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Abstract
Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibi-

tion of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at

multiple sites of extensive tissue remodelling. This extends to bone where its role, however,

remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and

architecture, histological and histochemical evaluation to characterise the skeletal pheno-

type of Timp-3 KOmice and have complemented this by also examining similar indices in

mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically tar-

get overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises

tibial bone mass and structure in both cortical and trabecular compartments, with corre-

sponding increases in osteoclasts. Transgenic overexpression also generates defects in

tibial structure predominantly in the cortical bone along the entire shaft without significant

increases in osteoclasts. These alterations in cortical mass significantly compromise pre-

dicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor

transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency

and of transgenic overexpression extends to produce modification in craniofacial bones of

both endochondral and intramembranous origins. These data indicate that the levels of

Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture

and that this arises from chondrogenic and osteogenic lineages.
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Introduction
Bone comprises a predominantly type I collagen-rich, mineralised extracellular matrix (ECM)
that is synthesised by osteoblasts, degraded by osteoclasts and populated by osteocytes. All
bones of the appendicular skeleton form via endochondral ossification, involving calcification
of a collagen type II-rich ECM followed by its replacement with bone. In contrast, some bones
of the cranial skeleton can also form via intramembranous ossification, the direct differentia-
tion of mesenchymal cells into osteoblasts [1]. The fate of mesenchymal cells and directions of
this skeletal differentiation are governed mainly by different signalling pathways [2].

The mechanisms controlling appropriate assembly, organisation, composition and regula-
tion of bone ECM during embryonic development, morphogenesis, tissue remodelling and
repair remain however incompletely resolved. Many factors including the Metzincin family, of
which the matrix metalloproteinases (MMPs) sub-family include collagenases, gelatinases,
stromelysins, matrilysins, membrane-type MMPs participate in this ECM regulation [3]. In
addition, other enzymes such as “a disintegrin and metalloproteinase with thrombospondin
motifs” (ADAMTS) [4] and ADAM, often called “sheddases”, also affect cellular behaviour by
proteolytically releasing extracellular domains of cell surface molecules such as membrane-
bound growth factors, cytokines and their receptors [5].

MMP and ADAMTS activities are precisely regulated under physiological conditions by
endogenous tissue inhibitors of metalloproteinases (TIMPs 1–4). These four TIMPs differ in
their affinities, with TIMP-3 displaying unique molecular features and the broadest inhibition
[6–12]. Unlike all other soluble TIMP family members [13–15], TIMP-3 becomes tightly
bound to ECM via unique basic domains at both C- and N-termini. This unique TIMP-3
ECM-binding facilitates interaction with heparan and chondroitin sulfate and inhibition of
MMPs and membrane-bound sheddases. In addition, TIMP-3 can also inhibit membrane
bound and transmembrane ADAM-17 and ADAMTS-4/-5 [16–20]. TIMP-3 is expressed
broadly at multiple sites of extensive tissue remodelling such as in embryonic somites, lung,
skin as well as interdigit webs [21]. In adult mice, TIMP-3 mRNA and protein have been
detected in the kidney cortex, liver, spleen, muscle, heart, brain, ovarian follicles, testis and hair
follicles [19, 21]. Despite this intimate spatial distribution and function of TIMP-3 in ECM, its
roles in regulation and remodelling of bone ECM are incompletely defined.

MMPs and TIMPs are known to play a crucial role in regulating bone mass and structure
[22, 23]. Previous studies have reported that MMP-2, MMP-9 and MT1-MMP act as bone-
degrading proteases [24–26] and that mice lacking MMP-13 show increased bone volume due
to decreased osteoclast function [27, 28]. TIMP-3 is also found to be expressed in adult bones
[21] and long-term huTIMP-3 over-expression in murine hematopoietic cells resulted in late
onset osteosclerosis and an increase in trabecular bone volume, attributable to elevated bone
formation [29]. Leco et al., (2001) reported that Timp-3 KOmice have normal life span with
no significant size/weight differences compared with wild-type pups or adults [30].

More recently, Sahebjam et al., (2007) reported that Timp-3 KOmice show delayed second-
ary ossification centre formation and spontaneous osteoarthritis soon after birth [31], suggest-
ing that Timp-3may affect endochondral ossification. This cartilage-to-bone transition
involves sequentially proliferation, differentiation and hypertrophy of chondrocytes and ECM
calcification. It is generally held that most hypertrophic chondrocytes undergo apoptosis, how-
ever, recent studies suggest that at least some survive this transition to differentiate into osteo-
blasts and thus contribute to long bone formation and maintenance [32–36].

The extent to which TIMP-3 contributes to the regulation of bone mass and architecture in
vivo remains unresolved and to the best of our knowledge, no previous study including the
original work by Lecco et al., (2001) examined the effect of Timp-3 deficiency on bone mass
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and organisation. Herein, high resolution micro-computed tomography and static histomor-
phometry are used to address the hypothesis that Timp-3 deficiency compromises bone mass
and architecture in bones derived by both endochondral and intramembranous ossification
[37, 38]. In addition, we have explored the extent to which TIMP-3 contributes specifically to
endochondral bone formation by analysing bones from a newly generated transgenic gain-of-
function mutant in which Timp-3 overexpression is driven via Col2a1 chondrocyte-specific
enhancer. We hypothesized that such cartilage-specific Timp-3 overexpression would produce
an opposing effect, to enhance bone mass and architecture in bones derived by endochondral,
but not intramembranous ossification.

