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Abstract 

Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic 

reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s.  The 

major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a 

controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide 

pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is 

to directly inhibit hydroxyapatite formation thereby acting as a physiological “water-softener”.  Evidence 

suggests pyrophosphate may also act as a signalling molecule to influence gene expression and 

regulate its own production and breakdown.  This review will summarise our current understanding of 

pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue 

calcification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Inorganic pyrophosphate (or PPi) is so named because it was originally prepared by heating phosphates 

(pyro from the Greek meaning “fire”).  It comprises two inorganic phosphate (or Pi) molecules joined by 

a hydrolysable ester bond (Figure 1).  Although pyrophosphate and longer chain polyphosphates can 

be synthesised under some circumstances, particularly by bacteria and non-mammalian organisms, 

pyrophosphate is not thought to be produced directly by mammalian cells.  Instead, it is mainly 

generated by the hydrolysis of the phosphodiester bond in nucleotide triphosphates such as ATP or 

UTP.  As such it is a metabolic by-product for many intracellular biochemical reactions and extracellular 

signalling cascades.  The biology and biochemistry of pyrophosphate in nature has been expertly and 

comprehensively reviewed in a monograph by Heinonen published in 2001 [1]. 

It is important to distinguish between the roles of intracellular pyrophosphate, produced as a by-product 

of over 200 different enzyme reactions, and extracellular pyrophosphate which is separately regulated.  

In the 1950s, Kornberg and colleagues recognised that the hydrolysis of intracellular pyrophosphate 

was a major mechanism for driving biosynthetic reactions in the direction of synthesis [2].  Huge 

amounts of pyrophosphate are produced within cells daily, particularly during the generation of 

macromolecules such as proteins, nucleic acids, carbohydrates and lipids from their smaller precursors.  

For example, it has been estimated that ≥30g of pyrophosphate is generated daily by albumin synthesis 

within the adult human liver [3].  Clearly most of this pyrophosphate remains within cells where it is 

hydrolysed by intracellular pyrophosphatases. 

Extracellular pyrophosphate: the “early years” 

Pyrophosphate and polyphosphates are good complexing agents for metal ions (e.g. calcium and 

transition metals) giving them many uses in industrial chemistry. In particular, polyphosphates have 

long been used to prevent calcification; for example, sodium polyphosphate was first used in the 

Calgon® water softener in the 1930s. Pyrophosphate and related polyphosphates, such as 

hexametaphosphate, have also been extensively used as toothpaste additives to prevent dental 

calculus formation and as food additives.  However, it was the pioneering work of Fleisch and 

colleagues in the 1960s that identified the ability of pyrophosphate to inhibit biomineralisation [4-7]. 

They discovered that pyrophosphate potently antagonises the ability of calcium to crystallise with 

phosphate to form hydroxyapatite (Ca10(PO4)(OH2)) [5,7]. Pyrophosphate also binds stongly to the 

surface of hydroxyapatite crystals and blocks their ability to act as a nucleator for mineralisation 

therefore preventing further crystal growth [8].  

This initial work helped to establish the concept that pyrophosphate is the body’s own “water softener” 

which acts to prevent harmful soft tissue calcification and regulate bone mineralisation [8,9]. 

Subsequent studies using 32P-labelled pyrophosphate in dogs enabled the kinetics of pyrophosphate 

production and elimination to be examined (Figure 2) [10]. This work suggested that the daily turnover 

of extracellular pyrophosphate in an adult human might be in the range 100mg/day, a very small amount 

compared with the many grams likely to be generated intracellularly during biosynthetic reactions. Early 

studies also revealed that the pyrophosphate in human bodily fluids, including urine, is endogenous and 



does not come from dietary sources [3]. Indeed feeding large amounts of pyrophosphate did not 

increase levels any more than giving the same amount of inorganic phosphate.  This is because 

pyrophosphate, like other phosphate compounds, seems to be completely hydrolysed within the 

intestinal tract by enzymes including alkaline phosphatase located on the brush borders of intestinal 

villous cells.  In the 1960-70s it was thought that feeding phosphate might be effective in reducing kidney 

stone formation in patients; although this seemed counterintuitive it increased urinary pyrophosphate, 

by a mechanism that appeared to involve inhibition of its intra-renal hydrolysis [11].  Reduced levels of 

pyrophosphate are also found in some groups of stone formers [12].  

