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Physiological, aerodynamic and geometric constraints of flapping
account for bird gaits, and bounding and flap-gliding flight strategies
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� The flight styles of many birds are not aerodynamically efficient.

� The implications of a simple physiological cost – muscle activation – are considered.
� Small-bird flight strategies reduce costs due to downstroke power.
� Flap-gliding reduces costs of downstroke work given constant ‘gearing’.
� Flap-gliding avoids ‘negative work’ during upstroke.
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a b s t r a c t

Aerodynamically economical flight is steady and level. The high-amplitude flapping and bounding flight
style of many small birds departs considerably from any aerodynamic or purely mechanical optimum.
Further, many large birds adopt a flap-glide flight style in cruising flight which is not consistent with
purely aerodynamic economy. Here, an account is made for such strategies by noting a well-described,
general, physiological cost parameter of muscle: the cost of activation. Small birds, with brief down-
strokes, experience disproportionately high costs due to muscle activation for power during contraction
as opposed to work. Bounding flight may be an adaptation to modulate mean aerodynamic force pro-
duction in response to (1) physiological pressure to extend the duration of downstroke to reduce power
demands during contraction; (2) the prevention of a low-speed downstroke due to the geometric con-
straints of producing thrust; (3) an aerodynamic cost to flapping with very low lift coefficients. In
contrast, flap-gliding birds, which tend to be larger, adopt a strategy that reduces the physiological cost of
work due both to activation and contraction efficiency. Flap-gliding allows, despite constraints to
modulation of aerodynamic force lever-arm, (1) adoption of moderately large wing-stroke amplitudes to
achieve suitable muscle strains, thereby reducing the activation costs for work; (2) reasonably quick
downstrokes, enabling muscle contraction at efficient velocities, while being (3) prevented from very
slow weight-supporting upstrokes due to the cost of performing ‘negative’ muscle work.

& 2016 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Background

1.1. General background

Flying birds show a range of different flight styles, even when
travelling generally steadily. Domestic racing pigeons, geese,
swans – medium to large birds – travel with continuous flapping
(Fig. 1), with approximately constant frequency, amplitude and
flight speed. In contrast, many bird species adopt some form of
intermittent flight strategy. One form is commonly termed
‘bounding’, with periods of rapid, high-amplitude flapping
Ltd. This is an open access article
interspersed with bounds, during which the wings are folded
tightly against the body. Themes of the relationship between
adoption of bounding and size, speed and morphology, are re-
viewed by Tobalske (2001, 2010). Briefly, bounding is used only by
small birds, with little owls and most woodpecker species (up to
about 300 g) representing the larger end of the scale, down to a
few grams in some parrots (budgerigars), wagtails, kinglets, fin-
ches and many other passerines. However, bounding is certainly
not an absolute requirement for flying at small sizes: most waders
rarely or never bound.

At medium and large sizes, an alternative intermittent flight
style may be observed, with the body during periods between
flapping being supported with outstretched, gliding wings. This
style is termed here ‘flap-glide’, and is characteristic of many birds
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A qualitative demonstration of the scaling of flapping flight strategies. Larger birds fly more like aerodynamically efficient fixed-wing aircraft: the cruising greylag
goose (A) supports body weight throughout the flap cycle with the outstretched wings flapping at low amplitude. In contrast, smaller birds (B, here a pied wagtail) deviate
considerably from aerodynamically efficient gaits, with the wings providing minimal weight support for much of the time (both through an aerodynamically inactive
upstroke and periods of near-ballistic, wing-folded ‘bounding’), and very high wingstroke amplitudes.
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of prey even in generally direct, level flight. While flap-gliding is
used by some large flying birds, many other large species – for
instance geese and swans – flap continuously unless coming in to
land.

Starlings highlight the challenge of making definitive rules
concerning the distribution of bounding and flap-gliding: both
intermittent flight styles are used (Tobalske, 1995), with only a
quantitative shift from flap-gliding to bounding with increasing
speed. Generally, however, bounding is limited to small birds, and
for those small birds that do use it, bounds are more notable at
higher speeds (Tobalske, 1995). Flap-gliding is more usually asso-
ciated with larger birds, especially those competent at making use
of thermals. However, flap-gliding is less related to size, with
starlings, swallows and hawking dragonflies also frequently in-
terspersing periods of flapping with glides, even in generally level
flight.

1.2. Paper overview

In this paper, the implications of a physiological cost of muscle
activation is considered, along with a range of aerodynamic and
geometric constraints, to account for the potential energetic ad-
vantages and distribution of high-amplitude flapping and aero-
dynamically near-inactive upstroke (e.g. Spedding et al., 2003) and
bounding of small, and flap-gliding flight in some larger, birds.

The paper begins (2) by making the case that current aero-
dynamic accounts for intermittent flight styles are unsatisfactory.
Most aspects of this development are not novel, but do make the
case more forcefully than previous analyses that neither bounding
nor flap-gliding strategies offer a mechanical energetic advantage
for birds that have evolved, or can adopt, appropriately sized
wings. It continues (3) by considering the potential influence of
muscle, and concludes that there is little support for a simple
‘fixed gear’ constraint. Instead, a ‘cost of muscle activation’ is
proposed as a fundamental, general and revealing additional
consideration that, along with various aerodynamic and geometric
constraints, broadly account for the benefits and distribution of
bounding (4) and flap-gliding (5) flight strategies. Further im-
plications and predictions are then (6) explored.
2. Intermittent flight strategies deviate fromwork-minimizing
ideals

To many people, it may be intuitive that efficient flight under
‘design’ conditions should be steady and level; after all, that is the
flight style we are familiar with in any cruising passenger airliner.
Further, in aircraft specialized for economy (a low fuel cost for a
given load and distance) without any compromises for passenger
comfort, steady, level flight is also used under cruising conditions.
The case is re-made here not for novelty, but to emphasize an
unresolved puzzle of bird flight: many birds adopt intermittent
flight strategies inconsistent with aerodynamic or mechanical
economy. To do this, fliers are treated initially as aircraft, and their
aerodynamic power demands separated into their traditional
components, broadly following Pennycuick (1989).

