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ABSTRACT 3 

In this study, the likelihood of introduction of anisakid larvae in Atlantic salmon (Salmo salar) farms and subsequent 4 

commercialization of fish infected by at least one vital parasite was formally assessed using an adaptation of the risk 5 

assessment framework for importation of animals and animal products of the World Organization for Animal Health (OIE). 6 

The different plausible pathways were identified and outlined. The most recent information concerning the parasite, its 7 

definitive, intermediate hosts and the farming practices typical of Atlantic salmon farms were reviewed and used to assess 8 

the likelihoods of each key step along the pathways. A matrix for the conditional probabilities was adopted to combine 9 

the qualitative estimations and obtain an objective and transparent overall risk of introduction along each route. In order 10 

to avoid misinterpretation and overconfidence on the outcome, the uncertainties surrounding the estimations were 11 

considered. The only situation for which the assessed risk in a typical Atlantic salmon farm was deemed to be non-12 

negligible involved the ingestion of infected hosts that penetrate the harvesting cages. In this event, the overall risk was 13 

estimated as ‘Very Low’ with a high degree of uncertainty because of the scarcity of information in some of the key steps 14 

along the pathway. However, the scientific evidence in support of the overall estimation suggests that the availability of 15 

additional data would be unlikely to increase the final estimated risk. On the basis of the available information of the 16 

system, the estimated risk of introduction and commercialization of farmed Atlantic salmons infected by viable 17 

nematodes resulted ‘Very Low’ even under a conservative approach. The proposed qualitative model is an objective and 18 

transparent method to assess the risk when data and information are scarce and provides a framework for the qualitative 19 

assessment of the introduction of alive parasites in aquaculture/mariculture implants and subsequent commercialization 20 

of infested fishery products. The framework could be easily adapted to other parasite-host interactions besides anisakid 21 

nematodes in Farmed Atlantic salmons. 22 

 23 

 24 

 25 

 26 

 27 

 28 
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1. INTRODUCTION 29 

Fish-borne parasitic zoonoses represent a global emergent threat, among these, anisakidosis has shown  widespread 30 

expansion in the last two decades (Chai, Darwin Murrell, & Lymbery, 2005). The family Anisakidae includes zoonotic 31 

parasitic nematodes among which, the species belonging to the genera Anisakis and Pseudoterranova are the most 32 

commonly associated with infection in humans due to consumption of raw or undercooked fishery products. As a result 33 

of their impact on the commercial value of fishery products and on public health, anisakids have become an important 34 

economic and a public health concern worldwide (M. T. Audicana & Kennedy, 2008; Bouree, Paugam, & Petithory, 1995; 35 

EFSA, 2010; Skirnisson, 2006). 36 

The life cycle of Anisakidae of zoonotic interest is completed in seawaters and involves marine mammals (cetaceans and 37 

pinnipeds) and piscivorous birds as definitive hosts. In natural conditions, the predation of infected fish leads to 38 

bioaccumulation along the predation chain resulting in the risk of infection being higher in top predator fish species 39 

(Strømnes & Andersen, 2003a) which as a result pose a higher risk for human health. 40 

In order to prevent and control transmission of fishery product-borne parasites, the Section VIII of Annex III to Regulation 41 

(EC) No 853/2004 lays down provisions for fishery products to be consumed raw or almost raw. The Regulation indicates 42 

that fishery products intended to be eaten after a process that is not sufficient to inactivate nematode larvae must be 43 

frozen at a temperature of not more than -20°C in all parts of the product for not less than 24 hours. 44 

In April 2010, the European Food Safety Authority (EFSA) published a scientific Opinion on risk assessment of parasites in 45 

fishery products (EFSA, 2010) providing criteria for determining the conditions under which fishery products from 46 

aquaculture can be recognized as being free of viable parasites that may represent a hazard for human health. With 47 

particular reference to farmed Atlantic salmon (Salmo salar), the Opinion concluded that farmed Atlantic salmons reared 48 

in floating cages or onshore tanks and fed with compound feedstuffs are unlikely to contain live parasite. However, the 49 

Panel on Biological Hazards did not considered routes of infection other than the feed and the risk was never assessed 50 

formally. 51 

Following that Opinion, in 2011, the Regulation (EC) No 1276/2011 modified the requirements set out in Annex III, Section 52 