Pyrophosphate is found in mineralised tissues (e.g. teeth and bone) at concentrations representing 

approximately 0.5% of the total phosphate content [13,14].  The intracellular concentrations have been 

difficult to determine, not least because of compartmentalisation, but are likely to be at least tenfold 

lower than that of inorganic phosphate.  Interestingly in platelets, pyrophosphate is found in dense 

granules which are released during blood clotting [1].  This is important because serum levels of 

pyrophosphate produced in vitro can be several-fold higher than plasma concentrations, and this has 

previously led to misinterpretation of circulating levels of pyrophosphate in human diseases.  

Deposits of pyrophosphate as calcium salts occur in humans, such as in the disease chondrocalcinosis, 

but also in nature.   For example, deposits of amorphous calcium pyrophosphate mixed with calcium 

phosphates are found in the hepatopancreas of snails where they are thought to selectively accumulate 

metal irons, and have been used as monitors of toxic metals like cadmium, zinc and mercury in the 

environment [15]. 

Much remains to be learnt about the role of pyrophosphate in biology and mineralisation.  For example, 

high pyrophosphate levels (>100µM) are found in milk where it may help to keep the extremely high 

concentrations of calcium and phosphate in a colloidal state and prevent them from precipitating out 

(RGG Russell, unpublished observation). This article is dedicated to the memory of Herbert R Fleisch 

and William F Neuman, whose discoveries laid the foundations for understanding the role of 

pyrophosphate in mineralisation. It will summarise our current understanding of how this simple 

molecule regulates mineralisation.   

Generation and regulation of extracellular pyrophosphate 

In vivo a balance between the rate of production and hydrolysis ensures the concentration of 

extracellular pyrophosphate is carefully regulated (Figure 3).  Extracellular nucleotides such as ATP 

are thought to be an important source of the pyrophosphate present outside cells.  The (NPP) ecto-

nucleotide pyrophosphatase/phosphodiesterase family of enzymes catalyse the hydrolysis of ATP/UTP 

to the corresponding monophosphate and pyrophosphate.  NPPs are widely expressed and highly 

conserved between species.  In humans, there are 7 members of the NPP family [16] each with different 

expression and substrate specificity.  NPP1 (or PC-1), NPP2 (autotoxin) and NPP3 (B10) have been 

particularly well characterised with regard to their roles in pyrophosphate generation.  

The intracellular ATP concentration is between 2-5mM.  Following membrane damage all cells can 

release ATP into the extracellular environment; however, controlled release has also been 



demonstrated from numerous excitatory and non-excitatory cells (e.g. bone cells [17], endothelial and 

epithelial cells [18,19], vascular smooth muscle cells [20]).  Following release, ATP can act in an 

autocrine/paracrine manner to influence local purinergic signalling but it is also rapidly broken down by 

ecto-nucleotidases including NPPs. To date several different processes have been implicated in 

mediating ATP release (e.g. connexin hemichannels, the P2X7 receptor) but the predominant 

mechanism appears to be vesicular exocytosis (see review [21]).  The extent of cellular ATP release 

can also be influenced by external stimuli such as hypoxia [22,23], mechanical stress [24,25] and 

vitamin D [26].  Since ATP hydrolysis is a key source of extracellular pyrophosphate, factors which 

regulate ATP release may also indirectly affect pyrophosphate levels and thus the local rates of 

mineralisation.  However, at present the relationship between controlled ATP release and the 

extracellular pyrophosphate concentration is poorly investigated and presents an interesting area for 

future study. 

The membrane protein ANK (progressive ankylosis or ANKH), which is thought to facilitate transport of 

pyrophosphate from the intra-to-extracellular environment, may also contribute to extracellular 

pyrophosphate levels [27].  However, since the intracellular pyrophosphate concentration is only in the 

micromolar range the relative contribution of ANK to extracellular pyrophosphate levels is likely to be 

smaller than the breakdown of ATP by NPPs [28]. At present, the biological role and function of ANK 

remains unclear.  Although mutations are found in patients with ‘pyrophosphate’ diseases such as 

chondrocalcinosis [29,30], loss of function mutations are also found in other skeletal disorders, notably 

craniometaphysial dysplasia (CMD) [31,32]. This autosomal dominant condition is characterised by 

abnormal bone mineralisation leading to craniofacial bone thickening, widened long-bone metaphyses 

and increased cortical thickness. At present any role of pyrophosphate in CMD remains obscure. 