2.1. Parasite power

Parasite power is that required to overcome the drag of the
body. All things (area, density, parasite drag coefficient) being
equal, it is proportional to the cube of velocity U. It is then a simple
mathematical result that any fluctuation of velocity U from the
mean velocity Ū would result in higher mean power demands than
steady flight, as

¯ ≤ ( )U U . 1
3 3

2.2. Wing profile power

Profile power is conventionally that attributed to the drag of
the wings; in flapping animal flight (where a component of profile
drag may act to support body weight) profile power cannot always
be elegantly divorced from induced power (below); but we shall
continue here with the aircraft-style approach. Early attempts to
find aerodynamic accounts for bounding flight rely on the benefit
of reducing – eliminating – profile drag during periods of bound-
ing, when the wings produce no or negligible lift. However, these
approaches assume there are no additional profile drag cost during
the flapping phases; this assumption, necessary if aerodynamic
benefits of bounding are to be predicted, cannot be justified in
detail. Clearly, if aerodynamic forces are to be produced by the
wings over a small proportion of the cycle, the lift and thrust
during flapping must be higher; and this can only be achieved
with wings moving faster or with higher lift coefficients. If flapped
faster, then similar issues apply as to parasite drag. If a bounding
bird flaps supporting the body weight and providing the thrust for
a proportion q of the time (sometimes termed the ‘power fraction’,
Lighthill, 1977; Pennycuick, 2001), the aerodynamic forces (pre-
dominantly opposing weight) during this period would be 1/q that
required for steady flapping. For a constant lift coefficient, the
wing would have to move through the air more quickly to achieve
this (as lift is proportional to the square of velocity), at q1/ the
speed. If the lift and profile drag coefficients were constant, then
the power during flapping – proportional to the cube of velocity –
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would be proportional to ( )q1/
3
, and the mean profile power

through a full flap-bound cycle would be q1/ that of steady
flapping. For ≈q 1/2, appropriate for the pied wagtail of Fig. 1, this
would indicate a 40% increase in mean profile power demand due
to bounding.

If, instead, higher lift coefficients are assumed – allowing
minimal kinematic differences during flapping whether bounding
or not (e.g. Rayner, 1985) – then so are higher profile drag coeffi-
cients; profile drag coefficients cannot be considered in-
dependently from lift coefficients (see Withers (1981) and Sped-
ding and McArthur (2010)). If a case is made that bounding is
advantageous because it reduces profile power, it is, in effect, as-
serting that the wings are too large, and operating at an in-
appropriately low angle of attack and poor lift:drag ratio; and that
something prevents the wings from being made conveniently
smaller. Might bird wings be excessively large due to their function
in slow or take-off flight? Might there be a mechanical limit or
other aerodynamic cost to the extent of area reduction at higher
speeds? Then bounding – adding periods where the wings con-
tribute minimal drag – would allow the wings to operate more
efficiently when they are producing aerodynamic forces. While
such a concept may be coherent for flight at high speeds (Furber,
in Lighthill, 1977; Rayner, 1977; Alexander, 1982; Ward-Smith,
1984; Rayner, 1985; Sachs, 2013) – that is, higher than appropriate
for a given wing design – there has also to be the additional as-
sumption that wing size cannot be conveniently controlled with
partial retraction, as is often clearly adopted by birds in fast flight
or flying into a strong headwind. Further, these models provide no
account for the occurrence of bounding in slow, hovering or near-
vertically ascending flight – or why bounding birds operate ex-
cessively large wings for their ‘normal’ flight.

2.3. Induced power

Induced power is that associated with accelerating a mo-
mentum jet of air downwards in order to provide weight support.
In level flight it relates to the weight being supported W, the wing
span b and velocity U:

∝
( )

P k
W

b U 2
ind ind

2

2

where kind is a factor greater that one to account for deviation
from a steady, even, ideal momentum jet. Larger-amplitude flap-
ping applies greater deviation from the ideal, steady momentum
jet as the span fluctuates from full-spread, and air is accelerated in
directions other than downwards (or, equivalently, aerodynamic
lift vectors become inclined laterally – see Sachs (2015)). Fluc-
tuations in – and near-complete loss of – weight support during
upstroke and periods of bounding adds further deviation from the
aerodynamic ideal. As an extreme case, with well-separated per-
iods of weight support as in bounding, the effects of supporting
weight for a proportion of the time q is clear. The weight sup-
ported during periods of flapping must compensate for the
bounding periods – multiplied by 1/q – all be-it for a smaller
proportion of the full flap-bound cycle (q). Thus, in this extreme
case, the multiplying factor due specifically to bounding becomes
(as also derived in Lighthill (1977), who acknowledges Mr. S. B.
Furber):

⎛
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the pied wagtail of Fig. 1B, with a bounding duty cycle of ap-
proximately 0.5, thereby doubles the induced power demand from
ideal. While this analysis is deliberately extreme – in truth, there
may be some degree of weight support even during the bounding
phase (Tobalske et al., 2009), and merging of closely spaced in-
duced flows make this quasi-steady analysis an upper bound – any
deviation from steady downwash generation directed away from
the net aerodynamic force imposes higher-than-minimal induced
power demands.