Materials and Methods

Animal models
Mice (C57BL6 strain) genetically deficient in Timp-3 were a gift from Dr Rama Khokha [30].
For transgenic mice, a construct containing collagen IIα1 chain (Col-2a1) proximal promoter
region (3000 bp), the first exon (237 bp), the first intron (3020 bp) (gift from B. de Crom-
brugghe; Zhou et al., 1995), was used to drive expression of human TIMP-3, an IRES (internal
ribosomal entry site) sequence and LacZ with a nuclear localizing signal. Not I was used to
remove the back-bone vector (pBluescript) and to produce an 11.3-kb fragment that was
microinjected into fertilized -C57BL/10 × CBA F1 eggs. Founder mice were identified by analy-
sis of genomic DNA. Timp-3mRNA expression in E15.5 embryos were confirmed by whole-
mount ß-galactosidase staining and qRT-PCR with human TIMP-3 specific primer and probe
(QuantiProbe1 kit, Qiagen). Homozygous and heterozygous transgenic mice were identified
with TaqMan probe for beta-galactosidase (sence: 5’- GTG CAC GGC AGA TAC ACT TG-3’,
antisence: 5’- AAC GGT AAT CGC CAT TTG ACC AC-3’, TaqMan probe; 5’ FAM-TCA
GCC GGA AAA CCT ACC GGA TTG A–BHQ 3’) and mouse 18S (sence: 5’- GAC CAT AAA
CGA TGC CGA CTG -3’, antisence: 5’- CCC TTC CGT CAA TTC CTT TAA G -3’, TaqMan
probe; 5’HEX- CTT CCG GGA AAC CAA AGT CT–BHQ 3’) as described previously [39].
Mice were housed in individually ventilated cages with wood chip and paper bedding and pro-
vided standard rodent maintenance diet (Special Diet Services, South Witham, UK) and water
ad libitum throughout the study and were euthanized by cervical dislocation. All procedures
complied with the UK Animals (Scientific Procedures) Act 1986 and were reviewed and
approved by the ethics committee of the Royal Veterinary College (London, UK) and Univer-
sity of Liverpool (Liverpool, UK) and comply with the ARRIVE guidelines (although weight
was not recorded) [40].

High-resolution micro-computed tomography (Micro-CT)
Micro-CT scanning and analysis were performed as described previously [41]. Briefly, tibiae
and heads from 8 week old (n = 6 for KO and Tg and n = 5 for WT groups) male Timp-3 KO
and their WT littermates (WTB6) and Timp-3 Tg and their corresponding WT littermates
(WTF1) were scanned using the Skyscan 1172 (Skyscan, Kontich, Belgium), with x-ray tube
operated at 50kV and 200 Micro-A, 1600 ms exposure time with a 0.5 mm aluminium filter
and a voxel size of 5 (tibiae) and 6 micro-m (head). The scanning time for each sample was
approximately 2 and 3 hours respectively. The slices were then reconstructed using NRecon
1.6.9.4 (Skyscan, Kontich, Belgium). 2D/3D analyses were performed using CTAn 1.15.4.0
+ version software (Skyscan, Kontich, Belgium). Additionally, 3D visualization and production
of colour-coded images of trabecular, cortical and skull bones were conducted using Avizo
9.0.0 software (FEI, Oregon USA). Finally, phantom calibrated Micro-CT was used to assess
cortical tissue mineral density (TMD) on a stack of 100 slices for cortical region at 50% of total
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tibial length using two Skyscan-supplied bone phantoms with known mineral density values of
0.25 and 0.75 g/cm3 calcium hydroxyapatite.

Morphometrical analysis

1. Trabecular analysis. Prior to analysis, Micro-CT images were re-oriented in DataViewer
1.5.0 (Skyscan, Kontich, Belgium), such that the cross-section within the transverse plane
was perpendicular to the long axis of the bone. Tibial length was measured in CTAn
1.15.4.0+ software using a straight line measuring tool and the appearance of the trabecular
‘bridge’ connecting the two primary spongiosa bone ‘islands’ was set as reference point for
analysis of the metaphyseal trabecular bone adjacent to the epiphyseal growth plate. 5% of
the total bone length from this point (towards the diaphysis) was utilised for trabecular
analysis of the proximal tibia. The trabecular region of interest was drawn freehand using
the selection tool of CTAn, a few voxels away from the endocortical surfaces in order to
avoid inclusion of remnants of primary spongiosa associated with cortical bone. The
selected trabecular regions of interests were analysed using CTAn BatMan software (Sky-
scan, Kontich, Belgium) and morphometric parameters were recorded.