VIII, Chapter III, Part D of Regulation (EC) No 853/2004 allowing food business operators to not apply freezing treatment 53 

if procedures approved by the competent authority are used to verify that the product does not represent a health hazard 54 

with respect to viable parasites. 55 
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In the present study, the general approach recommended by the World Organization for Animal Health (OIE) for the 56 

assessment of the risk posed by the importation of live animal and animal products (OIE, 2010) was adapted to formally 57 

investigate the potential for live zoonotic nematodes to represent a risk for human health in farmed Atlantic salmon.  58 

2. MATERIALS AND METHODS 59 

For purpose of this study, the approach proposed by the OIE for the assessment of risks associated with the importation 60 

of animals or animal products (OIE, 2010) was adopted. According to the OIE guidelines, the identification of the hazard 61 

precedes the risk assessment, which is composed of three components: (i) Release assessment, (ii) Exposure assessment 62 

and (iii) Consequence assessment. Generally, the final risk estimate is the result of the integration of the three steps but 63 

because of the purpose of this study, the consequences of the commercialization of the infected fish are not considered. 64 

The risk question being assessed was therefore formulated as “what is the likelihood of an Atlantic salmon (Salmo salar) 65 

harvested from a typical farm being infected by at least one nematode of genus Anisakis, and subsequently 66 

commercialized for human consumption”.  67 

The different pathways describing the sequence of sufficient and necessary events leading to the introduction of the 68 

parasite into a fish farm were outlined and the likelihoods of introduction assessed for each pathway considering the 69 

farming practices typical of Atlantic salmon. 70 

Qualitative risk assessment models foresee the use of subjective risk levels to describe the likelihood of unwanted events; 71 

in this work, the qualitative terms proposed by Kahn et al. (S.A.  Kahn et al., 1999a; S.A. Kahn, Wilson, Perera, Hayder, & 72 

S.E., 1999b) were adopted (Table 1). 73 

Table 1 Definition of the qualitative terms used to describe the likelihoods of the necessary events leading to the introduction of anisakid 74 
nematodes into an hypothetical Atlantic salmon farm and commercialization of infested products (after Kahn et al.1999). 75 

Likelihood Decription 

High (H) Expected to occur 

Moderate (M) Occurrence less than 50% probability 

Low (L) Unlikely to occur 

Very low (VL) Rarely occur 

Extremely low (EL) Very rarely occur 

Negligible (N) Chance of occurrence so small that can be ignored 

 76 

The biological and epidemiological characteristics of the parasite, its primary and accidental hosts together with the 77 

biosecurity practices applied in Atlantic salmon’s farms were reviewed and discussed to assign the likelihood at each step 78 

along each identified pathway. Information and evidence included in this assessment were collected from peer-reviewed 79 
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articles and from industry data reported in the environmental public reports published by the main producers of farmed 80 

Atlantic salmon worldwide. In each pathway, the likelihoods assigned to each event were combined to derive the overall 81 

estimate of the risk of introduction of the parasite in farmed salmon and commercialization of infested products. The risk 82 

estimates were expressed as cumulative likelihoods obtained combining the qualitative estimates of the inputs according 83 

to the matrix of conditional probabilities presented in table 2 and previously applied by EFSA and in other qualitative risk 84 

assessments (EFSA, 2007; Peeler & Thrush, 2009). 85 

Table 2 Combination matrix used for the estimation of the conditional likelihoods. The product of two probabilities is always less than 86 
the lowest probability and is sometimes given as a range (e.g. N-EL). However, as explained in the EFSA report, since qualitative terms 87 
cover a wide range of likelihoods, the combined estimate is, in some cases, equal to the lower estimate (e.g. a step ‘n’ with an estimate 88 
of VL with a step ‘n+1’ with an estimate of EL produces and an overall estimate of N-EL). 89 

 Likelihood step 'n+1' Conditional likelihood step ‘n’ 

 N EL VL L M H 

H N EL VL L M M 

M N EL VL VL L M 

L N EL EL VL VL L 

VL N N-VL EL EL VL VL 

EL N N N-EL EL EL EL 

N N N N N N N 

 90 

This matrix defines a likelihood estimate for any binary combination of conditional events. If two or more independent 91 

risk factors contributed to the likelihood estimation for a single step, the likelihoods for each factors were estimated and 92 

the same matrix for the conditional probabilities was used to outline the overall likelihood for the step. 93 

In order to avoid overconfidence on the outcomes and prevent misinterpretation, an assessment of the uncertainty 94 

surrounding each estimation was also carried out (Table 3), and expressed as: High, (H) Moderate (M) or Low (L). 95 

Table 3 Definition of the qualitative terms used to define the levels of uncertainty surrounding the likelihoods assigned to the steps along 96 
the pathways. 97 

Uncertainty Interpretation 

Low (L) 
The estimation is strongly supported by data-evidence. 