2.4. Inertial power

Flapping, reciprocating wings, unlike steadily revolving rotors,
require cyclic changes in kinetic energy. The generation of the
kinetic energy required to accelerate the wings may impose an
energetic demand on the muscles. A rigorous inclusion of inertial
power in an overall power calculation for flapping flight is chal-
lenging: is there any role of elasticity from muscle, tendon or
feathers? Can the kinetic energy put into accelerating the wing
(Alexander, 1977) be converted usefully into aerodynamic work as
it slows (Ellington, 1984)? Might there be a muscle cost to slowing
the wings (Van den Berg and Rayner, 1995)? Does a flexed-wing
upstroke posture reduce rotational wing inertia sufficiently for
energetic benefits? Despite these issues, it is possible to imagine
that the conflicting requirements of inertial and aerodynamic
power minimization might account for aerodynamically un-
economical high-amplitude, low-frequency flapping (Usherwood,
2009; Usherwood et al., 2011). However, an inclusion of inertial
power does not provide an immediate account for intermittent
flapping. To achieve a net force balance, periods of bounding with
low aerodynamic force – assuming similar lift coefficients – must
be compensated for with faster wing motions; faster flapping re-
quires a greater inertial power, though only for the duration of
flapping. The mean inertial power depends on the kinetic energy
given to the wings each flap, proportional to the square of the
maximum wing speed with respect to the bird centre of mass
Vflap,max, and the rate this work is performed f:

∝ ( )P q V f 4inertia flap, max
2

If this greater flapping velocity is achieved with a greater fre-
quency – as appears to be the case from observations of scaling
(Pennycuick, 2001), and is presumably demanded if flap ampli-
tudes are already high – it would appear that intermittent periods
of weight support would, if anything, also increase inertial power
demands. Consider idealized hovering with a constrained wing
stroke amplitude: flapping for half the time – q¼0.5 – would re-
quire the wings, when flapping, (assuming constant aerodynamic
force coefficients) to flap q1/ or 2 times faster to produce the
same weight support. To achieve this would require flapping the
wings at a higher frequency – 1/q or 2 times higher. In the sim-
plified hovering case, then, mean inertial power is proportional to
1/q; flapping only half the time doubles this cost. However, it
should be noted that this is an incomplete analysis. The com-
plexity of modelling the interplay between aerodynamic and in-
ertial forces in flapping flight while including intermittent flight
styles is beyond the scope of this paper; as is a thorough con-
sideration of more complex aerodynamic models including inter-
action terms between the various sources of drag. These issues
deserve further consideration, potentially using such computa-
tional approaches such as those developed by Parslew (2014).
3. Muscle constraints

The general conclusion appears to be (Ward-Smith, 1984;
Rayner, 1985) that there is no simple, purely aerodynamic or
mechanical account for intermittent flight strategies with suffi-
cient generality to provide a satisfactory account for bounding in
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nature. Indeed ‘[aerodynamic] model predictions cannot explain
the observation that some small passerine birds “bound” while
hovering or during steep climbs. No aerodynamic factor can be
responsible for this phenomenon’ (Rayner et al., 2001). Further,
predictions of a purely aerodynamic benefit or neutral effect from
flap-gliding (Ward-Smith, 1984; Rayner, 1985) requires model as-
sumptions that should now be questioned, especially with the
aerodynamic principles laid out above. The finding that aero-
dynamic power considerations can account for flap-gliding with
an ‘undulating’ up-down flight profile can be attributed to a pre-
dicted reduction in induced power with ascending flight (Rayner,
1985; page 64, Eq. (9)). However, this reduction in power appears
excessive due to the claim that the ‘weight support required is
reduced’ (during steady ascending flight) – an assertion that is not
adopted in other analyses of ascending flight in animals (e.g.
Wakeling and Ellington, 1997) and appears erroneous. Expanding
this point, the calculation required can be described using the
analogy of a person walking ‘up’ a ‘down’ escalator. When walking
at a speed that maintains height, work is continuously put into the
escalator by the person (meaning that – in our otherwise lossless
idealized system – the escalator must apply brakes to dissipate this
energy), analogous to the bird supplying energy to a downward
momentum jet of air in order to support body weight in level
flight. Now consider the demands of walking steadily but a little
faster up the escalator which (for the moment) has not changed
speed. In this case, the rate of work being applied to the escalator
remains the same (body weight multiplied by the vertical com-
ponent of escalator belt speed), and some additional power is
required for the person to perform work against gravity. To add a
slight complication, if the speed of the escalator is a direct ana-
logue of the induced downwash jet velocity Vind, then it actually
slows somewhat due to the higher air velocity. However, the
weight being supported is not reduced in steady climbing flight, so
the induced power expression of Rayner considerably over-
estimates the induced power reduction in climbing, and there
appears to be no purely aerodynamic case for undulating flight.

This does raise the question of why Rayner claimed flying at an
Laero=mg cos(φ)
-mg

φ

Ux

VupVind

Ur

φ

- ‘Additional drag’

Fig. 2. The aerodynamic geometries used for calculation of induced power in ascending fl

Ur. Undulating flight has been described as providing energetic cost reduction through re
of the aerodynamic lift vector Laero – defined as acting perpendicular to the resultant a
Rayner's formulation, an additional aerodynamic force is required to result in net weigh
angle assumptions allow the power demands of this additional drag to be treated simply
this asserts that the counteraction of the additional drag force (that, in part, supports b
alternative approach to calculating induced power demands is to treat the net aerodynam
this approach, weight is supported and the induced velocity Vind required for the weight
benefit to undulating flight is lost.
incline reduces the weight support requirement. The answer may
be as shown in Fig. 2: that a rotation of the resultant air velocity
from horizontal to inclined by an angle ϕ would rotate the or-
ientation of the aerodynamic lift vector – defined as being per-
pendicular to the relative air velocity – and so reduce its magni-
tude; and that Rayner's ‘weight support’ actually referred to
aerodynamic lift force. If this rotation is used to justify the reduced
induced power calculation, it assumes that the aerodynamic force
required in addition to aerodynamic lift in order to achieve net
weight support and zero horizontal acceleration (termed in Fig. 2A
and treated in Rayner (1985) as ‘additional drag’) can be achieved
without aerodynamic losses. However, if the vertical forces in
climbing flight are achieved with broadly the same aerodynamic
mechanisms as level flight, then presumably the same in-
efficiencies – due to producing a momentum flux by accelerating a
finite mass of air with finite-length wings – applies approximately
equally. Thus, it is the vertical force – or ‘Thrust’ in Fig. 2B and
following Wakeling and Ellington (1997) – and not the aero-
dynamic lift force, that should be used in calculating induced
power demands of constant velocity flight, even at an incline. It is
therefore appropriate and timely to revisit consideration of whe-
ther simple physiological constraints or cost functions might
provide some insight (Ward-Smith, 1984; Rayner, 1985).