2. Whole bone cortical analysis. Whole bone analysis was performed on datasets derived
from CT scans using BoneJ [42] (version 1.4.0), an ImageJ plugin [43]. Following segmenta-
tion, alignment and removal of fibula from the dataset, a minimum bone threshold was
selected using a histogram based method in ImageJ which utilises all pixels in a stack to con-
struct a histogram and was further confirmed using ImageJ “threshold function”. The
threshold ranged between 22000–22100 and was applied to all datasets to separate higher
density bone from soft tissues and air. This threshold was used in “Slice Geometry” function
within BoneJ to calculate bone cross sectional area (CSA), second moment of area around
the minor axis (Imin), second moment of area around the major axis (Imax), mean thickness
determined by local thickness in two dimensions (Ct.Th), ellipticity and resistance to tor-
sion (J). The most proximal (15%) and the most distal portions (25%) of tibial length were
excluded from analysis, as these regions include trabecular bone

3. Craniometric measurements. Skull dimensions were measured using reconstructed projec-
tion images, followed by re-orientation in DataViewer 1.5.1.2 (Skyscan, Kontich, Belgium) so
that the sagittal suture is parallel to the viewing plane. The volume of tomograms were ren-
dered using CTvox 3.1.0 r1167 (Skyscan, Kontich, Belgium) to obtain 3Dmodels of the skull
which were used to measure cranial length, the distance between the internasal (top of the
nose) and the occipital point (the most distal point of the occipital bone), inter-nasal distance
(measured between both nasal lateral points), inter-orbitary length (measured between right
and left infraorbital foramina) and bi-temporal distance measured in the more distant point
of the jugal process off squamosal with respect to the sagittal plane using ImageJ. Mandibular
measurements were made using 3D generated models by Mimics Research 17 (Materialise,
Belgium). All measurements from recognizable geometric morphometric landmarks on digi-
tized images of the skull were performed as described previously [44, 45].

Histologic analysis
Tibiae from all groups were dissected, fixed for 24 hours in neutral buffered formalin, decalci-
fied in EDTA and processed for standard paraffin embedding. Coronal 6 micro-m sections
from individual bones were sectioned and multiple sections from 4 mice per group used in sub-
sequent procedures. Prior to staining sections were dewaxed and rehydrated.
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1. Toluidine blue staining: sections were stained with toluidine blue (0.1% in 0.1M solution
of acetate buffer [pH 5.6]), mounted with DPX mounting medium and imaged using a
DM4000B upright microscope and DC500 colour camera both controlled through Leica
Application Suite software version 2.8.1 (Leica Microsystems, Milton Keynes, UK). Growth
plate zones were identified based on cell morphology and organisation, measured and
expressed as a proportion of the total growth plate width using ImageJ. All growth plate

Fig 1. Deficiency and also transgenic overexpression of Timp-3 generate defects in trabecular bone. Trabecular bone phenotype of WTB6 (black),
Timp-3 KO (grey), WTF1 (dark red), Timp-3 Tg (light red) tibia at 8 weeks of age. (A) Representative 3DMicro-CT thickness colour-coded images of tibial
trabecular bone. Ex vivo high-resolution analyses of distal proximal metaphysical tibia to determine (B) trabecular bone volume/total volume, (C) trabecular
number, (D) trabecular thickness and (G) bone surface/bone volume. (H) Representative Alcian blue haematoxylin and orange G/eosin stained sections with
outline of trabeculae showing the region of interest used for measurements. These sections were analysed using Osteoid Histo to provide (I) trabecular
thickness and (J) trabecular bone surface/bone volume. Box-plots represent means ± SEM. Group sizes for Micro-CT (B-G) were n = 5 for WT littermates
and n = 6 for Timp-3 KO and Tg mice. Group sizes for histological data (I-L) were n = 4 for all groups. Two-sample t-test was used to compare means
between KO andWTB6, and between Tg andWTF1. Normality of variance assumption was violated for total area of KO group (E) and homogeneity for
trabecular thickness of WT vs. KO group (I) (p > 0.05), thus, for these groups Kruskal-Wallis test was performed. Statistical comparisons: * denotes p� 0.05.

doi:10.1371/journal.pone.0159657.g001

Timp-3 and Regulation of Bone Mass

PLOS ONE | DOI:10.1371/journal.pone.0159657 August 12, 2016 5 / 21



zones were identified and measured by the same observer, and the growth plate images were
temporarily assigned a random ID number unrelated to treatment group during analysis to
minimise bias.

2. Alcian Blue Haematoxylin and Orange G/Eosin staining: sections were incubated with
1% acid-alcohol (1% hydrochloric acid made in 70% ethyl alcohol), stained with Alcian blue/
haematoxylin (0.5% haematoxylin, 5% aluminium ammonium sulfate, 0.05% sodium iodate,
0.5% Alcian blue, 50% glycerol, 0.02% glacial acetic acid), washed in distilled H2O and differ-
entiated in acid-alcohol. Sections were then stained with eosin–orange G (1.2% eosin in 90%
alcohol plus 1% phloxine B and 2% orange G) for 1 min 30 seconds, dehydrated. Sections
were mounted with DPXmounting medium and imaged using a DM4000B upright micro-
scope and DC500 colour camera both controlled through Leica Application Suite software
version 2.8.1 (Leica Microsystems, Milton Keynes, UK). Cartilage stains pale blue, bone
orange-red, muscle red and bone marrow dark blue. These sections were analysed using Oste-
oid Histo [46] to provide trabecular thickness, total area, bone area and bone perimeter

