

MSC differentiation initiated by 3D culture systems has a well-established precedence in 

chondrogenesis (Bosnakovski 2006; Mathieu 2014) and MSC-seeded collagen scaffolds have 

shown encouraging initial results for future clinical use (Awad 2000; Kovacevic 2008). 

Although elevation of expression in some genes associated with a tenogenic phenotype 

occurred in MSCs cultured in collagen type I hydrogels, cell morphology remained rounded 

rather than fibroblastic, thus the presence of individual cell matrix interactions is insufficient 

to induce specific differentiation to a tenogenic phenotype and suggesting the need for the 

presence of multiple matrix component simultaneously. It is interesting that OPN expression 

increased in MSCs cultured in hydrogels containing collagen or fibronectin. Assessment of a 

more extensive gene expression profile, including more in-depth osteogenic gene expression, 

would be interesting but was outwith the scope of this study.  

 

Culture of MSCs on NNTs resulted in a gene expression profile which moved towards that of 

TDCs over a 2 week culture period. Although there is no definitive tenogenic marker the 

combination of ECM factors and the highly organised native matrix scaffold (NNTs) appear 

to be robust factors for the stimulus of a gene profile similar to differentiated tenocytes. It is 

likely that additional cues, such as the presence of mechanical force and/or elevation of 

expression of growth factors (possibly secreted from resident tenocytes) are necessary for full 

differentiation (Nöth 2005; Qiu 2014). 



	

Conclusions 

MSCs and TDCs display significant differences in morphology, gene expression and 

adhesion when cultured on different substrates and in 2- or 3-dimensional constructs.  The 

differences in cells cultured on the various substrata may indicate the selection of a sub-

population of cells mediated through selective adherence to specific ECM proteins or by the 

initiation of differentiation. Although the presence of specific ECM proteins may provide a 

stimulus for tenogenic differentiation, the necessary combination of proteins has yet to be 

established. The microenvironment of the tendon niche is dynamically strained and the 

response by implanted MSCs (whether through direct differentiation into tenocytes or as 

paracrine modulators) may require this additional biomechanical stimulus. These results 

support the concept of a highly organised non-cellular tissue scaffold to enhance the retention 

and regenerative capacity of MSCs while simple 2D and 3D systems are less effective. 
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Figure Legends 

Figure 1: Cell morphology in 2D culture. Mesenchymal stem cells (MSCs) and tendon 

derived cells (TDCs) cultured in 2D (monolayer) on a range of substrata for 24 h. Cells were 

stained with haematoxylin and eosin. 

Figure 2: Cell morphology in 3D culture. Mesenchymal stem cells (MSCs) and tendon 

derived cells (TDCs) cultured in a range of 3D systems for 24 h. Cells were stained with 

Calcein AM for fluorescent imaging. 

Figure 3: Integrin-mediated cell adhesion. Effect of culture substrates on adhesion of a) MSC 

(n = 6) and b) TDC (n = 6) populations in short-term culture. Effect of β1 integrin subunit 

antibody blocking on adhesion to culture substrates of c) MSCs and d) TDCs (** denotes 

p<0.001; * denotes p = 0.01). Error bars represent standard error of the mean. 

Figure 4: Cell proliferation in 2- and 3D culture. Proliferation rates of a) MSCs (n = 6) and b) 

TDCs (n = 6) cultured on various substrata, at 24, 48 and 72 h post-seeding; c) MSCs and 

TDCs (both n = 3) cultured in 2D and d) 3D with fibronectin or collagen type I 

supplementation (** denotes p < 0.02; * denotes p < 0.05). Error bars represent standard error 

of the mean. 

Figure 5: Effect of culture substrata on gene expression. mRNA expression was normalised to 

GAPDH and values shown are in comparison to control hydrogel cultures. a) MSCs (n = 3) 

and b) TDCs (n = 3) after 72 h cultured in hydrogels supplemented with collagen type I or 

fibronectin. c) MSCs (n = 3) and d) TDCs (n = 3) cultured for 7 and 14 days respectively, on 

non-cellular native tendon matrices (* denotes p<0.05). Error bars represent standard error of 

the mean. 

Figure 6: Immunocytochemistry expression of integrins. Representative images of MSCs and 

TDCs stained with anti-vinculin (a, b), anti-α2 integrin (c, d) cultured on collagen type I-

coated glass coverslips; and anti α5 integrin (e, f) cultured on poly-L-lysine-coated glass 

coverslips. Arrows indicate punctate signal around the nuclei and cell membranes. 
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Table 1: Components of the hydrogel culture systems 

 Control 
hydrogel (µL) 

Collagen I 
hydrogel (µL) 

Fibronectin 
hydrogel (µL) 

1% hydrogel puramatrix 40 40 40 

Cells at 1x106 cells/mL in 10% 
sucrose 

20 20 20 

30% Sucrose 20 - - 

0.1% Collagen (in 30% sucrose) - 20 - 

0.1% Fibronectin (in 30% 
sucrose) 

- - 20 
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