3.1. ‘Fixed-gear’ and ‘maximal activation’ hypotheses

The predominant muscle constraint considered in terms of
bounding strategies is that the muscles of small birds might, for
some reason due perhaps to details of innervation or muscle
geometry, be constrained to contracting near-maximally in some
parameter, presumably related to power or efficiency. Thus, a bird
able to flap rapidly and powerfully for take-off might adopt an
intermittent, bounding flight when cruising, keeping each muscle
contraction broadly similar and making use of the bounding duty
cycle q in order to modulate mean aerodynamic power output
(Rayner, 1985; Pennycuick, 2001). Such constraints have (confus-
ingly) become termed both ‘fixed gear’ (e.g. Tobalske and Dial,
Thrust=-mg

φ

Ux

Vup

Vind

Ur

ight at an angle ϕ, upward velocity Vup, horizontal velocity Ux and resultant velocity
duction in induced power demands (Rayner, 1985), presumably due to the rotation
ir velocity Ur – and therefore its reduction by a multiple of cos(ϕ) (A). However, in
t support (-mg), which is treated as an additional drag. Rayner assumed that small
– as the additional drag force multiplied by the resultant velocity. Problematically,

ody weight) can be achieved without any costs associated with accelerating air. An
ic force required as a thrust – and not to treat aerodynamic lift in isolation (B). With
-supporting momentum flux is appropriately vertical; and any purely aerodynamic
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1994; Tobalske et al., 1999,, 2005) or ‘continuous gear’ (Rayner
et al., 2001). One prediction of this concept (Rayner, 1985) is
(during flapping in small, bounding birds) a uniformity in wing
kinematics over a range of speeds and the recruitment of all the
pectoralis muscle during each downstroke. However, empirical
observations do not support these predictions in zebra finches,
budgerigars or starlings (Tobalske and Dial, 1994; Tobalske et al.,
1999, 2005; Rayner et al., 2001; Ellerby and Askew, 2007). The
question therefore remains as to what physiological feature, pre-
sumably of muscle, might combine with flapping aerodynamics to
account for intermittent, bounding strategies; and why this should
apply especially – but not universally – to small birds.

3.2. Cost of muscle activation for work and power

Muscle activation is physiologically costly, even when the
muscle itself produces zero mechanical work or power. The en-
ergetic costs associated with activation – due in part to pumping
calcium ions to restore the electrochemical gradient after a con-
traction (Barclay, 2012) – may be significant, apparently dom-
inating the physiological demands of steady, level locomotion
(Pontzer, 2007, 2016, broadly extending observations of Kram and
Taylor (1990)). However, strategies that reduce muscle activation
may conflict with those that minimize work, and have scaling
implications. This concept has been applied recently to provide a
qualitative account for the scaling of posture in terrestrial animals
(Usherwood, 2013), and quantitative accounts for the scaling of
walking and running mechanics in children and adults (Hubel and
Usherwood, 2015). It should be highlighted that the ‘power’ cost
concept used here is that during muscle contraction, and not the
mean power of flight.

Here, the assumption is made that there is little scaling of
muscle efficiency directly in terms of cross-bridge cycling, so this
can be neglected despite the uncertain, but potentially relatively
large, physiological cost associated with this component of muscle
contraction. Instead, the focus is on the costs of muscle activation.
A key assumption is that the fundamental demands for activation
come from the work and power requirements over a contraction.
This assumes that the system is ‘well-tuned’ – that is, it has an
appropriate combination of mechanical advantages resulting in an
overall Effective Mechanical Advantage between muscle in-lever r
and mechanical out-lever R (EMA¼r/R; Biewener, 1989). Costs
associated with only muscle force (for instance during gliding) are
assumed to be low or negligible (despite constraints to adjust-
ments of EMA flap-glide – see Section 5): isometric muscle forces
are assumed to be achievable with lower muscle activation de-
mand (consistent with muscle force-velocity measurements) than
shortening muscles; further, specialised muscle physiology may
sometimes result in additional reduction in isometric force costs
(e.g. Rosser et al., 1994). If muscle is indeed activated pre-
dominantly to meet work and power demands, the contrasting
scaling of these parameters due to changes in contraction duration
provide a general mechanistic account for scaling of posture
(Usherwood, 2013) and an approximate quantitative account for
the scaling of human gaits through ontogeny. It is proposed here
that similar issues account for the scaling of flapping gaits and
strategies, including the high wing-stroke amplitude, lack of
weight support during upstroke, and periods of bounding char-
acteristic of many (though not all) small birds.

If the physiological cost due to activation relates to activated
muscle volume, and this volume is indeed fundamentally de-
manded from work and power requirements during a contraction,
a key property of muscle can be expressed in terms of time. If
muscle can be taken as having a finite work and power capability
averaged over a contraction – for example 50 J/kg and 500 W/kg –

then this imposes a time boundary (in this case, 0.1 s). Any
contraction with a duration greater than this time requires acti-
vation of muscle primarily to provide work; the power demands
will be met anyway. Conversely, any contraction with duration less
than this time requires muscle activation primarily due to power;
the work demands will be met anyway – no muscle volume has to
be activated for work per se as such a large volume must be acti-
vated to produce the power. This insight goes some way in ac-
counting for why many small animals, with contraction durations
less than 0.1 s, adopt gait strategies that reduce power demands,
even if this comes at the cost of increased work (Hubel and Ush-
erwood, 2015). The argument as applied here does not require that
muscle activation costs are the only ones contributing to metabolic
cost; merely that these costs are of sufficient magnitude to be
physiologically relevant (see Homsher et al., 1972; Smith, 1972;
Barclay, 2012). To expand on this point, let us assume that the
physiological activation cost Cwork of muscle required to meet
work
demands Wþ depends on the volume of muscle that has to be
activated – dependent on the muscle mass specific work capability
En and the physiological cost (energy demand) per mass of acti-
vated muscle kact:

= * ( )

+

C k
W

E 5work act

Further, assume the cost Cpower of activating due to power Pþ

during the contraction depends on the specific muscle power ca-
pacity (power/kg, or P*)

= * ( )

+

C k
P

P
.