Agreement by different authors 

Medium (M) 

The estimation is supported by few or incomplete data.  

Some authors report slightly different conclusions 

to others 

High (H) 

The estimation is supported only by scarce data or it is 

based on hypotheses not yet proved.  

Strong disagreement from different authors 

With respect to the uncertainties, the worst estimate was conservatively considered among the risk factors and along the 98 

steps of the pathways; in this way, a high uncertainty in one level is enough to lead to a high uncertainty in the overall 99 
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outcome. An exception was made if the occurrence of the event in step n+1 is Negligible with Low uncertainty. 100 

2.1 Hazard identification and characterization.  101 

The different species belonging to genera Anisakis and Pseudoterranova are not reliably distinguishable morphologically 102 

but several species have been identified at molecular level (S. Mattiucci et al., 1997; Simonetta Mattiucci et al., 2005; 103 

Paggi et al., 2000; Paggi et al., 1991). The morphospecies most commonly associated to human infection are: 104 

(i) Anisakis simplex, worm-like parasite, with larvae usually measuring 1 - 3cm length, thin, characterized by a 105 

pinkish-white colour. It usually appears rolled up on itself. Larvae are normally localized in the viscera where 106 

they are generally easily visible but can migrate into the muscle or the abdominal wall where the parasite is 107 

more difficult to identify, especially in white fish (EFSA, 2007); 108 

(ii)  Pseudoterranova decipiens, worm-like parasite, larvae usually measuring 1 - 4cm length and characterized 109 

by a reddish-brown colour it tends to present a large-rolled coil. In infested specimens it is usually located 110 

at muscular level (McClelland, 2002). 111 

The life cycle of the species belonging to genus Anisakis takes place in seawater and proceeds in several steps. In the first 112 

step, eggs, are released in seawater with the faeces of the definitive hosts (mainly cetaceans such as whales, dolphins 113 

and porpoises); in marine environment they develop to second stage larva and hatched in seawater (Anderson, 2000; 114 

Køie, Berland, & Burt, 1995; McClelland, 2002; Smith & Wootten, 1978). 115 

Newly hatched larvae can survive in marine environment for weeks and be eaten by a wide range of different 116 

intermediate hosts (crustaceans and molluscs) where they develop to third stage larvae (L3). When fish or cephalopods 117 

eat intermediate infected hosts, the L3 migrates to the coelomic cavity of the predator, which acts as paratenic  host 118 

since the parasite does not further develop. Paratenic hosts can acquire larvae by ingesting intermediate and paratenic 119 

hosts  leading to  bioaccumulation along the predation chain; consequently, big and/or old fish and at the top of food 120 

chain may host even thousands of nematodes (Smith & Wootten, 1978). Humans act as accidental hosts when they eat 121 

undercooked infected fish or squid. 122 

The larval stages and the biological cycle of Pseudoterranova spp. do not differ from the ones described for Anisakis spp. 123 

even though the definitive hosts are usually pinnipeds like sea lions or seals instead of cetaceans. Moreover, larvae of 124 

Pseudoterranova.spp, do not have cuticular sheaths with lateral extremities that increase the buoyancy, thus, conversely 125 

to larvae of Anisakis spp., are not able to swim (Palm, 1999). 126 

Although the dynamics underlying the geographical distributions of the most important intermediate and paratenic hosts 127 
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of Anisakis spp. and Pseudoterranova spp. are complex and still largely unknown (EFSA, 2010), considering the differences 128 

in the habitat of the hosts involved; it is generally recognized that Anisakis spp. have an essentially pelagic life-cycle, 129 

whereas Pseudoterranova spp. have a more benthic habit. Consequently, with particular reference to the Atlantic salmon, 130 

parasites belonging to the genus Anisakis spp. represent a greater concern than Pseudoterranova spp. (Wootten, Yoon, 131 

& Bron, 2010). 132 

Following these considerations, nematodes of genus Anisakis were formally identified as the hazard of interest while 133 

Pseudoterranova spp. is not considered further. 134 

2.1.1. Hazard characterization Anisakis spp. – Prevalences.  135 

The prevalences of the parasite in different wild fishes and data related to the occurrence of the different species of 136 

genus Anisakis in infected fish show high variability according to both geographical region and hosts species (EFSA, 2010; 137 

