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Abstract 13 
Military working horses perform a high proportion of work on road surfaces and are shod 14 
frequently to deal with high attrition rates. We investigate the influence of shoeing on 15 
movement symmetry as an indirect indicator of mechanical differences affecting force 16 
production between contralateral limbs. 17 
In this quantitative observational study, inertial sensor gait analysis was performed in 23 Irish 18 
Sport type horses (4-21 years, 1.58-1.85m) in full ceremonial work at the King’s Troop, Royal 19 
Horse Artillery. Changes in two movement symmetry measures (SI: symmetry index; MinDiff: 20 
difference between displacement minima) for head and pelvic movement were assessed at four 21 
stages of routine shoeing: ‘old shoes’, ‘shoes removed’, ‘trimmed’, ‘reshod’. Horses were 22 
assessed applying shoes to the front limbs (N=10), to the hind limbs (N=10) or both (N=3). 23 
Changes in head movement symmetry between conditions were small and inconsistent. 24 
Changes in pelvic movement symmetry were small and showed significant differences between 25 
shoeing stages (SI: P=0.013, MinDiff: P=0.04) with most symmetrical pelvic movement after 26 
trimming.  27 
In military working horses with high frequency shoeing small changes in movement symmetry 28 
were measured. All significant changes involved trimming and which indicates that future 29 
studies should in particular assess changes before/after trimming and investigate longer shoeing 30 
intervals. 31 
 32 
 33 

Keywords: military working horses, road surface, shoeing, trimming, movement symmetry  34 
  35 
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INTRODUCTION 36 

Farriery techniques have evolved from the requirements of protection and preventing 37 

excessive hoof wear to improving performance, prophylaxis and corrective techniques 38 

dealing with injuries (Hickman and Humphrey 2004). It is well documented where forces are 39 

acting under the hoof and how they are transmitted through the foot (Willemen and others 40 

1999; Hood and others 2001), how angles of trimming and shoeing affect the structures 41 

inside the foot (van Heel and others 2004; Kummer and others 2006; Moleman and others 42 

2006) and how attaching a shoe affects a horse’s gait quality (Willemen and others 1997). 43 

However, comparatively little is known about the immediate effect of shoeing on movement 44 

symmetry (MS), a lack of which – either between stride halves or between movement of the 45 

left and right side of the horse – is often used to characterize lameness (May and Wyn-Jones 46 

1987; Buchner and others 1996; Kramer and others 2004). This is in analogy to visual 47 

indicators such as head nod and hip hike, which are intrinsically linked to the underlying 48 

mechanical changes (Buchner and others 1996). Here, we assess quantitatively with inertial 49 

sensor gait analysis how shoeing affects MS in a group of military working horses. These 50 

horses perform large amounts of their exercise on hard surfaces and recently a similar 51 

population of military working horses has been reported to commonly show lameness and 52 

among the top three reasons “foot/shoeing problems” (Putnam and others 2014).  53 

 54 

The application of a shoe alters both limb kinematics and kinetics. The increase in inertia 55 

(Willemen and others 1994; Singleton and others 2003) mostly affects the swing phase. Small 56 

significant differences in movement and loading of the distal limb also exist (Roepstorff and 57 

others 1999). Crucial, in terms of the limb joint torques, is the point of force application, a 58 

sensitive parameter in the discrimination between orthopaedic deficits (Williams and others 59 