3. Tartrate resistant acid phosphatase (TRAP) staining: paraffin-embedded histological sec-
tions were stained for TRAP activity using the standard naphthol AS-BI phosphate post
coupling method. The slides were incubated for 1 hour at 37°C in 0.92% sodium acetate
buffer, pH 5.0, containing 0.01% naphthol AS-BI phosphate and 1.14% L-(+)Tartaric acid.
Then, the sections were incubated in the same buffer containing 0.1% pararosaniline chlo-
ride for 20 min, followed by washing in distilled water. The sections were counterstained
with 0.5% methyl green (pH 4.2, nuclei blue) for 5 minutes, dehydrated and mounted with
DPX mounting medium. Sections were imaged using a DM4000B upright microscope and
DC500 colour camera both controlled through Leica Application Suite software version
2.8.1 (Leica Microsystems, Milton Keynes, UK). TRAP-positive osteoclasts were quantified
using TRAP Histo [46] which identifies trabecular bone and osteoclasts by colour threshold-
ing in combination with object filtering tools below the growth plate excluding cortical bone
in a blinded fashion. Osteoclast numbers were expressed as N.Oc/BPm and Oc.S/BS accord-
ing to accepted histomorphometric standard. Endosteal osteoblasts and number of osteo-
cytes (lacunar occupancy) measurements were made in ImageJ cell counter plugin using
x40 images taken from same region of cortical bone.

Table 1. Mean value of morphometric parameters from the 2D and 3D analysis representing trabecular and cortical mass and architecture of
WTB6, Timp-3KO, WTF1 and Timp-3 Tgmice at 8 weeks of age.

Morphometric index WTB6 KO P value WTF1 Tg P value

n = 5 n = 6 WTB6 vs KO n = 5 n = 6 WTF1 vs Tg

Tibial length (mm) 18.11 ± 0.02 16.45 ± 0.06 <0.001 17.33 ± 0.05 17.32 ± 0.02 NS

Trabecular parameters

Trabecular BMD g/cm3 0.304 ± 0.01 0.263 ± 0.01 <0.05 0.409 ± 0.02 0.350 ± 0.01 NS

Total volume (micro-m3) x 109 2.34 ± 0.12 1.74 ± 0.09 <0.01 1.99 ± 0.09 2.00 ± 0.07 NS

Bone volume (micro-m3) x 108 5.45 ± 0.50 3.88 ± 0.18 <0.05 5.63 ± 0.59 4.78 ± 0.42 NS

Trabecular separation (mm) 0.14 ± 0.00 0.12 ± 0.00 <0.05 0.14 ± 0.01 0.15 ± 0.01 NS

Cortical parameters

Cortical BMD g/cm3 0.505 ± 0.04 0.334 ± 0.03 <0.01 0.592 ± 0.03 0.554 ± 0.05 NS

Group sizes for were n = 5 for WT littermates and n = 6 for Timp-3 KO and Tg mice, except for n = 4 for all groups for BMD. Two-sample t-test was used to

compare means between KO andWTB6, and between Tg andWTF1. Normality or the homogeneity of variance assumption were not violated (p � 0.05).

Data are mean ± SEM.

doi:10.1371/journal.pone.0159657.t001
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Fig 2. Timp-3 deficiency and transgenic chondrocyte-specific overexpression do not alter thickness of different zones in growth plate.
Representative images of toluidine blue stained sections fromWTB6 (A and E), KO (B and F), WTF1 (C and G) and Tg (D and H) mice showing overall
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Statistical analysis
Trabecular and skull bone data were analysed and box-plots generated using GraphPad Prism
6 (GraphPad Software, Inc., San Diego, CA). For cortical bone, graphs were developed using
the R programming language “R”, version 3.1.3 (R Foundation for Statistical Computing,
Vienna, Austria; http://www.r-project.org). Normality and homogeneity of variance of all the
data were checked using the Shapiro-Wilk and the Bartlett’s test in the R 3.1.3 respectively.
Two-sample t-test was used to compare means between KO and WTB6, and between Tg and
WTF1. Kruskal-Wallis test was employed if either the normality or the homogeneity of variance
assumptions were violated (p� 0.05). Data are presented as mean ±SEM and were considered
statistically significant when p� 0.05.

Results

Deficiency and also transgenic overexpression of Timp-3 generate
defects in trabecular bone
Herein, we used Micro-CT to perform a detailed analysis of bone morphology in 8 week old
male Timp-3 KO (andWTB6) and Timp-3 homozygote for the transgene (Tg/Tg andWTF1 mice;
Fig 1A). Our data show that Timp-3 deficiency resulted in significantly shorter tibia compared
withWTB6 (p� 0.05, Table 1), however, no significant differences were observed between Tg
andWTF1 mice. Furthermore, we found that both Timp-3 deficiency and transgenic expression
resulted in lower bone mineral density (BMD) in both trabecular and cortical compartments
compared with their respective WTs; these changes only reached levels of statistical significance
in KOmice compared withWTB6 control (p� 0.01, Table 1). In addition, Micro-CT based com-
parison of the tibial trabecular bone revealed significantly lower total volume (TV, p� 0.05,
Table 1) and bone volume (BV) in Timp-3 KO compared withWT littermates (Table 1 p<
0.05), but no significant differences in bone volume fraction (BV/TV) (Fig 1B). In contrast, no
significant difference in TV, BV and BV/TV were observed between Timp-3 Tg andWTF1 mice
(Table 1 and Fig 1B). Trabecular number and bone surface/bone volume (BS/BV) were signifi-
cantly higher in Timp-3KO than inWTB6 mice (Fig 1C and 1E; p� 0.05), however, no such dif-
ferences were found in Timp-3 Tg mice. Trabecular thickness was significantly lower in both
Timp-3 KO and Tg mice compared with respective WTmice (Fig 1A and 1D; p� 0.05).