Mladineo & Poljak, 2014; Piras et al., 2014; Karl Marx A. Quiazon, Tomoyoshi Yoshinaga, & Kazuo Ogawa, 2011). The 138 

complexity of the dynamics of infection leading to different proportions of the parasite’s species in different hosts and in 139 

different areas led to the cautionary conclusion that none of the fishing areas worldwide should be considered as Anisakis-140 

free, and thus, all the wild saltwater fishery products must be considered potentially infested (EFSA, 2010). For this 141 

reason, geographical heterogeneities were not considered in this assessment. 142 

2.1.2.  Hazard characterization Anisakis spp. – Pathogenesis. 143 

In humans, the accidental ingestion of live nematodes belonging to the family of Anisakidae, causes parasitic zoonosis 144 

known as anisakidosis or anisakiasis, described for the first time in 1960 by Van Thiel (Van Thiel, Kuipers, & Roskam, 1960). 145 

The minimum infectious dose is a single nematode (A. Daschner, Alonso-Gomez, Cabanas, Suarez-de-Parga, & Lopez-146 

Serrano, 2000; FDA, 2012). After ingestion, viable larvae may be excreted with the faeces after up to 48 hours with the 147 

faeces, or result in the acute form of anisakidosis, the most frequently observed form, characterized by violent abdominal 148 

pain, nausea and vomiting due to the larval inflammation of the intestinal mucosa. (Asaishi, Nishino, Totsuka, Hayasaka, 149 

& Suzuki, 1980; Sakanari & McKerrow, 1989; Sugimachi, Inokuchi, Ooiwa, Fujino, & Ishii, 1985). The acute form might 150 

degenerate into chronic if misdiagnosed or untreated. In the chronic form, the larvae penetrate the gastrointestinal 151 

mucosa, causing the formation of granulomas with eosinophilic infiltrate and even abscesses. Granulomas and the 152 

inflammation process remain even after the death of the worm that in the human body usually happens 3 weeks after 153 

ingestion. Complications have rarely been reported in the literature and include a few episodes involving intestinal 154 

obstruction (Sasaki, Fukumori, Matsumoto, Ohmori, & Yamamoto, 2003), colic intussusception (Furukawa et al., 2014; 155 
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Yorimitsu et al., 2013) and pneumoperitoneum (Ito et al., 2007). Moreover, the consumption of fish harbouring dead 156 

Anisakis spp. larvae has been reported to be potentially dangerous because of possible  allergenic reactions (M. a. T. 157 

Audicana, Ansotegui, de Corres, & Kennedy, 2002). 158 

2.2 Release and Exposure assessment for the Introduction of Anisakis spp into an Atlantic salmon farm 159 

The risk of the introduction of Anisakis spp. into an Atlantic salmon farm was assessed considering five pathways: 160 

1. Introduction through juveniles of wild Atlantic salmon captured for farm production  161 

2. Introduction through feed contaminated with viable Anisakis spp. larvae 162 

3. Introduction through wild salmon that have accidentally entered the floating cages 163 

4. Introduction through escaped salmon that have been infected offshore re-entering the cages.  164 

5. Introduction through the ingestion of infected hosts 165 

For each pathway the sequence of sufficient and necessary events leading to the release of the parasite into a generic 166 

farm were identified and are outlined in figures 2-5. 167 

2.2.1 Pathway 1: Introduction through juveniles of wild Atlantic salmon captured for farm production  168 

The occurrence of anisakid larvae in wild salmon is known to be high and above 70% (EFSA, 2010; FDA, 2015), therefore, 169 

the harvest of wild animals could represent an important pathway for the commercialization of risky products. However, 170 

unlike the farming methods applied for other species (i.e. Cod or Eels), the production cycle of Atlantic salmon is totally 171 

closed and the capture of juveniles does not occur. This pathway was not further explored. 172 

2.2.2 Pathway 2: Introduction through feed contaminated with viable Anisakis spp. larvae 173 

The likelihood of the introduction of the parasite into a hypothetical farm trough the feed depends on: (i) the source and 174 

the nature of the raw material and (ii) the thermal/physical treatments to which raw material has been subjected. 175 

The scenario trees outlined in Figure 1 represent the pathways leading to the introduction of the parasite into a generic 176 

farm by feed. Both the use of live feed (A) and treated feed (B) were considered. 177 

 178 

 179 

 180 
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Figure 1. Pathway nr.2; flowcharts outlining the required steps for the introduction of Anisakis spp. into a hypothetical farm through 181 
feed. Both live food (pathway A) and feed were considered (pathway B).  182 