Alkaline phosphatases, of which there are four, are broad spectrum ecto-phosphatases that hydrolyse 

numerous phosphate containing molecules [16].  In particular they have pyrophosphatase activity and 

so will break down pyrophosphate to two phosphates.  It is important to note that alkaline phosphatase, 

as its names implies, is usually assayed at high pH, but its kinetics are different at physiological pH 

where the Km for substrates like pyrophosphate is very low, and it is capable of ‘completely’ hydrolysing 

pyrophosphate [16].  Thus the addition of excess alkaline phosphatase to plasma or urine results in 

reduction of pyrophosphate to unmeasurable levels.      

Biological mineralisation and the role of pyrophosphate as an inhibitor 

As originally highlighted by Fleisch and Neuman [4-7], body fluids are supersaturated with respect to 

calcium and phosphate, and mineralisation is facilitated by the presence of nucleating agents. Their 

pioneering studies identified collagen as an important nucleator, and they showed that the maintenance 

of supersaturated levels of calcium and phosphate was achieved by the presence of inhibitors.  The 

key inhibitor was destroyed by alkaline phosphatase and proved to be pyrophosphate [4-7].    

The concentrations of extracellular calcium and phosphate are major determinants of mineralisation 

both within the skeleton (bone and cartilage) and other tissues.  In clinical disorders, such as vitamin D 

deficiency, skeletal mineralisation is impaired by low calcium and phosphate levels [33].  Conversely 



when calcium or phosphate levels are high, as in renal failure, ectopic mineralisation can occur.  Plasma 

phosphate levels vary physiologically over a wider range than calcium and are significantly influenced 

by dietary intake [34].  They are also regulated by renal excretion, which in turn is modulated by several 

factors, including parathyroid hormone (PTH), growth hormone and FGF23 [34].   

Pyrophosphate as an inhibitor of bone mineralisation 

The inhibitory actions of pyrophosphate have been extensively studied in bone. It is now thought that 

the phosphate-to-pyrophosphate ratio within the bone microenvironment is a fundamental regulator of 

skeletal mineralisation (see review [35]).  Osteoblasts express at least 3 members of the NPP family 

(NPP1, 2, 3), and of these, NPP1, is thought to be the most important in pyrophosphate generation [36-

38]. Tissue non-specific alkaline phosphatase (TNAP) is the only alkaline phosphatase implicated in 

mineralisation and is the key enzyme involved in pyrophosphate breakdown [35,36].  Previous work 

has suggested that the opposing actions of NPP1 and TNAP may be critical in determining local 

extracellular phosphate and pyrophosphate levels [28,37].  Deletion or inactivation of one of these 

enzymes has a significant effect on the skeleton (see reviews [35,39]). For example, patients with 

hypophosphatasia lack TNAP resulting in increased pyrophosphate levels and impaired bone 

mineralisation [40,41].  In contrast, the human disease ossification of the posterior longitudinal ligament 

of the spine (OPLL), which is characterised by ectopic calcification of spinal ligaments, is caused by a 

mutation in NPP1 that leads to a reduced enzyme activity [42].  The treatment of these diseases remains 

challenging, but there has been remarkable recent success in treating hypophosphatasia with TNAP 

enzyme replacement therapy [43]. 

NPP1 

The important role of NPP1 in pyrophosphate generation and skeletal mineralisation has been 

highlighted by three different mouse models; the naturally occurring NPP1 “knockout” termed the tip-

toe walking (ttw/ttw) mouse, the genetically altered NPP1 knockout (Enpp1-/-) and the alternative 

Enpp1asj knockout.  The ttw/ttw model displays ossification of the spinal ligaments, peripheral joint 

hyperstosis and calcification of articular cartilage [42].  The phenotype of ttw/ttw mice has similarities to 

OPLL.  To date the Enpp1-/- model has been studied in the most detail; these animals display aberrant 

calcification of the spine, joints, tendons and extra-skeletal cartilage which progressively worsens with 

age and is associated with a reduction in movement and altered gait (Figure 4)  [36,44-46].  