6power act

The activation costs C are expressed here with dimensions of
energy (Joules), the physiological cost associated with activating
the required mass of muscle to meet a given mechanical demand.

Given the power during contraction relates simply to the work
and duration of contraction Tact, it can be seen that a muscle
contracting over less than a duration of E*/P* must be doing so in
order to provide the power demand:
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This would indicate that a muscle contracting for less than
0.1 seconds would have a higher volume activated than necessary
to meet the demands of work alone. Note that the 0.1 s value re-
lating to 500 W/kg, 50 J/kg, or a 30% strain contraction at
3 lengths/second, is merely empirically reasonable (see, for in-
stance, Channon et al. (2012)), and its exact value is unimportant
to the qualitative development presented here. Clearly, smaller
species can have ‘faster’ muscles, but this comes at a cost of
‘proportionately greater expenditure of energy’ (Hill, 1950). Costs
due to high power demands (due to brief periods for performing
work during muscle contraction in downstroke) may therefore be
reflected in either high volumes of activated muscle, or in main-
taining and operating higher-velocity muscles. The argument is
developed here assuming that muscle properties are broadly



Fig. 3. The geometric demands of producing the required net aerodynamic force to
overcome body drag and oppose body weight using predominantly aerodynamic
lift of the wings during downstroke only. Aerodynamic lift acts perpendicular to the
wing velocity through the air Ur; in order to achieve this orientation, the flapping
velocity of the wing Vflap cannot be below approximately Ux drag/weight. The 1:10
geometry is appropriate for a zebra finch at approximately 14 m/s (Tobalske et al.,
1999, from which the finch image is also taken).
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scale-invariant, but an equivalent case could be made given a cost
to maintaining muscles of high strain rate: strain ratio. Other
factors determining the duration of effective muscle contraction
may play a role (e.g. deactivation rate; Marsh, 1990); again, how-
ever, mechanisms enabling faster muscles come at a physiological
cost that might be ameliorated if kinematic strategies were pos-
sible to lessen the scaling of timing with size.

When applied to flapping flight, the same scaling issues apply
as to terrestrial gaits if we can assume that muscle and external
(aerodynamic) moment arms are suitable tuned. The premise of
this paper is that smaller flapping birds forego many aspects of
mechanical efficiency in order to increase the duration of muscle
contraction, providing time to reduce the muscle activation de-
mand of mechanical power (during the contraction). In steady,
level flight, (where no net mechanical work is being performed on
the centre of mass), the use of the term ‘efficiency’ may require
some clarification. Aerodynamic efficiency is usually defined with
the ‘useful work’ being that required to maintain a theoretical
ideal wing of given span, speed and weight, divided by the ‘actual
work’ required to overcome drag. In flapping flight, it would ap-
pear appropriate to add any additional inertial costs to the de-
nominator term.
4. Applying ‘cost of activation’ to account for bounding

While there may be a moderate scaling of muscle properties
with size (e.g. Seow and Ford, 1991; Tobalske, 1996) especially if
insect muscles are also considered (see Section 6.1), such scaling is
not extreme in vertebrate muscles: Seow and Ford (1991) report
shortening velocities scaling with body mass�1/8 in mammalian
muscles. Consider first an ibis flapping at a frequency of 5 Hz and
downstroke duration of approximately 0.1 s. In this case, if the
work:power capability of muscle was 0.1 s, any volume of muscle
would be activated to provide equally both the work and power
demands. Next consider a zebra finch flapping at 28 Hz (Tobalske
et al., 2005) and a downstroke or pectoralis contraction duration
of approximately 0.02 s. It is inconceivable that zebra finch muscle
is five times faster, or capable of producing the same mass-specific
work at a fifth of the strain, than an ibis muscle. This means that a
greater volume of zebra finch muscle must be activated to meet
the power demands during the contraction than is necessary for
work. If muscle activation itself comes at a metabolic cost, one
might expect strategies to limit this power demand.

4.1. Why cannot small birds use small amplitude flaps with a
downstroke of 0.1 seconds?

Low-amplitude flapping would allow minimal deviation from
aerodynamic work-minimizing flight; contraction over at least
0.1 s would prevent muscle activation for power demands un-
demanded by work. What prevents small birds from adopting this
strategy? The issue is that the net direction of the aerodynamic
forces produced by the wings must be orientated appropriately:
the required net aerodynamic force is dominated by weight sup-
port, but parasite drag from the body also demands a net thrust
from the wings, which proportionally increase at smaller sizes and
higher speeds. This geometry imposes constraints on wing kine-
matics if force production is dominated by aerodynamic lift, as this
force acts perpendicular to the relative airflow (Fig. 3). Flapping
geometry is therefore constrained by the required aerodynamic
force vector and flight speed if the wing produces lift pre-
dominantly with net low pressure only over the dorsal surface. A
bird flapping downwards at too low a velocity will be unable to
orientate the aerodynamic lift vector sufficiently forward. This
imposes two issues – one physiological, the other aerodynamic/
geometric – for small flapping birds: the desirability of relatively
long-duration muscle activation (�0.1 s), yet the geometry that
requires the wing to move quickly downwards to orientate aero-
dynamic lift to produce sufficient thrust. These issues combine to
give a novel account for the aerodynamically uneconomical fea-
tures of small-bird flapping flight. The geometric issue is shown in
Fig. 3, and can be expressed mathematically for small angles.

For small angles (relatively high weight support v.s drag op-
position), the minimum flap velocity Vflap allowing the geometry
to produce the required net aerodynamic force at a forward flight
speed Ux is given by:

≈
( )

V U
Drag

Weight
.