 183 

 184 

 185 

The use of live feed would lead to an evident risk of introduction of the parasite (Wootten & Smith, 1975), however, the 186 

farming of the Atlantic salmon foresees the use of heat-treated feed only; therefore, the pathway A was not considered. 187 

Moreover, since farmed salmon are fed with composite feed which includes wild species like herring (Clupea harengus), 188 

capelin (Mallotus villosus), Chilean anchovies (Engraulis ringens) etc., the first step of pathways B was considered as an 189 

event that always occurs, and its likelihood was not included in the assessment. 190 

Step 2. Considering the wide range of intermediate/paratenic hosts species to which Anisakis spp. have adapted (EFSA, 191 

2010; Klimpel, Palm, Rückert, & Piatkowski, 2004), together with the variability and the uncertainty underlying the 192 

presence of the parasite in wild species (Section 2.2.1); the likelihood of Anisakis spp. being present in wild species used 193 

as raw material for the farmed salmon feed is considered High with Low uncertainty. 194 

Step 3. Farmed salmon are fed with dry pellet produced by extrusion and temperature above 150°C. The likelihood of 195 

parasite surviving the treatment is Negligible with Low uncertainty. 196 
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Step 4. Following the  processing treatments at feed mill, the next hypothetical step is the consumption of feed containing 197 

viable larvae. The conservative likelihood assigned to this step is High with Low uncertainty. 198 

Step 5. At this stage, the combined likelihood of the parasite migrating (intra-vitam and/or post-mortem) from the 199 

coelomic cavity to edible muscles and not being removed during the process of threading is assessed. 200 

The intra-vitam migration of the parasite is not a certain event and the frequency distributions of anisakid third stage 201 

larvae in hosts’ tissues are believed to be affected by a number of conditions encountered within the hosts themselves 202 

(Strømnes & Andersen, 1998) among which, the lipid content is believed to play an important role (Strømnes, 2014; 203 

Strømnes & Andersen, 2003b). 204 

Several recent studies reported the presence of anisakid nematode larvae in muscles surrounding the body cavity of 205 

freshly caught salmonids (Karl, Baumann, Ostermeyer, Kuhn, & Klimpel, 2011; Senos, Poppe, Hansen, & Mo, 2013; 206 

Setyobudi, Jeon, Lee, Seong, & Kim, 2011; Urawa & Fujisaki, 2006) or sibling species (Karl Marx A Quiazon, Tomoyoshi 207 

Yoshinaga, & Kazuo Ogawa, 2011) indicating that the intra-vitam migration of the parasite is an event that it is likely to 208 

occur in salmonids. Following these considerations, the estimated likelihood of parasite intra-vitam migration from the 209 

coelomic cavity is considered to be High, with Low uncertainty. 210 

The post-mortem migration of the parasite from the viscera to flesh is still a debated topic, the scientific opinion from the 211 

Panel on Biological Hazards (EFSA, 2010) reported: “… based on scientific evidence it is not clear when, under what 212 

conditions and in which fish species, post-mortem migration of Anisakis simplex larvae occurs …”. However, factors 213 

stimulating the migration of the parasite after the death of the host are presumably related to physico-chemical changes 214 

in viscera (Smith & Wootten, 1975) and time-temperature storage conditions (Chen, Cheng, Grabner, Chang, & Shih, 215 

2014; Cipriani et al., 2015). At this respect, it should be considered that opposite to wild salmons, reared fishes are 216 

processed immediately after collection from the floating cages; consequently, the likelihood of post-mortem migration in 217 

farmed Atlantic salmon is considered as Negligible with Low uncertainty. The worst scenario (intra-vitam migration) was 218 

conservatively considered in this step. 219 

2.2.3 Pathway 3: Introduction through wild salmons that have accidentally entered the floating cages 220 

The pathway leading to the introduction of Anisakis spp. by the accidental entry of wild salmons into the floating cages is 221 

outlined in Figure 2. 222 

 223 



11 

 

Figure 2 Pathway nr.3; flowchart outlining the required steps for the introduction of Anisakis spp. into a hypothetical Atlantic salmon 224 
farm and commercialization of infested products by accidental entry of wild salmons in floating cages.  225 