1999). Point of force application is only minimally affected by a standard steel shoe applied 60 

to a balanced foot, but alterations to the applied shoes (wedges) alter point of force 61 

application significantly (Wilson and others 1998). Shoeing also affects the dampening 62 

characteristics of the hoof and the distal limb leading to an increase in vibrations transferred 63 

through the hoof (Dyhre-Poulsen and others 1994). Proximal to the fetlock, only minimal 64 

differences in vibration are observed (Willemen and others 1999). It has been hypothesized 65 

that in order to maintain a constant slip time and distance with different types of shoes, horses 66 

adapt their gait pattern (Pardoe and others 2001).  67 

 68 
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The ideal standard for trimming of a horse’s hoof is controversial (Eliashar 2007). It is 69 

generally accepted that trimming affects the hoof and the structures within it (Kummer and 70 

others 2006). Trimming is usually undertaken with the aim to leave the foot with a 71 

conformation that maximizes the mechanical efficiency (Hood and others 2001) and the foot 72 

is deemed balanced when done so, either ‘geometrically’, ‘dynamically’ or ‘naturally’ in 73 

balance (O’Grady and Poupard 2001).Feet are often trimmed to gain a straight hoof pastern 74 

axis (Willemen and others 1997; Hood and others 2001; van Heel and others 2004) and so 75 

that the hoof and phalanges are approximately symmetrical with respect to a line bisecting the 76 

metacarpal region (Butler and others 2000, Hickman and Humphrey 2004). Trimming also 77 

reduces the differences between left and right feet resulting in a more symmetrical landing 78 

pattern and, with a reduced four week shoeing cycle, trimming seemingly only affects 79 

temporal components of the hoof-ground interaction (van Heel and others 2004).  80 

 81 

Quickly applicable to the horse, sensor based gait analysis can be used to study the effects of 82 

standard procedures of lameness exams, e.g. flexion tests (Marshall and others 2012; Starke 83 

and others 2012a), or lungeing (Starke and others 2011; Pfau and others 2012; Rhodin and 84 

others 2013) by quantifying the amount of movement symmetry (MS) analogous to visual 85 

lameness indicators such as hip hike and head nod. Here we make use of MS of poll and 86 

pelvis as measurable indicators mechanically linked to force distribution between contra-87 

lateral limbs via Newtonian physics (Pfau and others, 2015). In particular, we assess the 88 

immediate effects of the different stages of the shoeing process on these mechanically 89 

relevant parameters indirectly showing difference in force production between contralateral 90 

limbs. This addresses the question to what extent a horse is prompted to alter force 91 

production in reaction to small changes in foot balance, distal limb inertia and point of force 92 

application. We hypothesize that horses are able to immediately adapt their limb movement 93 

patterns and will hence show no changes in MS of poll and pelvis over the four stages of the 94 

shoeing process.  95 

 96 

MATERIALS AND METHODS 97 

Ethics 98 

The project was approved by the Royal Veterinary College’s Ethics and Welfare Committee.  99 

 100 

Horses 101 
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Thirty Irish Sport type horses (age: 4 years to 15 years, body height: 1.58 m to 1.85 m) 102 

owned by the King’s Troop, Royal Horse Artillery, were convenience sampled and 103 

quantitatively assessed for movement symmetry during routine trimming and shoeing. Horses 104 

were deemed suitable if considered fit for work by the regiment Veterinarian (NH) and in 105 

normal work and training. Due to the high amount of work performed on road surfaces, these 106 

horses undergo a high frequency shoeing regimen (every 2-3 weeks) and new shoes are fitted 107 

as seen fit by the farrier at different time points for front and hind limbs. Ten horses were 108 

assessed before/after routine shoeing of front limbs, ten horses before/after shoeing of hind 109 

limbs and three horses before/after shoeing of both front and hind limbs. Seven horses had to 110 

be excluded from the study due to technical issues or behavioral problems during at least one 111 

of the four data collection stages. 112 

 113 

Training and Shoeing Regime 114 

All horses underwent the same training regime and were on a short shoeing cycle due to the 115 

high proportion of work conducted on road surfaces and the high attrition rates seen on these. 116 

As a result, front and hind shoes were changed independently when required as assessed by 117 

the head farrier (AB). Steel manufactured shoes1,2 (concave fullered, toe clips in front, quarter 118 

clips in hind legs) were changed every two to three weeks. Trimming and shoeing was 119 

undertaken by experienced farriers, under the supervision of an Associate of the Worshipful 120 