We also found that analysis of trabecular bone from Alcian blue/ haematoxylin and orange
G/eosin stained sections (Fig 1H) resulted in similar differences between KO and Tg and their
respective WT mice (Fig 1I and 1J) which allowed confirmation of our findings obtained from
micro-computed tomography. Together these data reveal that Timp-3 deficiency produces
smaller metaphyseal trabecular area, lower BV and more numerous, thinner trabeculae. Timp-
3 transgenic overexpression does not produce opposite changes, as it also compromises trabec-
ular structure by reducing their thickness.

Deficiency and also transgenic overexpression of Timp-3 do not lead to
significant alteration in growth plate
In sections of long bones from hind limbs (Fig 2A–2M), the length of the growth plates in
WTB6 (Fig 2A and 2E), KO (Fig 2B and 2F), WTF1 (Fig 2C and 2G) and Tg (Fig 2D and 2H)

structure of growth plate measured from resting zone to primary spongiosa. (I) Different zones of growth plate were marked and measured. No significant
differences in size overall size of growth plate (J), percent proliferative zone (K), percent hypertrophic zone (L) and percent resting zone (M) between KO and
their WT controls as well as Tg and their respective WT were observed. Two-sample t-test was used to compare means between KO andWTB6, and
between Tg andWTF1. Normality and homogeneity of variance assumptions were not violated in any experimental group (p� 0.05). Group sizes were n = 4.
Data are mean ± SEM.

doi:10.1371/journal.pone.0159657.g002
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mice showing overall structure of growth plate (measured from resting zone to primary spon-
giosa) in 8 week old mice were not significantly altered. The length of the total growth plate in
proximal tibias was not altered in KO and Tg mice compared with their WT mice. Further-
more, proliferative (K), hypertrophic (L) and resting zones (M) expressed as a percentage of
total growth plate were not significantly different.

Timp-3 deficiency and transgenic chondrocyte-specific overexpression
produce gross changes in tibial anatomy
To determine whether Timp-3 KO and Tg mice also show modified cortical tibial bone archi-
tecture we undertook whole-bone analysis (Fig 3A). We found that genotype (Timp-3 defi-
ciency or overexpression) was a significant determinant of bone cross-sectional area (CSA; Fig
3C), producing lower bone CSA in Timp-3 KO and Tg mice compared with WTB6 and WTF1

mice, respectively along the entire tibia length (Fig 3C). We found that genotype also contrib-
uted significantly to cortical thickness (Fig 3D), with Timp-3 KOmice exhibiting lower thick-
ness than WTB6 mice. Reduction in cortical thickness, albeit less marked, was also observed in
Timp-3 Tg mice particularly towards the distal tibia (Fig 3C). We also observed differing pat-
terns of thickness along the length of the tibial shaft in WTB6 and WTF1 mice.

To provide an estimate of tibial resistance to bending forces, we calculated second moment
of area around minor (Imin) and major axes (Imax). This showed that the overall effect of geno-
type on Imin was most pronounced in Timp-3 KO distal to the mid-shaft (Fig 4A) with a lack of
marked proximal tibia modification (Fig 4A). Transgenic Timp-3 overexpression also, surpris-
ingly, produced lower Imin along the tibial shaft (Fig 4A). Imax was lower along almost the entire
tibia of Timp-3 KO and in Tg mice (Fig 4B). Tibial ellipticity was also modified by genotype
(Fig 4C), with several locations along the tibia showing greater ellipticity in Timp-3 KO, but
not Timp-3 Tg mice compared to WT mice (Fig 4C). Predicted tibial resistance to torsion is
lower in both KO and surprisingly in Tg mice than in their corresponding WTmice (Fig 4D).
Our data indicate that both Timp-3 deficiency and chondrocyte-driven Timp-3 overexpression
produce deficits in cortical bone mass, however only the former also produces statically signifi-
cant additional changes in cortical bone shape; some changes in shape might occur in Tgmice
but these are not significant. Consequences of these modifications are decreases in predicted
bone strength in both Timp-3 KO and Timp-3 Tg mice, despite the targeting of Timp-3 overex-
pression via a chondrocyte-specific promoter.