 226 

 227 

Step 1. As mentioned in section 2.2.1. The occurrence of Anisakis in wild salmon is known to be high; however, although 228 

the presence of wild salmons in the areas surrounding the salmon farms cannot be excluded, a low density of wild salmon 229 

is usually recorded in the areas bordering the mariculture implants (Ford & Myers, 2008; Frazer, 2009). From these 230 

evidence, the estimated likelihood of wild salmons being present in the area surrounding the farm is Low whilst the 231 

likelihood of wild salmon being infected if present is High; consequently, the combined likelihood for the presence of 232 

infected wild salmons in the area surrounding the farms is Low. Because of the scarcity of available data to assess the 233 

salmon distribution variability across the geographical areas, the level of uncertainty was considered Medium for the first 234 

condition and Low for the second one leading to an overall conservative Medium level of uncertainty for this step. 235 

Step 2. Atlantic salmons are grown to marketable size in floating nets offshore; the possibility for a wild salmon to 236 

penetrate the harvesting nets and to mingle with the reared salmons is linked to the presence of a hole in the floating 237 

cages. However, the firsts consequences of a hole in a floating net would be the escape of the raised fish, with obvious 238 

economical loss and huge environmental consequences (Crozier, 1993; Fraser, Cook, Eddington, Bentzen, & Hutchings, 239 

2008; Gausen & Moen, 1991; Thorstad et al., 2008); consequently, it is of industry interest to apply all the biosecurity 240 

measures aimed to prevent/avoid the escape of the reared fishes, and indirectly, the introduction of wild animals. At this 241 

respect, the major food business operators in salmon harvesting invest many resources to pursue the so-called ‘zero 242 
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escape’ objective and public reports shown how the efforts resulted in a steadily decreasing occurrence of incidents 243 

leading to ‘escape’ events (Lerøy Seafood Group, 2012, 2013, 2014; Marine harvest, 2012, 2013, 2014). 244 

Moreover, incidents resulting in an escapes should not be interpreted as events favouring at the same time the 245 

introduction of wild individuals. In fact, all the reported incidents were one-way oriented in determining the ‘escape’ 246 

without favouring the ‘introduction’ in any way. 247 

In order for an introduction to take place, any breakage in the netting would need to be of a size insufficient to allow a 248 

large-scale release of farmed fish, which would be noticed immediately by the operators on underwater surveillance 249 

cameras. Conversely, this underwater surveillance system reduces the likelihood of ingress of wild salmon to the cages, 250 

since any damage in netting is likely to be relatively small in size.  251 

Following these considerations, the estimated likelihood of the wild salmon accidentally penetrating the floating cages is 252 

Negligible with Low uncertainty. 253 

Step 3. Following the considerations in Section 2.2.2. (Step 5), the estimated likelihood of anisakid larvae migrating in 254 

flesh from the coelomic cavity is High with Low uncertainty. 255 

2.2.4 Pathway 4: Introduction through escaped salmon that have been infected offshore re-entering the cages.  256 

Although the ‘escape’ events are rare (Section 2.2.3, Step 2), the likelihood of the re-introduction of escaped salmon that 257 

have been infected offshore is assessed (Figure 3). 258 
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Figure 3 Pathway nr.4; flowchart outlining the required steps for the introduction of Anisakis spp. into a hypothetical Atlantic 259 
salmon farm and commercialization of infested products by escaped salmon that have been infected offshore re-entering the cages. 260 

 261 

 262 

Step 1. From consideration discussed in Section 2.2.3. (Step 2), the estimated likelihood of farmed Atlantic salmons 263 

escaping in seawaters is Low with Low uncertainty. 264 

Step 2. Anisakis spp. larvae can survive in seawaters for extended periods and be eaten by a wide variety of different 265 

hosts. Although the parasite mainly uses euphausiids (krill) living in deeper water offshore as first intermediate host 266 

(Smith, 1983), the parasite is able to select host species depending on the locality (Klimpel et al., 2004). Therefore, the 267 

estimated likelihood for the presence of infected hosts in the areas bordering the implants is High, with a Low uncertainty. 268 

Since escaped salmons are forced to prey to survive, the estimated likelihood of escaped salmons preying infected hosts 269 

is High with Low uncertainty. 270 

Step 3-4. Estimated likelihoods and uncertainties for these steps are identical to the ones reported in pathway 3. 271 

2.2.5 Pathway 5: Introduction through the ingestion of infected hosts 272 

The pathway leading to the introduction of Anisakis spp. by ingestion of infected hosts is outlined in Figure 4. 273 

 274 
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Figure 4. Pathway nr.4; flowchart outlining the required steps for the introductio. n of Anisakis spp. into a generic farm by ingestion 275 
of infected hosts. 276 