Surprisingly, given the lower extracellular pyrophosphate levels, Enpp1-/- mice exhibit reduced 

trabecular and cortical bone in the appendicular skeleton and decreased bone strength [45-47].   The 

reasons for this unexpected phenotype are unclear but could involve factors such as decreased 

movement, increased levels of FGF-23, a regulator of phosphate metabolism, and sclerostin, an 

inhibitor of bone mineralisation [45,46,48] and diminished blood flow to bone owing to mineral occlusion 

of the blood vessel channels in bone [46].  Enpp1asj mice, which have a different genetic background to 

Enpp1-/- animals, also display many of the same phenotypic characteristics such as widespread ectopic 

calcification [49]. 

ANK 



Like NPP1 the postulated function of ANK is to increase extracellular pyrophosphate albeit via a different 

mechanism. In ank/ank mice, a mutation in the C-terminal cytosolic domain of ANK attenuates 

pyrophosphate transport to the extracellular environment [27].  These animals display abnormal 

pyrophosphate levels, joint calcification and destruction, impaired gait and vertebral fusion 

characteristic of ankylosing spondylitis [27]. Interestingly, a comparative study reported that the ectopic 

mineralisation in ank/ank mice is less severe than in Enpp1-/- animals suggesting that NPP1 is more 

important in extracellular pyrophosphate generation [28]. 

Controlling pyrophosphate levels in bone 

Regulation of NPP1, TNAP and ANK (and consequently pyrophosphate levels) expression and activity 

is essential to prevent hypo- or hypermineralisation.  Many signalling pathways are likely to be involved 

but one of the most interesting is the apparent ability of pyrophosphate to control its own production.  

Exogenous pyrophosphate down-regulates Enpp1 and Ank expression in osteoblasts [28,38].  ATP and 

UTP also inhibit Enpp1 expression although it is unclear whether this is due to purinergic signalling or 

because of an NPP1-mediated increase in pyrophosphate [38].  Nevertheless these data suggest the 

presence of a negative feedback pathway by which pyrophosphate regulates gene expression. How 

pyrophosphate activates intracellular signalling pathways is unknown.  Its size and charge means that 

it cannot passively cross the cell membrane and this raises the intriguing possibility of a pyrophosphate 

receptor or sensor (Figure 3).  

Whilst pyrophosphate can inhibit Enpp1 expression increased phosphate levels can induce it [50].  

Other factors which can regulate extracellular pyrophosphate via actions on TNAP, NPP1 and/or ANK 

include neurofibromin [51], acidosis [52,53], hypoxia-inducible factor proteins [54], FGF2 [55,56] and 

vitamin D [57]. 

Pyrophosphate and osteocytes 

Osteocytes, the most abundant cell type in bone [58], reside within lacunae surrounded by mineralized 

matrix.  These cells release numerous soluble factors which regulate osteoblast and osteoclast function 

thereby allowing them to control bone remodeling [59].  Since osteocytes are embedded within bone 

they must be capable of preventing over-mineralisation of their lacunae (which could potentially 

compromise cell viability and function).  ATP, which is released by all bone cells including osteocytes 

[22,25,60-65], is an important source of pyrophosphate in bone [17,66]. Previous work has shown that 

endogenous ATP released by osteoblasts acts as an important local brake on mineralisation, an effect 

mediated by both purinergic signalling and the breakdown to produce pyrophosphate [38,67,68].  

Detailed analysis of cortical bone revealed that Enpp1-/- mice display a significant reduction in the size 

and number of osteocyte lacunae, an effect which was attributed to reduced pyrophosphate levels [46].  

Hajjawi  et al  [46] suggested that under normal conditions the ATP constitutively released by osteocytes 

is broken down by NPP1 to pyrophosphate which then acts to maintain lacunar size [46].  Regulation 

of lacunar size during lactation, when demand for calcium release is high, may involve similar 

mechanisms [69].  Further work is required to fully understand the role of pyrophosphate in osteocytes. 

Pyrophosphate as a regulator of soft tissue calcification 



Since soft tissue calcification usually results in severe pathological changes robust regulatory 

mechanisms are in place to prevent it.  NPP1 appears to be particularly important in generating the 

extracellular pyrophosphate needed to prevent unwanted soft tissue calcification, as illustrated by 

Enpp1-/- mice which display widespread and dramatic calcification of tissues including the aorta, kidney, 

ear pinna, trachea, whisker follicles, cartilage and tendons [45,46,48] (Figure 4). 