Timp-3 deficiency results in increased osteoclast number and TRAP
staining
To determine whether Timp-3 deficiency and/or transgenic overexpression alter bone resorp-
tion, we performed TRAP staining in tibial sections and measured bone resorption indices.
Our data show that Timp-3 deficiency produces significantly higher number of osteoclasts in
both trabecular (p� 0.01; Fig 5Q) and cortical compartments (not quantified) compared with

Fig 3. Timp-3 deficiency and transgenic chondrocyte-specific overexpression produce gross changes in
cortical bone. (A) Representative 3D Micro-CT colour-coded images of tibial cortical bone thickness. (B) Comparable
cross-sectional reconstructed 2D images along the length of the tibia. (C) Bone cross sectional area (CSA) and (D)
mean cortical thickness of WTB6 (black), Timp-3 KO (grey), WTF1 (dark red) and Timp-3 Tg (light red) tibia at 8 weeks
of age. Whole bone analyses of cortical bone between 15–75% of total tibial length, excluding proximal and distal
metaphyseal bone. Line graphs represent means ± SEM. Group sizes were n = 5 for WT littermates and n = 6 for KO
and Tg mice. Two-sample t-test was used to compare means between KO andWTB6, and between Tg andWTF1.
Graphical heat map summarises statistical differences at specific matched locations along the tibial length,
representation of the overall effect of genotype and post-hoc analysis are also shown. Red p�0.000–0.001, yellow
p�0.001–0.01, green p�0.01–0.05 and blue p� 0.05.

doi:10.1371/journal.pone.0159657.g003
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WTB6 mice (Fig 5A–5H) and that, in contrast such increases do not reach levels of statistical
significance in Tg mice compared with WTF1 controls (Fig 5I–5Q). Furthermore, Timp-3 defi-
ciency leads to significant increases in the ratio of osteoclast surface to bone surface as well as
osteoclast number to bone surface (p� 0.01; Fig 5Q), however, changes due to transgenic
expression were not statistically significant. We also measured the number of endosteal osteo-
blasts expressed as a ratio to bone perimeter and lacunar occupancy expressed as a ratio of
bone area and found neither Timp-3 deficiency nor transgenic expression significantly alter
these indices (p� 0.01; Fig 5R).

Timp-3 deficiency and overexpression produce architectural changes in
skull
To explore whether these skeletal effects of Timp-3 deficiency or overexpression were similar
in bones with divergent origins, we compared cranial anatomy of Timp-3 KO and Tg mice to
controls (WTB6 and WTF1 respectively). Eighteen measurements were made to evaluate bones
formed by intramembranous ossification from neural crest cell (nasal, frontal and mandible)
or mesoderm origins (parietal), and those formed by endochondral ossification with either
neural crest (presphenoid) or mesodermal origins (basisphenoid) [47–50]. Landmarks used to
obtain measurements are depicted in Fig 6B–6D. Our data show that Timp-3 deficiency
reduced skull thickness as demonstrated by colour-coded image (Fig 6A). Moreover, Timp-3
deficiency produces shorter overall cranial length (p� 0.01; Fig 6E) without significant effect
on the length or area of any of the contributory, individual intramembranously-formed skull
bones with neural crest (nasal and frontal) or mesoderm (parietal) origins. No such significant
modification in overall cranial length was apparent in the Timp-3 Tg mice (Fig 6E).

Timp-3 KOmice also showed significantly smaller mandible plain and, in accord with our
hypothesis concerning opposite effects of Tg overexpression, this skull region showed a corre-
sponding expansion in Timp-3 Tg mice (Fig 6E; p� 0.05 and p� 0.01 respectively). Timp-3
deficiency also affected other mandibular landmarks (condylar and inferior incisor axis and
anterior mandible height; Table 2; p� 0.05); Timp-3 Tg mice showed no significant effects on
the mandible. Effects of Timp-3 deficiency were similar in the endochondrally-derived basi-
sphenoid bone from mesoderm origins (Fig 6E; p< 0.001). The presphenoid bone (endochon-
dral–neural crest) was however only affected in Timp-3 KOmice (Fig 6E; p< 0.05). Together,
these data show that Timp-3 deficiency affects skull bones formed by both endochondral and
intramembranous mechanisms whether they are derived from neural crest or mesodermal ori-
gins. As predicted, and in apparent contrast to its effects in long bones, Timp-3 Tg overexpres-
sion via a chondrocyte-specific promoter produces far more restricted but, only ever, opposite
effects.

Discussion
MMPs are important regulators of skeletal homeostasis and thus understanding how their
endogenous regulators affect bone mass and architecture will provide novel insights. We have
used Micro-CT to assess bone mass and architecture as well as histological and histochemical

Fig 4. Timp-3 deficiency and transgenic chondrocyte-specific overexpression produce gross changes in tibial geometry. (A) Minimum and (B)
maximum second moments of area (Imin and Imax respectively), (C) ellipticity and J (D; resistance to torsion) of WTB6 (black), Timp-3 KO (grey), WTF1 (dark
red) and Timp-3 Tg (light red) tibia at 8 weeks of age. Whole bone analyses of cortical bone between 15–75% of total tibial length, excluding proximal and
distal metaphyseal bone. Two-sample t-test was used to compare means between KO andWTB6, and between Tg andWTF1. Line graphs represent
means ± SEM. Group sizes were n = 5 for WT littermates and n = 6 for KO and Tg mice. Graphical heat map summarises statistical differences at specific
matched locations along the tibial length, representative of overall effect of genotype and post-hoc analysis are also shown. Red p�0.000–0.001, yellow
p�0.001–0.01, green p�0.01–0.05 and blue p� 0.05.

doi:10.1371/journal.pone.0159657.g004
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evaluation to characterise the bone phenotype of Timp-3 KOmice, complemented by similar
examination in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to
specifically target overexpression to chondrocytes. We have used these mice to address three
questions: i) how does Timp-3 deficiency modify tibial bone mass and architecture, ii) to what
extent does cartilage-specific Timp-3 overexpression produce opposite effects, and iii) can
examination of particular skull bones, with well-established differences in developmental ori-
gins and distinct mechanisms of formation, help to identify the functions of Timp-3 in bone.