Company of Farriers (AB), visually aiming to achieve a straight hoof pastern axis, 121 

mediolateral foot symmetry and symmetrical heel height. Shoes were fitted through hot 122 

shoeing technique and the foot dressed.  123 

 124 

Equipment Setup 125 

Two MTx inertial sensors3 were attached to each horse. One sensor was attached to the head 126 

with a customised Velcro attachment to the highest point on the head collar (poll) to quantify 127 

head nod; a second sensor was placed on the os sacrum using adhesive padding4 to measure 128 

pelvic hike. Sensors were attached by cables to an Xbus wireless transmitter unit3 mounted in 129 

an elastic surcingle sending calibrated inertial sensor data at a sample rate of 100 Hz per 130 

individual data channel to a laptop computer running MTManager software3.  131 

 132 

Data collection  133 

Horses were trotted in hand in a straight line (approximately 50m) twice aiming to gather a 134 

minimum of 25 strides (judged by counting strides) for each of the following four conditions: 135 
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1 with old shoes  136 

2 after removal of old shoes, before trimming  137 

3 fully trimmed and balanced  138 

4 after application of new shoes. 139 

The horses were trotted over a hard (tarmac), flat, straight surface by an experienced handler 140 

(from the left side) and were allowed to set their own preferred speed at the initial trotup (old 141 

shoes). A metronome5 was adjusted to the stride frequency observed during the initial trotup 142 

to ensure consistency of speed between trot ups to minimize variation of trotting speed 143 

affecting results (Peham and others 2000, Starke and others 2013). For each horse, all 144 

recordings were completed within approximately 1.5 hours.  145 

 146 

Data analysis  147 

Data was processed with custom written MATLAB6 scripts following published protocols for 148 

rotation, double integration and stride segmentation (Pfau and others 2005; Starke and others 149 

2012b). Based on vertical displacement data of poll and os sacrum, symmetry index (SIpoll, 150 

SIpelvis) (Starke and others 2011) and difference between displacement minima observed 151 

during the stance phases of the two diagonal pairs of limbs (MinDiffpoll, MinDiffpelvis) 152 

(Keegan and others 2011) were determined for each stride (see Figure 1A). Median and 153 

interquartile ranges across all available strides were calculated for each condition of each 154 

horse.  155 

In order to minimize the influence of differences in MS between left and right ‘sided’ horses, 156 

normalized MS measures were calculated for condition 1 (old shoes) following the procedure 157 

illustrated in Figure 1B: MS measures of horses with negative MinDiff values, observed for 158 

condition 1, were inverted for all four shoeing conditions. As a consequence, the variation in 159 

movement symmetry between horses due to sidedness was reduced in the baseline condition 160 

while maintaining the ability to study directional changes in asymmetry. Changes in 161 

normalized MS between consecutive stages (1to2, 2to3, 3to4) as well as overall (1to4) and 162 

between old shoes and after trimming (1to3) and between shoes off and new shoes (2to4) 163 

were calculated as the difference in normalized MS values (ΔSIpoll, ΔMinDiffpoll, ΔSIpelvis, 164 

ΔMinDiffpelvis).  165 

 166 

Statistical analysis  167 

Statistical analysis was carried out in SPSS7. Stride-by-stride median SI and median MinDiff 168 

values were tested for normality using a Shapiro-Wilk test. For normally distributed data, 169 
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repeated measures ANOVA tests were used to compare normalized MS between the four 170 

conditions and ANOVA to compare the differences between the conditions. For non-171 

normally distributed data, a Friedman test investigated the differences in normalized MS 172 

between the four conditions and a Kruskal Wallis test assessed the changes in the differences 173 

between the conditions. Posthoc pairwise comparisons were conducted applying Bonferroni’s 174 

correction method. P values of <0.05 were considered significant.  175 

 176 

RESULTS 177 

On average, median normalized MS values were calculated from 40 strides per condition and 178 

horse. All median normalized MS values except for MinDiffpelvis were found to be normally 179 

distributed (SIpelvis P=0.95, MinDiffpelvis P=0.02, SIpoll P=0.20, MinDiffpoll P=0.22). Table 1 180 

summarizes normalized MS values for poll and pelvis for the 23 horses. Across all horses, a 181 

mean of 0.17 was found for SIpoll, 7 mm for MinDiffpoll, 0.10 for SIpelvis and 3.8 mm for 182 