11
xflap

This geometric reduction is clearly wrong in detail – what with
time-varying aerodynamic forces, finite stroke plane amplitudes
and spread of chords along the span of the wing. However, the
principle is sound: wings that produce aerodynamic forces pre-
dominantly on the downstroke are constrained in how slowly they
may flap in order to produce sufficient thrust to oppose drag. And
the minimum flap speed goes up with flight speed and parasite
drag. Note that this geometry is, while similar, not identical to the
issues of advance ratio in propeller theory (Mises, 1945; see Vogel
(1994)). Real propellers with a finite lift:drag ratio cannot operate
very slowly on an aircraft moving quickly: the resultant force fails
to provide a net thrust. But consider a theoretical, ideal propeller
able to produce only pure aerodynamic lift – perpendicular to the
resultant airflow. Such a propeller would (theoretically) be capable
of producing net thrust at near-infinite advance ratio – at very high
flight speeds or low tip speeds. The same is not true in the flapping
case: evenwith a theoretical, ideal wing capable of producing pure
aerodynamic lift, expression (11) stands, and very high flight
speeds or low flap speeds are precluded. In effect, the minimum
propeller speed is limited by the lift:drag ratio of the propeller
aerofoil, whereas the minimum flap speed is related to the weight:
drag ratio of the body.

A high wingstroke amplitude (1) provides a greater duration for
muscle contraction for a given wing velocity, reducing muscle acti-
vation demands due to power during the contraction; (2) ameliorates
the geometric issues described above somewhat: away from hor-
izontal, mid-downstroke, a smaller component of aerodynamic lift
acts to support body weight, allowing some further forward-tipping
of the average resultant aerodynamic force vector. Weight support
with outstretched wings during upstroke, while potentially improv-
ing aerodynamic efficiency, is problematic in such high-amplitude
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flapping as this would also be associated with a (albeit small) degree
of drag, tipping the net aerodynamic force vector backwards, making
the task of achieving appropriate downstroke geometry even more
challenging.

Let us also suppose that there is some minimum functional lift
coefficient. While this may not be identical to that providing the
best lift:drag ratio (because the argument here is not only con-
cerning aerodynamic economy), very low lift coefficients would still
be energetically unfavourable from an aerodynamic perspective. Let
us now review the three key assertions:

) a physiological cost to muscle activation to provide power
during a brief contraction applies pressure towards relatively
long downstroke duration in smaller birds

) geometric constraints of providing net thrust requires high-
speed downstrokes. Combined with (1), this results in a
pressure for high amplitude downstrokes, especially at small
sizes and high flight speeds

) functional lift coefficients are constrained.

With these three points, we can now account for the ‘excess’
aerodynamic force produced during flapping phases of bounding
birds. The required adjustment to achieve an appropriate net force
balance is then clearly the net aerodynamic duty cycle – a com-
bination of downstroke: upstroke duration and flap-bound duty
cycle q. If wings during downstroke are driven to provide high
aerodynamic forces from physiological (1), geometric (2) and
aerodynamic (3) demands, extended periods of aerodynamically
inactive upstroke – including periods of bounding – are required to
permit the bird to maintain a steady average flight speed.

An alternative way of viewing the same concept is to answer
why bounding birds flap with excessively long wings. Shorter
wings would allow aerodynamically adequate lift coefficients
(3) and reduce the aerodynamic impulse each flap, thereby redu-
cing the demand for aerodynamically inefficient long bounding
periods. However, to achieve the required flap velocity from the
geometric constraints of producing thrust (2), the angular velocity
of the shorter wings would have to be higher; given constraints to
swept flap angle (approximately 180°), the downstroke and mus-
cle contraction durations would then have to be briefer. ‘Ex-
cessively’ long wings – those resulting in excessive aerodynamic
impulse each downstroke that has to be balance by periods of
aerodynamically inactive upstroke or bounding – thereby extend
the duration of muscle contraction and limit the wasteful muscle
activation costs demanded from power during the contraction.

At larger sizes, where downstroke duration – and the dominant
powering muscle contraction duration – approaches 0.1 s, the
pressure to adopt aerodynamically uneconomical gaits or strate-
gies in order to ‘buy’ time to perform work without excessive
muscle power diminishes. A 0.1 s downstroke and approximately
even down/upstroke timing would equate to a steady flapping
frequency of 5 Hz. This happens to match the wingbeat frequency
of the pileated woodpecker, in which periods of bounding are
marginal (Tobalske, 1996).

4.2. Contrasts with the Fixed-gear hypothesis

Both the ‘Fixed-gear hypothesis’ and the current suggestion
based on muscle activation costs identify flap-bounding as a means
for manipulating the overall duty cycle of wing action. Both assume
that this use of duty cycle for modulation is due to some constraint
in downstroke velocity. However, the drivers and implications of
the constraints contrast. The fixed-gear hypothesis suggests that
wing velocity is driven by muscle velocity; that the range of effec-
tive muscle velocities is limited; and predicts the wing flap velocity
should remain approximately constant across speeds. In contrast,
the geometric constraint of Fig. 3 and expression 11 suggest that
wing velocity is constrained by aerodynamic/geometric considera-
tions. In this case, the wing velocity during downstroke is predicted
to increase with both flight speed and parasite drag.
5. Applying ‘cost of activation’ and other constraints to flap-
glide strategies

While the case has been made here that larger birds adopt a
cruising flapping style close to that expected in terms of aero-
dynamic efficiency, some do adopt a form of intermittent flight
that does not fit this view: flap-gliding. For instance, many raptors
can be readily distinguished from birds of similar size due to their
periods of gliding interspersed between phases of flapping, even
during generally steady, direct flight. Can the simple cost to muscle
activation provide insight into the potential advantage of this
flight style, and its distribution among birds? Here, we propose a
series of constraints imposed by muscle and geometry to account
for deviation from the low-amplitude, constant weight-support
aerodynamic ideal. In this development, unlike for bounding and
terrestrial gaits, the ‘gearing’ or Effective Mechanical Advantage
between muscle and external (aerodynamic) forces are assumed to
not to be able to freely and appropriately tuned.