Our detailed analyses reveal that Timp-3 deficiency and, less so, Tg overexpression generate
defects in tibial trabecular structure and compromise cortical bone along the entire shaft.
These observed alterations in cortical mass are predicted to significantly compromise tibial
load-bearing resistance to torsion in both genotypes. Based on previous studies using MMP
knockout mice, we predicted that Timp-3 deficiency would compromise bone mass and struc-
ture, and perhaps bone mineral density. For example, MMP-13 has been shown to act as a neg-
ative regulator of bone formation and promoter of bone resorption [28, 51, 52]. In the skeleton,
MMP-13 is expressed in hypertrophic chondrocytes and in osteoblasts during development,
and in remodelling bone postnatally [28, 53] and is thus a likely target for TIMP-3. MMP-13
KO mice exhibit increases in trabecular volume/total bone volume, trabecular number and tra-
becular thickness, and decreases in trabecular separation. Our findings showing opposite archi-
tectural changes in Timp-3 KOmice are therefore consistent with the proposed role of Timp-3
as a suppressor of MMP-13. We speculate that the compromised bone in Timp-3 deficient
mice is the result of decreased bone formation and increased resorption and does not involve
any intermediary cartilage-mediated contributions [3]. Alternatively, Timp-3 KOmay acceler-
ate osteoblast proliferation and differentiation, thereby depleting the available stem cell pool
and compromised bone remodelling [29, 54]. Our examination by TRAP staining shows that
Timp-3 KOmice show marked elevation of osteoclast numbers and CT reveals that this is
accompanied by decreases in bone mineral density, that appear to provide some mechanistic
basis for the observed decreases in bone mass in these mice. These data indicate that Timp-3
contributes to the attainment of functionally-appropriate tibial bone mass and architecture
that is likely achieved via regulation of osteoclast numbers/function.

Failure to identify similar marked increases in osteoclast numbers or decreases in bone min-
eral density in Tg mice pinpoint a need to define the mechanisms by which decreased bone
mass is achieved. Bone mass and architectural changes observed in Tg mice were indeed, in
contrast, somewhat unexpected. We found there to be deleterious effects on long bones,
derived endochondrally, as well as some changes in bones of the skull derived via intramem-
branous ossification. Our use of mice harbouring a Col2a1 promoter-driven transgene was
selected to target Timp-3 overexpression to cartilage and, thus, we had predicted that the effects
on bone mass and architecture may be restricted to only bones formed via endochondral ossifi-
cation, and that these effects would be opposite to those observed in Timp-3 KOmice. This
impact would likely be via incorporation of TIMP-3 into the cartilage template for bone

Fig 5. Timp-3 deficiency and transgenic chondrocyte-specific overexpression increase trabecular
TRAP staining.Representative images of TRAP stained sections fromWTB6 (A-D), KO (E-H), WTF1 (I-L)
and Tg (M-P) mice demonstrating TRAP activity in growth plate, trabecular and cortical bone. Staining show
that TRAP activity is significantly higher in KO and Tg sections compared with their WT groups. (Q) TRAP
activity was quantified to produce osteoclast surface/bone surface and osteoclast number/bone surface.
Two-sample t-test was used to compare means between KO andWTB6, and between Tg andWTF1.
Normality of variance assumption were not violated for any experimental group. Homogeneity of variance
osteoclast surface/bone surface between KO andWTB6 was violated (p >0.05) and thus for these groups
Kruskal-Wallis test was performed. Group sizes were n = 4. Data are mean ± SEM. Statistical comparisons:
* denotes p� 0.05.

doi:10.1371/journal.pone.0159657.g005
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formation at greater levels than in WTmice, with downstream indirect effects on osteoblast
and osteoclast function. Our findings are also in disagreement with data by Shen et al., (2010)
in which an increased trabecular bone volume observed in Tg mice in which hematopoietic
stem cells were retrovirally transduced with human TIMP-3. It is possible that differences in
the targeting of Timp-3 in these two transgenic mouse models to either hematopoietic stem
cells or chondrocytes may underlie the differences in phenotypes observed. We have used a col-
lagen type II promoter, thus, deleterious phenotype observed in Tg mice may also indicate that
collagen type II is expressed at some stages in bone cells and that its overexpression leads to a
dose-dependent effect resulting in a compromised bone structure. This is supported by a num-
ber of previous [55–63] and more recent studies [32, 34, 64, 65] challenging current dogma,
showing that hypertrophic chondrocytes can transdifferentiate into osteoblasts during endo-
chondral bone formation. This may lead to continued expression of collagen type II and conse-
quently Timp-3, resulting in inhibition of osteoblast differentiation [66]. Our data revealing no
changes in endosteal osteoblast number or osteocyte lacunar occupancy in either Timp-3 KO
or Tg mouse tibial cortices suggest that any cells making such hypertrophic chondrocyte-to-
osteoblast transition do not confer changes in osteoblast behaviour.