MinDiffpelvis.  183 

 184 

MS of poll and pelvis over the stages of the shoeing cycle. 185 

Both SI and MinDiff values generally showed little variation over the four stages of the 186 

shoeing cycle (Figure 2). Head movement was found to be most symmetrical (lowest median 187 

value) after removal of the old shoes (SIpoll) respectively after trimming and with new shoes 188 

(MinDiffpoll). Across all horses, both MinDiffpelvis and SIpelvis appear to be most symmetrical 189 

after trimming (Figure 2, condition 3). However, no statistically significant difference 190 

between the four conditions (SIpoll P= 0.703, MinDiffpoll: P= 0.491, SIpelvis: P = 0.378, 191 

MinDiffpelvis P = 0.385) was found. 192 

 193 

Changes in MS between conditions.  194 

Intra-individual changes in normalized MS between the different stages of the shoeing 195 

process (Figure 3) show changes close to zero between all conditions for head movement 196 

with interquartile ranges including zero for ΔSIpoll and ΔMinDiffpoll. Changes in normalized 197 

MS of the poll did not reveal any significant differences between shoeing/trimming 198 

conditions. The largest variation between horses was found for the change from condition 3 199 

(trimming) to condition 4 (new shoes) for ΔSIpoll.  200 

Changes in normalized pelvic MS reveal that in particular for changes involving condition 3 201 

(trimming, e.g. 2to3 and 3to4) values deviating from zero are measurable. For both ΔSIpelvis 202 

and ΔMinDiffpelvis small negative changes are found between condition 2 (shoes removed) 203 



8 
 

and condition 3 (trimmed) indicating an increase in symmetry after trimming. This is then 204 

counteracted (for both ΔSIpelvis and ΔMinDiffpelvis) by small positive changes in the following 205 

step (3to4) after fitting of the new shoes. ANOVA indicates a significant difference (P = 206 

0.013) for ΔSIpelvis and ΔMinDiffpelvis (P=0.04). Bonferroni post hoc tests for ΔSIpelvis show 207 

significant differences between condition 2to3 and 3to4 (P = 0.018). Significant differences 208 

for ΔMinDiffpelvis were found between condition 1to2 and 3to4 (P = 0.025), condition 1to3 209 

and 1to4 P = 0.033), condition 1to3 and 3to4 (P = 0.003), condition 2to3 and 2to4 (P = 0.031) 210 

and condition 2to3 and 3to4 (P = 0.004). All pairwise significant changes for ΔSIpelvis and 211 

ΔMinDiffpelvis included changes from or to condition 3. 212 

 213 

DISCUSSION 214 

In this study we have investigated with quantitative gait analysis the immediate effects of the 215 

shoeing process on normalized MS of poll and pelvis in a group of military working horses. 216 

These horses typically undergo a high frequency shoeing cycle (2-3 weeks) and are often 217 

independently shod in front and behind as a result of the high attrition rates on the road 218 

surfaces they work on. A similar population of horses has recently been shown to commonly 219 

show lameness and a considerable proportion is related to foot/shoeing problems (Putnam 220 

and others 2014). Here, we have shown that MS showed overall little difference between the 221 

four stages of shoeing. The significant differences found for changes in normalized pelvic 222 

MS between the conditions – but not for the actual normalized MS values – indicate that even 223 

after normalizing MS data with respect to the direction of asymmetry inter-individual 224 

variation in the amount of MS, i.e. the baseline level of asymmetry, has a masking effect 225 

which is removed by investigating differences between conditions.  226 

 227 

It seems interesting to note, that in particular trimming – which affects both foot balance and 228 

distal limb inertia (compared to the baseline condition with the old shoes) and which has been 229 

found to result in more symmetrical foot placement between contra-lateral limbs interaction 230 