 277 

 278 

 279 

Step 1. Following considerations in Section 2.2.4. (Step 2), the estimated likelihood of infected hosts being present in 280 

areas bordering the implants is High with Low uncertainty. 281 

Step 2. The access of infected hosts to the floating cages is strictly dependent on the size of the hosts themselves. In fact, 282 

while the introduction of large hosts is physically prevented by the meshes’ size, no barriers are applicable to hosts smaller 283 

than the meshes. Thus, the estimated likelihood for this step is Medium, with a High level of uncertainty due to the lack 284 

of information about the occurrence of the different host species (with particular interest in host size) in the area 285 

bordering the implants. 286 

Step 3. In this step, the ingestion of anisakid larvae is linked to the predation of the hosts. Even though farmed salmon 287 

are fed with dry pellet, the results of two recent studies (Marty, 2008; Mo et al., 2014) reported the presence of Anisakis 288 

spp. larvae in runts of farmed Atlantic salmon (Fishes with clear signs of poor performance and/or abnormal appearance, 289 

emaciated and not suitable to be marketed for human consumption), suggesting that farmed salmonids in open cages 290 

may in some cases feed on live food. However, it is important to emphasize that the nematodes were found so far only 291 
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in underweighted or discarded animals and never in salmons processed for human consumption. The authors explained 292 

their findings hypothesizing that in floating cages weak animals undergo competition phenomena that limit their access 293 

to feed and thus, runts must feed with ‘anything’ that can be eaten in order to survive. Based on this evidence, it is 294 

assumed that the likelihood of salmons processed for human consumption (i.e. not classified as ‘runts’) preying live food 295 

to supplement their feed intake is Low. A High uncertainty is cautiously assigned because of the scarcity of data supporting 296 

the assessment. 297 

Step 4. As discussed in Section 2.2.2 (Step 5), the presence of the parasite in infected salmons represents a risk for human 298 

health only if the parasite is not physically removed during the process of threading. According to previous estimations, 299 

the likelihood of the event is High with Low uncertainty. 300 

  301 
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3. RESULTS 302 

The estimated likelihoods and uncertainties for each step combined through the Combination matrix (Table 2) provided 303 

the cumulative likelihoods; these are reported for each of the pathways considered in tables 4-7 with estimated 304 

likelihoods and uncertainties in brackets. 305 

Table 4 Summary of risk estimates for pathway 2: ‘Introduction through feed contaminated with viable Anisakis spp. 306 
larvae’ (H=High, M=Medium, L=low, VL=Very Low, EL= Extremely Low N=Negligible). 307 

Step Description Likelihood (conditional) Uncertainty 

Release assessment 

1 
Intermediate or paratenic hosts are used as raw 

material for the feed 
Certain event  

2 Hosts used as raw material for the feed are infected H L 

3 The parasite survive the treatment in feed mill N (N) L (L) 

Exposure assessment 

4 Survived larvae are ingested // // 

5 
The parasite is not removed during the process of 

threading 
// // 

 308 

Table 5 Summary of risk estimates for pathway 3: ‘Introduction through wild salmon that have accidentally entered the 309 
floating cages’ (H=High, M=Medium, L=low, VL=Very Low, EL= Extremely Low N=Negligible) 310 

Step Description Likelihood (conditional) Uncertainty 

Release assessment 

1 
Wild infected salmons are present in the area 

surrounding the farm 
L M 

Exposure assessment 

2 Infected wild salmon enter the floating cage N (N) L (L) 

3 
The parasite is not removed during the process of 

threading  
// // 

 311 

 312 

 313 
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Table 6 Summary of risk estimates for pathway 4: ‘Introduction through escaped salmon that have been infected offshore 314 
re-entering the cages.’ (H=High, M=Medium, L=low, VL=Very Low, EL= Extremely Low N=Negligible) 315 

Step Description Likelihood (conditional) Uncertainty 

Release assessment 

1 Escape of farmed salmons L L 

2 Escaped salmons prey infected hosts L (H) L (L) 

Exposure assessment 

3 
Escaped salmons get infected and re-enter the floating 

cages 
N (N) L (L) 

4 
The parasite is not removed during the process of 

threading 
// // 

 316 

Table 7 Summary of risk estimates for pathway 5: ‘Introduction through the ingestion of infected hosts’ (H=High, 317 
M=Medium, L=low, VL=Very Low, EL= Extremely Low N=Negligible). 318 

Step Description Likelihood (conditional) Uncertainty 

Release assessment 

1 
Infected hosts are present in the area surrounding the 

farm  
H L 

2 The infected hosts penetrate the floating cages.  L (M) H (H) 

Exposure and establishment assessment 

3 
Infected hosts in floating cages are eaten by high quality 

harvested salmons 
VL (L) H (H) 