Pyrophosphate and cartilage mineralisation 

Normal joints contain both articular cartilage, which must remain unmineralised in order to function 

correctly, and calcified cartilage which forms the interface between articular cartilage and the underlying 

subchondral bone.  To maintain joint health and integrity, cartilage calcification needs to be tightly 

controlled and restricted to specific regions. Chondrocytes, the resident cell type in cartilage, release 

ATP constitutively [70], display high levels of NPP1 activity and can produce large amounts of 

extracellular pyrophosphate  [71,72].  In the degenerative joint disease osteoarthritis (OA), aberrant 

articular cartilage calcification may occur and damage the surrounding tissue [73].  NPP1 levels are 

reported to be lower in cartilage from patients with severe OA [74] and Enpp1 polymorphisms have 

been associated with hand OA [75]. Furthermore, calcium deposits and OA-like changes have been 

described in the articular cartilage of ttw/ttw mice [74,76]. Thus, it appears that NPP1 and 

pyrophosphate play an important but not yet fully defined role in preventing pathological cartilage 

calcification. 

Although pyrophosphate may act to protect cartilage against inappropriate mineralisation, in excess it 

may be detrimental because it can promote the formation of calcium pyrophosphate dihydrate (CPPD) 

crystals and the development of chondrocalcinosis. This condition occurs in familial forms but is also 

extremely common in ageing populations, where it can lead to significant morbidity [77].  It has been 

suggested that elevated pyrophosphate levels may involve ANK since protein expression is higher in 

patients with CPPD deposits and activating mutations in the Ankh gene have been associated with 

inherited forms of chondrocalcinosis [78,79].   

Pyrophosphate and vascular calcification 

Vascular calcification refers to the pathological deposition of calcium phosphate mineral, most often 

hydroxyapatite, in arteries, heart valves and cardiac muscle.  It shares some outward similarities with 

bone mineralisation and is associated with a phenotypic transdifferentiation of vascular smooth muscle 

cells (VSMCs) towards a more osteoblast-like phenotype [80].    

Vascular calcification is particularly common in patients with advanced chronic kidney disease, where 

it is inversely correlated with circulating pyrophosphate levels [81,82].  Early work reported that aortic 

calcification was inhibited by pyrophosphate injections [83].  This idea is supported by a recent 

investigation which found daily pyrophosphate injections reduced the incidence and amount of uraemia-

induced vascular calcification without adversely effecting bone [84]. Taken together these studies 

suggest a potential therapeutic use of pyrophosphate. 

Mutations in the Enpp1 gene are associated with a rare autosomal recessive condition called 

generalised arterial calcification of infancy (GACI) [85,86].  Sufferers of this condition usually die in 



infancy because of substantial vascular calcification. Consistent with an inhibitory role, Enpp1-/- mice 

exhibit significant vascular calcification in vivo and Enpp1-/- VSMCs have a reduced ability to generate 

pyrophosphate from ATP leading to increased calcification in vitro [45,87].  Enpp1-/- VSMCs also display 

higher expression of chondrogenic, osteoblastic and osteocytic markers [88].  Furthermore, a recently 

published study has shown that subcutaneous administration of an NPP1 fusion protein prevents 

vascular calcification in Enpp1asj mice [89]. In vitro studies have additionally shown that, by hydrolysing 

released ATP, NPP1 is a key source of pyrophosphate in VSMC cultures [20,90]. ANK may also 

contribute to extracellular pyrophosphate levels needed to prevent vascular calcification although 

evidence suggests that it plays a less important role than NPP1 [20,87]. 

Pyrophosphate and pseudoxanthoma elasticum      

Pseudoxanthoma elasticum is an autosomal recessive condition characterised by reduced plasma 

pyrophosphate levels and progressive ectopic mineralisation of the skin, eyes and arteries [91-93].  It 

is primarily caused by inactivating mutations in the ATP-binding cassette subfamily C member 6 

(ABCC6) gene [94]. ABCC6 is primarily expressed in the liver and mediates ATP release from 

hepatocytes. Abcc6-/- knockout animals exhibit the symptoms of pseudoxanthoma elasticum and 

display a 40% reduction in plasma pyrophosphate levels [91].  Studies using these animals have 

suggested that ATP release is impaired in cells lacking ABCC6 and that the lack of substrate for NPP1 

results in lower circulating pyrophosphate levels and the development of pseudoxanthoma elasticum 

[66].  Interestingly, it has recently been identified that polymorphisms in the TNAP, NPP1 and ANK 

genes are risk factors for developing pseudoxanthoma elasticum [95]. 