(van Heel and others 2004) – is involved in all significant pairwise comparisons for pelvic 231 

MS. No significant changes were found for head movement, despite the fact that the 232 

forelimbs support more than half the body weight of a horse (Merkens and others 1993; Dutto 233 

and others 2004; Witte and others 2004). However, the large variation between horses for 234 

ΔSIpoll may indicate that individual horses adopt different strategies to deal with changes in 235 

foot balance and inertia when the new shoes are applied. It would be interesting to follow this 236 

up several days after shoeing and to investigate the effect of shoeing on MS in horses with 237 
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clinically diagnosed lameness. In this study it was practically not feasible to implement a 238 

control assessment mimicking the shoeing process (without actually performing the trim and 239 

the shoeing) to investigate whether the changes measured here could be simply related to 240 

repeated trotting. 241 

 242 

All horses were deemed fit for regular work by the regiment Veterinarian. However, there 243 

was some variation in baseline MS values between horses when assessed quantitatively with 244 

gait analysis. The average number of strides of 40 per condition suggests that the objective 245 

measurements are likely a good representation of the amount of MS and its stride-by-stride 246 

variation (Keegan and others 2011). When applying our current thresholds of deviating from 247 

‘perfect symmetry’ by more than +/-0.18 for head SI and +/-0.17 for pelvic SI (Buchner and 248 

others 1996; Starke and others 2011), eleven horses would have been classified lame, a 249 

similar percentage of general sports horses has recently been reported to show gait 250 

abnormalities (Greve and Dyson 2013). It is important to mention that it is not possible to 251 

relate the recorded movement asymmetries exclusively to pain related lameness, which would 252 

require a full clinical lameness examination including diagnostic analgesia. However, similar 253 

changes in MS (head nod and hip hike) are observed clinically and have been linked to the 254 

underlying mechanics (Buchner and others 1996) and an uneven force distribution between 255 

contralateral limbs (Keegan and others 2012, Bell and others, 2016). It hence seems 256 

reasonable to argue that the horses classified outside normal limits show differences in force 257 

production between contra-lateral limbs. Many of the changes measured here between the 258 

four stages of shoeing would be hard to appreciate by eye, since human perception of 259 

movement asymmetry appears to be limited (Parkes and others 2009).  260 

 261 

The documented variation in MS between horses further supports our attempts to minimize 262 

the effect of baseline MS by inverting values (normalized MS) of horses with negative SI 263 

values for condition 1. Only when investigating changes – i.e. differences in normalized MS 264 

within each horse between each stage – significant differences were revealed between the 265 

shoeing stages – effectively removing the masking effect of baseline MS. All significant 266 

differences included a change from or to condition 3 (trimming and balancing) the one stage 267 

of the shoeing process that has a combined effect on foot balance and distal limb inertia when 268 

compared to the baseline condition with the old shoes. 269 

 270 
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While changes in pelvic MS show significant pairwise differences, no significant changes 271 

were found for changes in head MS. MinDiffpelvis in particular quantifies the differences 272 

between the minima of pelvic displacement observed during the left and right hind limb 273 

stance phase. The minimum position of the pelvis in mid stance is closely related to the 274 

amount of fetlock hyperextension and hence the amount of force exerted onto the ground – an 275 

indicator of weight support. Interestingly ΔMinDiffpelvis shows a higher number of significant 276 

changes than ΔSIpelvis, the latter in addition also influenced by the propulsive effort generated 277 

during the second half of the stance phase (and normalized to the range of motion). 278 