4 
The parasite is not removed during the process of 

threading 
VL (H) H (L) 

In pathway 2, having assessed the likelihood for step 3 as Negligible with Low uncertainty, the assessment of the 319 

cumulative likelihood did not continued beyond that stage and for the same reason, the assessment along pathways 3 320 

and 4 did not continue beyond steps 2 and 3 respectively. 321 

4. DISCUSSION  322 

In our study, the estimated cumulative likelihoods defined the risk of introduction of Anisakis spp. into Atlantic salmon 323 

farms (and commercialization of infected products) as Negligible or Very Low depending on the considered pathway. Our 324 



18 

 

formal qualitative estimations agreed with the available scientific evidence (Angot & Brasseur, 1993; EFSA, 2010; 325 

Lunestad, 2003; Skov, Kania, Olsen, Lauridsen, & Buchmann, 2009; Wootten et al., 2010) who generally considered the 326 

presence of vital anisakid larvae in farmed salmon as a very unlikely event. 327 

With respect to the second pathway, our estimation coincides with the conclusions reported by EFSA, (EFSA, 2010) and 328 

the outcome was characterized by a Low level of uncertainty, indicating strong evidence in support of the result. In fact, 329 

to date, there are no evidence or reported cases indicating that nematodes of genus Anisakis spp. are able to survive the 330 

processes at which the raw materials are subjected (Angot & Brasseur, 1993; Bristow & Berland, 1991; Inoue, Oshima, 331 

Hirata, & Kimura, 2000; Lunestad, 2003). Recently, some proteins attributable to Anisakis simplex have been found in 332 

processed fish products (Fæste, Plassen, Løvberg, Moen, & Egaas, 2014), but the risk related to allergic reactions due to 333 

the presence of heat-resistant proteins (Alvaro Daschner, Cuéllar, Sánchez‐Pastor, Pascual, & Martín‐Esteban, 2002; 334 

Pravettoni, Primavesi, & Piantanida, 2012), was beyond the scope of this study. 335 

The cumulative likelihood obtained for the pathway 3 and 4 led to a Negligible risk of introduction and this would not 336 

change even if further evidence led to the revision of the likelihood estimation for the first step of pathway 3, 337 

(characterized by Medium uncertainty), to High. 338 

The cumulative likelihood of the pathway 5 was considered to be Very Low but this outcome was characterized by High 339 

uncertainty. 340 

The route of introduction by ingestion of infected hosts, although characterized by high uncertainty, was the only pathway 341 

leading to an overall estimation of the risk as greater than ‘Negligible’ and our formal findings seem to support the 342 

hypothesis of the authors who recovered larvae of Anisakis simplex from farmed salmons (Marty, 2008; Mo et al., 2014). 343 

Although characterized by a high level of uncertainty (because of the uncertainty in steps 2 and 3), the lack of evidence 344 

found in the literature in support of this route is in agreement with our overall estimate, consequently, it can be 345 

hypothesized that the high uncertainties in steps 2 and 3 are the result of lack of data and that it is unlikely that if further 346 

data become available the estimation would move upward (i.e. greater than ‘Very Low’). 347 

On the basis of the current knowledge of the biology of the system, and the typical practices adopted in the Atlantic 348 

salmon farming, the overall risk of commercialization of product infested by viable larvae appears to be very low despite 349 

the overall conservative approach adopted. 350 

 351 
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Main assumptions and limitations. 352 

As outlined by the hazard identification, the assessment was made considering nematodes belonging to the genus 353 

Anisakis without distinguishing between the different species, thus, similar properties amongst the species of genus 354 

Anisakis were assumed. Moreover, it should be noted that because of the differences in the typical habitat between 355 

Anisakis spp. and Pseudoterranova spp., together with the likelihood of parasite’s migration from the intestine to the 356 

flesh being considered cautiously high with low uncertainty (making the different migration behaviour of the species no 357 

more significant), the results obtained for Anisakis spp. could be reasonably extended to Pseudoterranova spp. 358 

As infected salmons do not die or appear as unhealthy/unfit for human consumption, in the exposure assessment it was 359 

assumed that in the processing line at farm level infected salmons are not recognized. 360 

In the study, only plausible routes of introduction were considered in the release and exposure assessment; nevertheless, 361 

since science cannot prove that a particular pathway does not exist there will always be a degree of uncertainty. 362 
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