Pyrophosphate and Hutchinson-Gilford progeria syndrome 

Hutchinson-Gilford progeria syndrome is a rare disorder characterised by high levels of atherosclerosis 

and vascular calcification [96,97].  Patients with this condition express a mutant form of lamin A, called 

progerin. Knock-in mice overexpressing progerin have reduced circulating pyrophosphate levels and 

vascular calcification [98].  The reduction in pyrophosphate levels in these animals was attributed to 

increased alkaline phosphatase activity and decreased extracellular ATP levels [98]. 

Pyrophosphate: the mechanism of action 

Following considerable work in the 1960-1970s, the direct effects of pyrophosphate on hydroxyapatite 

formation are now well established.  It inhibits de novo crystal formation, and retards the conversion of 

amorphous calcium phosphates to crystalline apatites. However, the physicochemical interactions 

between pyrophosphate and calcium phosphates are complex.  For example, in the original studies of 

Fleisch and Neuman low pyrophosphate and polyphosphate concentrations promoted mineralisation in 

cultured chick embryo femurs whilst higher concentrations had the expected inhibitory effect [99].  

Accumulating evidence suggests that pyrophosphate may also exert non-physicochemical effects 

including regulation of its own production [28,38] .  Osteopontin is a secreted glycoprotein which limits 

hydroxyapatite formation and deposition [100,101].  Pyrophosphate can induce osteopontin in 

osteoblasts via the MAPK signalling pathway [28,102] and both Enpp1-/- and ank/ank mice display 

reduced osteopontin expression in osteoblasts and decreased serum levels of the protein [28,44,45]. 



Thus, pyrophosphate-induced osteopontin could represent an important mechanism to prevent ectopic 

calcification.  

In addition to the known inhibitory effects of phosphate on TNAP, direct inhibitory actions of 

pyrophosphate on TNAP have also been suggested. Earlier work indicated that, in the presence of a 

second substrate such as β-glycerophosphate, pyrophosphate can cause a conformational change in 

TNAP which inhibits the enzyme thereby reducing pyrophosphate hydrolysis [102] .   

Circulating pyrophosphate 

The plasma concentration of pyrophosphate is reported to be in the range 1-6µM/litre [103].  However, 

the tissue source of circulating pyrophosphate remains the subject of some debate.  Some evidence 

indicates that the skeletal system maybe a significant source [36], however, more recent work suggests 

that other tissues such as the liver could also contribute [66].  Nevertheless, it is becoming apparent 

that systemic pyrophosphate levels play a key role in preventing unwanted soft tissue calcification.  As 

already mentioned plasma pyrophosphate is reduced in patients with vascular calcification [81,82].   

Furthermore, recent work demonstrated that transplanting Enpp1-/- aortas into wildtype littermates 

stopped vascular calcification from developing; conversely, if wildtype aortas were transplanted into 

Enpp1-/- animals they began to calcify [48]. Thus it has been suggested that systemic levels of 

pyrophosphate could represent a measurable risk factor for vascular calcification [48].   

Pyrophosphate and bisphosphonates 

Bisphosphonates (BPs), which are potent inhibitors of osteoclast activity, are widely used to prevent 

the bone loss associated with conditions such as osteoporosis, Paget’s disease and metastatic bone 

disease (see reviews [104,105]). They are chemically stable analogues of pyrophosphate, in which the 

central oxygen atom is replaced by carbon to form a P-C-P moiety; variations in the R1 and R2 side 

chains off the central carbon produce the individual bisphosphonates [104,106]. Like pyrophosphate, 

BPs bind strongly to bone mineral and inhibit the formation and propagation of hydroxyapatite crystals 