  279 

Changes to the foot with trimming and shoeing imply that the differences are restricted to 280 

specific parts of the stride cycle and affect either the stance or the swing phase but not both at 281 

the same time (Roepstorff and others 1999; Keegan and others 2005). The compensatory 282 

mechanism of the distal limb during stance (Riemersma and others 1996) is expressed in its 283 

ability to absorb the increase of concussive effects from applying a shoe (Dyhre-Poulsen and 284 

others 1994). Alongside this instant absorption, the distal limb has also been shown to 285 

compensate for gradual changes of foot conformation by altering joint angles, especially of 286 

the metatarsophalangeal joint at initial contact and toe off (van Heel and others 2006). Our 287 

study indicates that horses instantaneously adopt compensatory mechanisms as a reaction to 288 

changes in foot conformation and inertia and overall successfully aim to move symmetrically. 289 

This adaptation appears to be more successful for the thoracic limbs where no significant 290 

influence on MS can be shown. 291 

 292 

The horses used in this study underwent a fairly unique shoeing regime: due to the high 293 

amount of ‘roadwork’ their shoeing cycle (two to three weeks) is shorter than the usually 294 

expected cycle of six to eight weeks. Hoof growth in two to three weeks is much reduced: if 295 

on average the dorsal wall grows by 0.14cm a week (Kummer and others 2006), this 296 

extrapolates to 0.28cm growth over two weeks compared to 1.12cm growth over eight weeks, 297 

or a 2.5% increase in length rather than 10%. The reported effects of changes with hoof 298 

growth (van Heel and others 2005) or trimming (van Heel and others 2004) over six to eight 299 

weeks are hence not directly applicable to our study horses. The results of our study provide 300 

evidence that is useful for the design of future studies and in particular suggest that when 301 

investigating the mechanical effects of the stages of the shoeing process in horses with longer 302 

(6-8 week intervals) it is crucial to assess horses before/after trimming as well as at the end of 303 

the shoeing process. In addition, given the unique 2-3 weeks shoeing cycle in our horses here, 304 
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the changes in MS as a function of the length of the shoeing cycle appear to be of interest and 305 

again should concentrate on intra-individual changes between shoeing stages (in particular 306 

involving trimming). 307 

 308 
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Figure legends and Tables 323 

 324 

Figure 1: A: Example vertical displacement of the pelvis over a stride cycle for a horse in 325 
trot. Shown here is pelvic displacement of a horse showing reduced movement amplitude 326 
during the right hind (RH) stance phase compared to the left hind (LH) stance phase. As a 327 
consequence of the asymmetry between displacement during and after LH and during and 328 
after RH stance, in this case MinDiff shows a negative value and SI a positive value.  329 
The blue line represents the average vertical displacement, the thin light blue lines represent 330 
individual strides and the grey bars indicate approximate timing of LH and RH mid stance. B: 331 
Flow diagram explaining the procedure to minimize the influence of differences in MS 332 
between left and right ‘sided’ horses. 333 
 334 

 335 
 336 
  337 
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Figure 2: Symmetry Index (SI) and difference in minima of vertical displacement between 338 
the two halves of a stride cycle (MinDiff) for head and pelvic movement for the four stages 339 
of the shoeing process. A: SIpoll, B: MinDiffpoll, C: SIpelvis, D: MinDiffpelvis. Generally small 340 
differences can be observed between the individual stages. 1: old shoes, 2: shoes off, 3: 341 
trimmed and balanced, 4: new shoes. SI values unitless, MinDiff values in mm.  342 
 343 

 344 
 345 

  346 
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Figure 3: Changes in normalized movement symmetry between the stages of the shoeing 347 
process. Changes within horse between the four conditions are shown. A: ΔSIpoll, B: 348 
ΔMinDiffpoll, C: ΔSIpelvis, D: ΔMinDiffpelvis. Pairwise significant differences (at P<0.05 after 349 
Bonferroni correction) are illustrated by the black bars: these show that all pairwise 350 
significant differences include a change from or to condition 3 (trimming and balancing).  351 
 352 

  353 
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Table 1: Symmetry index (SI) and difference in minima of vertical displacement between the 354 

two halves of a stride cycle (MinDiff) for all study horses for poll and pelvic movement.  355 