Fig 6. Timp-3 deficiency and overexpression produce architectural changes in the skull.Craniometric
measurements of WTB6, Timp-3 KO,WTF1 and Timp-3 Tg skull at 8 weeks of age. (A) Representative 3D
Micro-CT colour-coded images of skull thickness. (B) Schematic of the structures of the mouse skull depicting
landmarks used to obtain measurements in the cranial; 1–2: nasal length, 2–3: frontal length, 3–4: parietal
length, 1–5: cranial length, 6–6: bitemporal distance, (C) 7–8: posterior mandible height, 7–9: condilar axis,
7–11: effective mandible length, 8–11: mandible plain, 9–10: mandible axis, 11–12: inferior incisor axis, 13–13:
(D) anterior mandible height, 14–14: basisphenoid length, and 15–15: presphenoid length in which the ‘shell’
regions of the bone that correspond to plane of sectioning are coloured in red. (E) Cranial length, mandible
plain, presphenoid and basisphenoid length. Box-plots represent means ± SEM. Group sizes were n = 5.
Statistical comparisons: * denotes p� 0.05.

doi:10.1371/journal.pone.0159657.g006

Table 2. Craniometric measurements representing skull parameters of WTB6, KO, WTF1 and Tgmice at 8 weeks of age.

Craniometric measurements WTB6 KO P value WTF1 Tg P value

n = 5 n = 5 WTB6 vs KO n = 5 n = 5 WTF1 vs Tg

Intramembranous (neural crest)

Internasal distance (mm) 3.32 ± 0.02 3.42 ± 0.04 NS 3.29 ± 0.07 3.49 ± 0.04 NS

Nasal length (mm) 5.38 ± 0.08 5.19 ± 0.16 NS 5.65 ± 0.21 5.42 ± 0.15 NS

Nasal area (mm2) 9.35 ± 0.33 9.71 ± 0.50 NS 10.67 ± 0.64 9.77 ± 0.52 NS

Frontal length (mm) 7.09 ± 0.20 7.01 ± 0.13 NS 7.18 ± 0.09 6.75 ± 0.16 NS

Frontal area (mm2) 25.62 ± 1.42 27.86 ± 1.25 NS 28.70 ± 0.92 25.72 ± 1.11 NS

Intramembranous (mesoderm)

Bitemporal distance (mm) 8.78 ± 0.05 8.49 ± 0.11 NS 8.54 ± 0.15 8.60 ± 0.09 NS

Parietal length (mm) 4.07 ± 0.11 4.09 ± 0.09 NS 3.84 ± 0.06 3.81 ± 0.08 NS

Parietal area (mm2) 39.36 ± 2.10 36.93 ± 1.56 NS 34.93 ± 0.66 38.09 ± 1.30 NS

Mandible, intramembranous (neural crest)

Effective mandible length (mm) 11.90 ± 0.07 11.78 ± 0.07 NS 11.41 ± 0.22 11.69 ± 0.14 NS

Mandible axis (mm) 2.64 ± 0.10 2.76 ± 0.06 NS 2.15 ± 0.03 2.34 ± 0.79 NS

Condilar axis 5.76 ± 0.04 6.31 ± 0.18 <0.05 5.70 ± 0.08 5.84 ± 0.05 NS

Inferior incisor axis (mm) 4.34 ± 0.12 3.72 ± 0.11 <0.05 3.74 ± 0.02 3.73 ± 0.08 NS

Anterior mandible height (mm) 2.39 ± 0.01 2.59 ± 0.03 <0.05 2.37 ± 0.45 2.29 ± 0.06 NS

Posterior mandible height (mm) 3.98 ± 0.16 3.58 ± 0.11 NS 3.23 ± 0.07 3.46 ± 0.11 NS

Two-sample t-test was used to compare means between KO andWTB6, and between Tg and WTF1. Normality and homogeneity of variance assumptions

were not violated in any experimental group (p � 0.05). Data represent means ± SEM. Statistical comparisons: p� 0.05.

doi:10.1371/journal.pone.0159657.t002
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This possibility is, however, inconsistent with our findings in intramembranous bones of
the skull where Tg show a clear phenotype. Examination of different skull bones from different
developmental origins revealed that Timp-3 affects bones from both endochondral and intra-
membranous derived processes [67]. We found that Timp-3 deficiency leads to reduction in
length in 7 structures developed both from endochondral and intramembranous ossification,
whereas, Timp-3 overexpression leads to increased length of two structures developed from
both endochondral and intramembranous ossification. These observations suggest a direct
bone specific role for Timp-3 in craniofacial development. Our data showing that the zonal
organisation and size of the growth plate in both 8 week old Timp-3 KO and Tg mice is not
modified, suggest that their defective bone phenotypes do not result from any global effect on
endochondral ossification. The exact mechanisms underpinning the effects of Timp-3 defi-
ciency or overexpression are yet to be fully resolved however our data clearly demonstrate that
Timp-3 regulates bone mass and architecture in vivo and suggests that TIMP-3 could be a tar-
get for modulation of bone mass and architecture.
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