[107]. The binding affinity of the different BPs for hydroxyapatite, and hence their uptake and 

persistence, is influenced by their R1 and R2 groups [104,108] (Figure 1).  Despite the similarities, 

there are some critical differences between pyrophosphate and BPs.  Firstly, pyrophosphate has to be 

injected as it is ineffective orally because of hydrolytic destruction within the gut; BPs are effective by 

mouth despite being poorly absorbed.  Secondly, pyrophosphate does not inhibit bone resorption, 

whereas this is the key pharmacological action of BPs when used to treat clinical disorders 

characterised by excessive resorption [100].  BPs are very effective drugs with more than 40 years of 

clinical use, and have proven to be remarkably safe, with an excellent benefit to risk ratio [109].  Despite 

this there is a considerable literature on the possible adverse effects, namely osteonecrosis of the jaw 

(ONJ) and atypical femoral fractures.  Such events are very rare and their pathogenesis remains 

unclear.  Claims that the similarities between pyrophosphate and BPs might explain these phenomena 

[110] are speculative and without scientific foundation, since pyrophosphate and polyphosphates do 

not inhibit bone resorption [106,111].    



It has long been known that BPs can inhibit mineralisation in both bone and cartilage, as well as in soft 

tissues.  This proved to be an issue with the early BPs such as etidronate, but with the BPs currently 

used the therapeutic window between inhibition of mineralisation and bone resorption differs by several 

orders of magnitude, so this is no longer a clinical problem. There are more recent studies suggesting 

that BPs may inhibit bone formation and mineralisation, an effect which may, because of the structural 

similarities with pyrophosphate, involve direct physicochemical effects on hydroxyapatite crystal 

propagation [112,113].  These inhibitory actions on mineralisation may prove beneficial if BPs are ever 

to be used as potential therapeutics for treating conditions associated with unwanted calcification such 

as vascular calcification and GACI [114-117]. 

BPs have many clinical uses in bone diseases and many non-skeletal effects based on their ability to 

inhibit protein prenylation.  In a mouse model of Hutchinson-Gilford progeria syndrome, a combination 

of a statin with zoledronate was able to markedly extend lifespan and offset many of the tissue ageing 

effects [118].  These observations have led to the use of these drug combinations in patients with 

Hutchinson-Gilford progeria syndrome, with apparently promising results [119]. 

Concluding remarks 

Our understanding of how pyrophosphate prevents unwanted mineralisation has advanced 

considerably from the early seminal work describing its physicochemical effects on hydroxyapatite 

formation.  It is now clear that numerous proteins are involved in the formation, transport and hydrolysis 

of pyrophosphate and defects in any of these can have profound effects on the level of mineralisation.  

Hydrolysis of ATP appears to be the key source of pyrophosphate and further studies to determine if 

alterations in controlled ATP release indirectly influence the extracellular pyrophosphate concentration 

are warranted.  Additional work is also required to establish the mechanisms by which pyrophosphate 

can induce intracellular signalling pathways and whether it can be used therapeutically. 
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Figure legends 

Figure 1.  The chemical structure of phosphate, pyrophosphate, polyphosphates and 

bisphosphonates 

Figure 2. Systemic extracellular metabolism of pyrophosphate 



Studies using 32P-pyrophosphate injected into dogs showed how extracellular pyrophosphate is 

produced and eliminated systemically.  Figure is adapted from Jung et al [10]. 

Figure 3.  Regulation of extracellular pyrophosphate levels and mineralisation 

The intracellular ATP concentration is 2-5mM.  ATP is released from most cells via controlled 

mechanisms such as vesicular exocytosis.  Once outside the cell, ATP is rapidly broken down by NPP1 

to produce AMP and pyrophosphate.  The membrane protein ANK may directly transport 

pyrophosphate, where it is found at micromolar levels, from inside to outside the cell contributing to 

extracellular pyrophosphate levels.  Extracellular pyrophosphate acts to prevent mineralisation by 

preventing hydroxyapatite formation and growth. It can also regulate gene expression suggesting the 

presence of a yet unknown pyrophosphate receptor/sensor. TNAP hydrolyses pyrophosphate to two 

phosphate molecules which may contribute to mineralisation in association with the much higher 

concentrations of phosphate available in extracellular fluids.    

Figure 4. Enpp1-/- mice display widespread ectopic calcification 

MicroCT images (9µm resolution) showing the ectopic calcification in 20 week-old Enpp1-/-
 mice 

(highlighted by the arrows).  Images obtained using a SkyScan 1176 high resolution in vivo scanner 

(Bruker MicroCT, Kontich, Belgium). 
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