 356 

  Stage 1 Stage 2 Stage 3 Stage 4 

No. G SIF SIH MDF MDH SIF SIH MDF MDH SIF SIH MDF MDH SIF SIH MDF MDH 

1 F 0.08 0.01 4 2 0.02 0.01 0 2 -0.01 -0.02 -3 0 -0.22 0.03 -4 -3 

3 F 0.37 0.12 15 2 0.55 0.08 14 0 0.62 0.02 24 3 0.45 0.13 11 -3 

4 H 0.52 0.07 11 1 0.29 0.21 7 4 0.31 -0.16 9 -6 0.30 -0.01 5 2 

7 B 0.29 0.04 12 1 0.46 0.14 14 2 0.25 -0.01 9 0 0.41 0.09 16 4 

8 H 0.66 0.20 5 5 0.66 0.23 4 4 0.61 0.09 5 5 0.65 0.33 17 17 

9 H 0.05 0.03 3 3 -0.01 0.12 -2 -2 0.04 0.02 -1 -1 0.18 -0.01 3 4 

10 H 0.06 0.07 1 1 0.03 0.00 1 1 -0.02 0.10 5 5 0.10 -0.07 0 0 

11 F 0.14 0.01 5 1 0.24 -0.11 6 -6 0.20 -0.15 6 -1 0.20 0.07 4 -3 

12 F 0.04 0.17 3 1 0.06 0.02 2 7 0.16 0.13 -7 5 0.09 0.12 -6 4 

14 F 0.12 0.03 9 5 -0.05 0.14 7 2 0.00 0.11 1 -2 0.05 0.02 4 2 

16 H 0.3 0.03 16 1 0.40 0.10 18 5 0.29 0.08 13 0 0.33 0.39 16 16 

17 H 0.02 0.03 4 6 -0.21 0.14 11 9 -0.10 0.14 -1 9 0.18 0.12 2 5 

18 H 0.03 0.17 0 2 0.03 0.14 2 -1 0.06 0.16 1 0 0.06 0.29 -2 4 

19 H 0.02 0.09 4 3 -0.27 0.00 -1 1 -0.19 -0.14 1 0 -0.09 -0.01 4 1 

20 F 0.04 0.39 6 14 -0.10 0.30 -1 11 -0.30 0.39 -8 15 0.05 0.25 1 9 

21 F 0.22 0.09 13 10 -0.05 0.07 -1 4 0.23 0.02 17 14 0.14 0.17 10 13 

22 B 0.4 0.23 9 7 0.40 0.41 7 8 0.41 0.16 13 2 0.23 0.08 13 -2 

24 H 0.08 0.16 3 14 0.21 0.19 -1 10 -0.47 -0.07 -10 -9 0.24 0.24 3 14 

25 H 0.1 0.05 4 1 -0.47 -0.08 26 -1 -0.64 0.03 33 13 -0.40 0.05 20 12 

27 B 0.42 0.00 22 13 0.09 0.18 11 12 -0.76 0.05 -22 7 0.13 0.15 6 15 

28 F 0.02 0.03 1 1 0.11 -0.09 0 -4 -0.10 -0.10 -4 -3 -0.43 0.14 -17 1 

29 F 0.29 0.02 22 3 0.48 -0.06 24 7 0.40 0.020 21 5 0.60 -0.10 36 6 

30 F 0.26 0.11 5 3 0.31 0.04 12 -2 0.22 -0.04 8 -1 0.44 0.11 15 6 

 357 

(Stage 1: Old Shoes On, Stage 2:Shoes off, Stage 3: Trimmed, Stage 4: New Shoes On,  No.: 358 

Horse identification number, G: Group with F: new shoes on fore feet, H: new shoes on hind 359 

feet, B: both fore and hind new shoes. 360 

Symmetry measures: SIF: SIpoll, SIH: SIpelvis, MDF:MinDiffpoll, MDH:MinDiffpelvis) 361 

  362 
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