5.1. Muscle constraint 1: strain

In recent considerations of the implications to the costs of muscle
activation, applied to terrestrial locomotion, it has been assumed
that simple morphological or postural adjustments can change
moment arm ratios so as to make ‘gearing’, ‘transmission ratio’ or
‘Effective Mechanical Advantage’ (following Biewener (1989)) a free
parameter, and the muscle activation demands only related to
the work and power requirements (Usherwood, 2013; Hubel and
Usherwood, 2015). This is likely to be less true for flapping birds that
fly over large range of flight speeds, loads etc. (Fig. 4): while the
weight-support vector passes close to joint centres in large terres-
trial animals, allowing the ‘out-lever’ to be shortened or lengthened
considerably with only minor postural adjustments, the equivalent
out-lever for birds is the distance between shoulder centre of rota-
tion and, for a horizontal wing, the aerodynamic centre of pressure.
Manipulation of moment arm ratios is therefore much more con-
strained in flapping flight. What is more, movement of the centre of
pressure would tend to act unfavourably. Consider take-off: just
when a ‘low gear’ or high EMA would be beneficial, the relatively
high velocity of the wing tips tends to move the centre of pressure
distally, creating a ‘high gear’, low EMA.

If there are indeed limits to the changes in mechanical ad-
vantage, then a muscle capable of providing the power and work
of highly energetic periods of flight (including slow and take-off
flight or load-carrying) would experience only very low strains
during low-amplitude cruising flight where economy was desir-
able. Low muscle strains result in a lower work capacity E* for a
single contraction of a given mass of muscle; activation costs to
provide work are thus higher (see Eq. (5)) if wing amplitudes – and
so muscle strains – fall too low. While this may be ameliorated to a
certain extent in those large birds that carry and operate muscles
with different fibre types and EMA depending on context (e.g.
Rosser et al., 1994) there is presumably also a cost – especially in
flying animals – to maintaining and carrying multiple powering
systems with different specialisations.

5.2. Muscle constraint 2: strain rate

Again, assuming that bird flight muscles are, at times, capable
of high-power, high-work contractions, operating the muscles at
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very low strain rates is inefficient (note that this is a similar as-
sumption as has been used previously in the ‘fixed-gear’ hypoth-
esis of flap-bounding flight). Strain rates much below 0.2Vmax–

0.4Vmax result in a low thermodynamic efficiency (Reggiani et al.,
1997; He et al., 2000). So, with the assumptions that bird muscles
are capable of producing high work and power on occasion, and
are unable to alter their mechanical advantages sufficiently, simple
muscle costs provide some account for the finite-amplitude
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Fig. 5. Example dorsal accelerations of back-mounted sensors during bird flight at approx
a flock following a para-wing; and C: the ibis towards the end of the flight showing flap-
is assumed to be vertical, and some of the high-frequency signal components may be att
with a static sensor (light grey background line; in this case, it measures gravity); a value
body experiences accelerations close to free-fall during the upstroke, indicating that the
not resisted (negative work is not performed) by the shoulder.
downstrokes over reasonably brief periods. Why, though, are up-
strokes not slow?
5.3. Muscle constraint 3: a negative-positive- work cycle, while
netting no change in energy, demands at least the positive work
component to be provided by muscle

While slow upstrokes maintaining weight support over the
e (s)

8 10 12 14 16

imately 15 m/s. A: greylag goose in a flock following a car; B: a Northern bald ibis in
gliding. No filtering, adjustments or rotations are performed: the dorsal orientation
ributed to the less-than-rigid mounting. A value of �9.81 m s�2 would be observed
of zero indicates free-fall (darker grey background line). In both geese and ibis, the
vertical aerodynamic forces on the wings act to accelerate the wings up, and this is
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amplitude determined by the above downstroke constraints may
minimise net aerodynamic work, the demand on the muscles can
be high. The analogy of a chin-up might be useful: a cycle of
raising and lowering oneself on a chin-up bar results in no net
work, but demands a large muscular work. Similarly, performing a
slow upstroke while producing sufficient lift to support body
weight requires negative work to be performed by the muscles; a
wing-lifting force occurs at the same time as a wing-lifting motion.
This work absorbed by the muscle must be replaced during the
downstroke; the net work over the cycle may be small, but the
muscle work high. To avoid this negative muscle work during
upstroke while maintaining aerodynamic weight support, the
wing cannot flap upwards too slowly. If the aerodynamic force is
sufficient to lift the mass of the wings, but is not resisted by a
moment at the shoulders (which would require energy dissipa-
tion), then the body of the bird (excluding the wings) should ex-
perience free-fall. This is supported by accelerometer measure-
ments of geese and ibis during cruising flight (Fig. 5).

These muscle constraints provide an account for the benefit of
the flap-gliding strategy. In birds with the capacity for large-am-
plitude, powerful flapping flight, a flap-gliding strategy during
cruising flight may provide a physiological energetic advantage if:

) flap amplitude is determined by a constraint to EMA modula-
tion and the cost of low muscle strains in terms of excess
muscle activation per work

) flap speed is determined by a constraint to EMA modulation and
the benefit of operating at a constrained range of muscle
velocities

) too-slow upstrokes while supporting body weight would result
in negative work (and so – without some perfectly elastic me-
chanism – a greater positive work demand from the muscles
during downstroke).

If the wing should be driven down deeply and quickly, and
cannot be lifted too slowly, but near-continuous weight support is
aerodynamically economical, periods of gliding are required. It
should be noted that this account makes no prediction for the
distribution of gliding periods: they could be achieved equally
with a pause each upstroke or with a distinct separation between
bouts of flapping and gliding.
6. Further discussion

6.1. Scaling of ‘gaits’

The developments presented here, while presented mainly as
an account for bounding and flap-gliding flight strategies, also
provide a broad account for the distribution of bird ‘gaits’. Early
concepts of ‘gaits’ in bird flight focussed on the difference between
birds not supporting body weight during upstroke – resulting in a
gait that can be identified by the wake (Spedding et al., 1984) as a
‘vortex ring gait’ (Rayner, 1988) – and those that are – resulting in a
‘continuous vortex’ gait (Spedding, 1987; Rayner, 1988). More re-
cent kinematic and aerodynamic observations (Hedrick et al.,
2002; Spedding et al., 2003; Rosén et al., 2004; Tobalske et al.,
2007) indicate that there is often no discernable discontinuity
between these extremes, with the degree of weight support dur-
ing upstroke effectively a continuous variable. However, con-
sideration of the extremes remains useful. Why are vortex ring
gaits, with aerodynamically inactive upstrokes, prevalent in small
birds with high wingbeat frequencies? From Section 4.1, in order
to ‘buy’ time to extend the duration of downstroke and reduce the
muscle activation costs due to power, with the geometric con-
straints of providing thrust. Why do these issues apply less to
larger birds in cruising flight, which are able to adopt something
approaching a ‘continuous vortex’ gait with aerodynamic forces
supporting weight throughout the upstroke? Both because they
have sufficient time for their downstrokes to avoid excess muscle
activation costs due to power; and because the geometric issues of
orientating the net aerodynamic forces from the wings to provide
thrust are reduced at larger sizes – parasite drag becomes rela-
tively small compared with weight for bigger birds flying at similar
absolute speeds. This leaves larger birds more able to adopt
aerodynamically economical gaits.

The line of argument developed above contrasts with tradi-
tional accounts. Consider: large birds are able to adopt aero-
dynamically economical gaits because they flap with sufficient
downstroke duration to avoid physiological costs of muscle acti-
vation due to power versus the conventional view that large birds
are constrained to aerodynamically economical gaits due to the
adverse scaling of aerodynamic force requirement (weight sup-
port) and production (wing area). Of course, both views may be
valid, and may apply to greater or lesser extents depending on
context. It is possible that the combination of these issues could
provide further insight into functional implications of the re-
markable diversity of form and function among flying birds.

6.2. When and why are intermittent strategies NOT adopted?

Can the issues proposed here account for cases of small flap-
ping fliers not adopting bounding, and large birds not flap-gliding?
Most insects and hummingbirds are considerably smaller than, or
overlap in size with, bounding birds. This may be attributed to
either of two assumptions made for bounding birds that do not
apply – or apply to a much lesser extent – to insects and hum-
mingbirds. The first is the degree of specialization of the wing
profile and musculature for aerodynamic lift production only on
the downstroke: the constraint to flap velocity Vflap of Fig. 3 does
not apply if a forward-directed force vector can be achieved during
the upstroke during forward flight. The second is the assumption
of broadly scale-invariant muscle properties. Adaptations for very
small-scale flapping flight certainly do include fundamentally
different muscles, exemplified by the asynchronous insect flight
muscles that allow extreme contraction frequencies in mosquitoes
etc. One further issue that must be conceded is behavioural: for
instance, kingfishers, shore-birds and hummingbirds may be of a
scale and physiology that would benefit from bounding, but may
find greater utility in specializing flight over flat surfaces, or ho-
vering steadily at a food source.

The distribution of flap-gliding strategies among large birds
may similarly have ecological or behavioural influences; for in-
stance, many flap-glide specialists happen also to be capable
soarers. However, the assumptions adopted here to account for
flap-gliding do generally appear to tie in with the features of flap-
gliding birds: flap-gliders appear to be those operating with a high
‘power margin’ or a high range of flapping flight speeds. This ap-
pears to apply to the contrast between large eagles and swans:
eagles are capable of powered take-off from the ground while
carrying prey loads; swans require a long running take-off. Simi-
larly, the powerful burst-coast flight typical of phasianids (e.g.
Tobalske and Dial, 2000) may be considered a form of flap-gliding
exemplifying the advantages of operating the exceedingly pow-
erful (Askew et al., 2001) muscles under favourable conditions,
albeit only briefly or intermittently. Note that the account for flap-
gliding does not have strong scaling predictions; there is no reason
why small birds might not also benefit from adopting flap-gliding,
particularly during slow flight. This may be consistent with ob-
servations of swallows and starlings, which adopt a speed-de-
pendent range of intermittent flight strategies including flap-
gliding.
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6.3. Scaling of formation flight

There is increasing evidence (e.g. Portugal et al., 2014) that
V-formation flight involves beneficial aerodynamic interaction
between a following bird and the wake of a leader. V-formations
appear to be limited to relatively large species. Presumably the
absence of V-formation flight among small birds can, at least in
part, be related to wake structures and, ultimately, to the flight
styles determined by the physiological and geometric issues de-
scribed here; it would appear very difficult to benefit from the
wake produced by high-amplitude flapping and approximately
ballistic periods during upstroke and/or bounding, especially by a
bird following with a similar flight style.

6.4. Biomimetics

There is considerable military, commercial and recreational
interest in aerial platforms that overlap in size and capability with
birds. The conclusion of this paper is that intermittent flight
strategies may arise in part due to the costs associated with muscle
activation. It would therefore appear sensible to avoid biomimicry
of either bounding or flap-gliding flight, even in such platforms
that make use of flapping, because most actuators used in en-
gineering do not have a similar activation cost.

6.5. Conclusion and predictions

Inclusion of a cost of muscle activations appears to provide a
novel, general prediction of physiological benefits to high-ampli-
tude flapping with little weight support during upstroke among
small birds, and both bounding and flap-gliding flight strategies.
Bounding is predicted to be associated especially with small birds,
and relatively long bound durations are predicted at higher speeds
and with higher parasite drag coefficients due to geometric issues
of producing thrust. Flap-gliding at cruising speed is predicted in
larger fliers also competent at flapping with high amplitude, fast
wing strokes.
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